1
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
2
|
Huang S. Analysis of environmental pollutant Bisphenol F elicited prostate injury targets and underlying mechanisms through network toxicology, molecular docking, and multi-level bioinformatics data integration. Toxicology 2024; 506:153847. [PMID: 38830480 DOI: 10.1016/j.tox.2024.153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024]
Abstract
Bisphenol F (BPF) has gained prominence as an alternative to bisphenol A (BPA) in various manufacturing applications, yet being detected in diverse environments and posed potential public health risk. This research aims to elucidate the putative toxic targets and underlying molecular mechanisms of prostate injury induced by exposure to BPF through multi-level bioinformatics data, integrating network toxicology and molecular docking. Systematically leveraging multilevel databases, we determined 276 targets related to BPF and prostate injury. Subsequent screenings through STRING and Cytoscape tool highlighted 27 key targets, including BCL2, HSP90AA1, MAPK3, ESR1, and CASP3. GO and KEGG enrichment analyses demonstrated enrichment of targets involved in apoptosis, abnormal hormonal activities, as well as cancer-related signal transduction cascades, ligand-receptor interaction networks, and endocrine system signaling pathways. Molecular docking simulations conducted via Autodock corroborated high-affinity binding interaction between BPF and key targets. The results indicate that BPF exposure can contribute to the initiation and progression of prostate cancer and prostatic hyperplastic by modulating apoptosis and proliferation, altering nerve function in blood vessel endothelial cells, and disrupting androgen metabolism. This study offers theoretical underpinnings for comprehending the molecular mechanisms implicated in BPF-elicited prostatic toxicity, while concomitantly establishing foundational framework for the development of prophylactic and therapeutic strategies for prostatic injuries related to polycarbonate and epoxy resin plastics incorporated with BPF, as well as environments afflicted by elevated levels of these compounds.
Collapse
Affiliation(s)
- Shujun Huang
- West China School of Public Health, West China Medical Center, Sichuan University, China.
| |
Collapse
|
3
|
Phongsuwichetsak C, Suksrichavalit T, Chatupheeraphat C, Eiamphungporn W, Yainoy S, Yamkamon V. Diospyros rhodocalyx Kurz induces mitochondrial-mediated apoptosis via BAX, Bcl-2, and caspase-3 pathways in LNCaP human prostate cancer cell line. PeerJ 2024; 12:e17637. [PMID: 38966207 PMCID: PMC11223595 DOI: 10.7717/peerj.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Chayisara Phongsuwichetsak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thummaruk Suksrichavalit
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Information, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Li J, Wang X, Xue L, He Q. Exploring the therapeutic mechanism of curcumin in prostate cancer using network pharmacology and molecular docking. Heliyon 2024; 10:e33103. [PMID: 39022084 PMCID: PMC11253540 DOI: 10.1016/j.heliyon.2024.e33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Curcumin, a phenolic compound extracted from turmeric rhizomes, exhibits antitumour effects in preclinical models of tumours. However, its mechanism of action in prostate cancer remains unclear. Exploring the molecular mechanisms of curcumin in prostate cancer based on network pharmacology and molecular docking provides a new theoretical basis for prostate cancer treatment. Method Using tools such as PharmMapper, SuperPred, TargetNet, and SwissTargetPrediction, we obtained information on curcumin-related targets. We comprehensively collected prostate cancer-related targets from several databases, including GeneCards, CTD, DisGeNET, OMIM, and PharmGKB. Cross-cutting drug-disease targets were then derived by screening using the Venny 2.1.0 tool. Subsequently, we used the DAVID platform to perform in-depth GO and KEGG enrichment analyses of the drug-disease-shared targets. To construct a PPI network map of the cross-targets and screen the 10 core targets, we combined the STRING database and Cytoscape 3.7.2. Molecular docking experiments were performed using AutoDockTools 1.5.7 software. Finally, we used several databases such as GEPIA, HPA, cBioPortal, and TIMER to further analyse the screened core targets in detail. Result We identified 307 key targets of curcumin in cancer treatment. After GO functional enrichment analysis, we obtained 1119 relevant entries, including 782 biological progression (BP) entries, 112 cellular component (CC) entries, and 225 molecular function (MF) entries. In addition, KEGG pathway enrichment analysis revealed 126 signalling pathways, which were mainly involved in the cancer pathway, such as lipid and atherosclerosis pathway, PI3K-Akt signal pathway, MAPK signal pathway, Ras signal pathways, and chemical carcinogenesis-reactive oxygen species. By applying Cytoscape 3.7.2 software, we identified SRC, PIK3R1, STAT3, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1 as core targets. Molecular docking experiments showed that the binding energies of curcumin to these core targets were all below -1.85 kJ mol-1, which fully demonstrated that curcumin could spontaneously bind to these core targets. Finally, these results were validated at multiple levels, including mRNA expression, protein expression, and immune infiltration. Conclusion Through in-depth network pharmacology and molecular docking studies, we have found that curcumin may have anticancer potential by upregulating the expression of PIK3R1 and STAT3, and downregulating the binding ability of molecules such as SRC, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1. In addition, curcumin may interfere with the cyclic process of prostate cancer cells by inhibiting key signalling pathways such as the PI3K-Akt signalling pathway, MAPK signalling pathway, and Ras, thereby inhibiting their growth. This study not only reveals the potential molecular mechanism of curcumin in the treatment of prostate cancer but also provides an important theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Xi'an Jiaotong University, China
- Department of Urology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| | - Xiong Wang
- Department of Pharmacology, Ankang Maternity and Child Health Care Hospital, Ankang, 725000, Shaanxi Province, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| |
Collapse
|
5
|
Singh P, Dhole B, Choudhury J, Tuli A, Pandey D, Velpandian T, Gupta S, Chaturvedi PK. Calotropis procera extract inhibits prostate cancer through regulation of autophagy. J Cell Mol Med 2024; 28:e18050. [PMID: 38400579 PMCID: PMC10941509 DOI: 10.1111/jcmm.18050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/25/2024] Open
Abstract
Current treatment options available for prostate cancer (PCa) patients have many adverse side effects and hence, new alternative therapies need to be explored. Anticancer potential of various phytochemicals derived from Calotropis procera has been studied in many cancers but no study has investigated the effect of leaf extract of C. procera on PCa cells. Hence, we investigated the effect of C. procera leaf extract (CPE) on cellular properties of androgen-independent PC-3 and androgen-sensitive 22Rv1 cells. A hydroalcoholic extract of C. procera was prepared and MTT assay was performed to study the effect of CPE on viability of PCa cells. The effect of CPE on cell division ability, migration capability and reactive oxygen species (ROS) production was studied using colony formation assay, wound-healing assay and 2',7'-dichlorodihydrofluorescein diacetate assay, respectively. Caspase activity assay and LDH assay were performed to study the involvement of apoptosis and necrosis in CPE-mediated cell death. Protein levels of cell cycle, antioxidant, autophagy and apoptosis markers were measured by western blot. The composition of CPE was identified using untargeted LC-MS analysis. Results showed that CPE decreased the viability of both the PCa cells, PC-3 and 22Rv1, in a dose- and time-dependent manner. Also, CPE significantly inhibited the colony-forming ability, migration and endogenous ROS production in both the cell lines. Furthermore, CPE significantly decreased NF-κB protein levels and increased the protein levels of the cell cycle inhibitor p27. A significant increase in expression of autophagy markers was observed in CPE-treated PC-3 cells while autophagy markers were downregulated in 22Rv1 cells after CPE exposure. Hence, it can be concluded that CPE inhibits PCa cell viability possibly by regulating the autophagy pathway and/or altering the ROS levels. Thus, CPE can be explored as a possible alternative therapeutic agent for PCa.
Collapse
Affiliation(s)
- Palak Singh
- Department of Reproductive BiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Bodhana Dhole
- Department of Reproductive BiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Jaganmoy Choudhury
- Department of Reproductive BiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Anannya Tuli
- Department of Ocular PharmacologyDr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical SciencesNew DelhiIndia
| | - Deepak Pandey
- Department of Reproductive BiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Thirumurthy Velpandian
- Department of Ocular PharmacologyDr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical SciencesNew DelhiIndia
| | - Surabhi Gupta
- Department of Reproductive BiologyAll India Institute of Medical SciencesNew DelhiIndia
| | | |
Collapse
|
6
|
Zhu M, Liu D, Liu G, Zhang M, Pan F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023; 13:1715. [PMID: 38136586 PMCID: PMC10741419 DOI: 10.3390/biom13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a complex disease and the cause of one of the highest cancer-related mortalities in men worldwide. Annually, more than 1.2 million new cases are diagnosed globally, accounting for 7% of newly diagnosed cancers in men. Programmed cell death (PCD) plays an essential role in removing infected, functionally dispensable, or potentially neoplastic cells. Apoptosis is the canonical form of PCD with no inflammatory responses elicited, and the close relationship between apoptosis and PCa has been well studied. Necroptosis and pyroptosis are two lytic forms of PCD that result in the release of intracellular contents, which induce inflammatory responses. An increasing number of studies have confirmed that necroptosis and pyroptosis are also closely related to the occurrence and progression of PCa. Recently, a novel form of PCD named PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis, revealed the attached connection among them and may be a promising target for PCa. Apoptosis, necroptosis, pyroptosis, and PANoptosis are good examples to better understand the mechanism underlying PCD in PCa. This review aims to summarize the emerging roles and therapeutic potential of apoptosis, necroptosis, pyroptosis, and PANoptosis in PCa.
Collapse
Affiliation(s)
- Minggang Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Guoqiang Liu
- Urology Department of Guangzhou First People’s Hospital, Guangzhou 510000, China;
| | - Mingrui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| |
Collapse
|
7
|
Asghariazar V, Kadkhodayi M, Sarailoo M, Jolfayi AG, Baradaran B. MicroRNA-143 as a potential tumor suppressor in cancer: An insight into molecular targets and signaling pathways. Pathol Res Pract 2023; 250:154792. [PMID: 37689002 DOI: 10.1016/j.prp.2023.154792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
MicroRNAs (MiRNAs), which are highly conserved and small noncoding RNAs, negatively regulate gene expression and influence signaling pathways involved in essential biological activities, including cell proliferation, differentiation, apoptosis, and cell invasion. MiRNAs have received much attention in the past decade due to their significant roles in cancer development. In particular, microRNA-143 (miR-143) is recognized as a tumor suppressor and is downregulated in most cancers. However, it seems that miR-143 is upregulated in rare cases, such as prostate cancer stem cells, and acts as an oncogene. The present review will outline the current studies illustrating the impact of miR-143 expression levels on cancer progression and discuss its target genes and their relevant signaling pathways to discover a potential therapeutic way for cancer.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ghaffari Jolfayi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
9
|
Gao H, Liu X, Tian K, Meng Y, Yu C, Peng Y. Insight into the Protective Effect of Salidroside against H 2O 2-Induced Injury in H9C2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1060271. [PMID: 34887995 PMCID: PMC8651377 DOI: 10.1155/2021/1060271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
Salidroside is the important active ingredient of Rhodiola species, which shows a wide range of pharmacological activities such as antioxidative stress, anti-inflammation, and antiliver fibrosis. In this paper, we aimed to study the protective effect and mechanism of salidroside against H2O2-induced oxidative damage in H9C2 cells by determining cell proliferation rate, intracellular reactive oxygen species (ROS) level, antioxidant enzyme activities, and the expression of apoptosis-related proteins. The results showed that salidroside significantly alleviated cell growth inhibition induced by H2O2 treatment in H9C2 cells, decreased the levels of intracellular ROS and malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and catalase (CAT); meanwhile, salidroside upregulated the expression of Bcl-2 while downregulated the expression of Bax, p53, and caspase-3 in H2O2-treated H9C2 cells. Furthermore, the antiapoptotic effect of salidroside was almost eliminated by the knockdown of Bcl-2. In the further exploration, the Bcl-2 expression was decreased by the p53 overexpression and increased by p53 knockdown in H2O2-treated H9C2 cells. Consequently, salidroside could protect H9C2 cells against H2O2-induced oxidative damage, and the underlying mechanism may be related to scavenging intracellular ROS, increasing the activities of intracellular antioxidant enzymes and inhibiting the expression of apoptosis-related proteins.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing 312000, China
- Department of Pharmacology, School of Medicine, Jishou University, Jishou 416000, China
| | - Xueping Liu
- Department of Pharmacology, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Kunming Tian
- Department of Environmental Toxicity, Zunyi Medical University, Zunyi 563006, China
| | - Yichong Meng
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Cuicui Yu
- Tibet Agricultural Science and Technology Innovation Park, Lhasa, 850000 Tibet, China
| | - Yingfu Peng
- Department of Pharmacology, School of Medicine, Jishou University, Jishou 416000, China
| |
Collapse
|
10
|
Vlajnic T, Brunner P, Eppenberger-Castori S, Rentsch CA, Zellweger T, Bubendorf L. High Inter- and Intratumoral Variability of Ki67 Labeling Index in Newly Diagnosed Prostate Cancer with High Gleason Scores. Pathobiology 2021; 89:74-80. [PMID: 34555829 DOI: 10.1159/000519007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The majority of studies investigating the role of Ki67 labeling index (LI) in prostate carcinoma (PC) focused on localized PC treated radically, where Ki67 LI is regarded as a prognostic marker. The relevance of Ki67 in advanced PC remains largely unexplored. While Gleason score is still one of the best indicators of clinical outcomes in PC, differences in progression-free survival and overall survival in patients with high Gleason scores suggest that additional factors are involved in tumor progression. Understanding the underlying mechanisms could help to optimize treatment strategies for an individual patient. Here, we aimed to determine the inter- and intratumoral distribution of Ki67 LI in patients with PC with high Gleason scores and to correlate Ki67 LI with the status of ERG, PTEN, and Bcl-2. METHODS Immunohistochemistry for Ki67, ERG, PTEN, and Bcl-2 was performed on core needle biopsies from 112 patients with newly diagnosed PC Gleason score 8, 9, and 10. RESULTS Using a cutoff of ≥10%, 17/112 cases (15%) had a homogeneously low and 95/112 cases (85%) a high Ki67 LI. 41% of cases showed intratumoral heterogeneity containing areas with low and high proliferation. There was no association between Ki67 LI and ERG, PTEN, or Bcl-2 status. CONCLUSIONS Our data demonstrate major inter- and intratumoral variability of Ki67 LI in high-grade PC with a surprisingly low Ki67 LI in a subset of cases. Further studies are necessary to explore the molecular basis and potential clinical implications of a paradoxically low proliferation rate in high-grade PC.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Patrik Brunner
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Serenella Eppenberger-Castori
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | | | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Abd Wahab NA, Abas F, Othman I, Naidu R. Diarylpentanoid (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one) (MS13) Exhibits Anti-proliferative, Apoptosis Induction and Anti-migration Properties on Androgen-independent Human Prostate Cancer by Targeting Cell Cycle-Apoptosis and PI3K Signalling Pathways. Front Pharmacol 2021; 12:707335. [PMID: 34366863 PMCID: PMC8343533 DOI: 10.3389/fphar.2021.707335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.
Collapse
Affiliation(s)
- Nurul Azwa Abd Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
12
|
Soliman L, De Souza A, Srinivasan P, Danish M, Bertone P, El-Deiry WS, Carneiro BA. The Role of BCL-2 Proteins in the Development of Castration-resistant Prostate Cancer and Emerging Therapeutic Strategies. Am J Clin Oncol 2021; 44:374-382. [PMID: 34014842 DOI: 10.1097/coc.0000000000000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of androgen resistance in advanced prostate cancer remains a challenging clinical problem. Because androgen deprivation therapy constitutes the backbone of first-line treatments for metastatic prostate cancer, the phenotypic switch from an androgen-dependent to an androgen-independent growth state limits the treatment options for these patients. This critical change from an androgen-dependent to an androgen-independent growth state can be regulated by the B-cell lymphoma gene 2 (BCL-2) family of apoptotic proteins. While the roles of BCL-2 protein family members in the carcinogenesis of prostate cancer have been well-studied, emerging data also delineates their modulation of disease progression to castration-resistant prostate cancer (CRPC). Over the past 2 decades, investigators have sought to describe the mechanisms that underpin this development at the molecular level, yet no recent literature has consolidated these findings in a dedicated review. As new classes of BCL-2 family inhibitors are finding indications for other cancer types, it is time to evaluate how such agents might find stable footing for the treatment of CRPC. Several trials to date have investigated BCL-2 inhibitors as therapeutic agents for CRPC. These therapies include selective BCL-2 inhibitors, pan-BCL-2 inhibitors, and novel inhibitors of MCL-1 and BCL-XL. This review details the research regarding the role of BCL-2 family members in the pathogenesis of prostate cancer and contextualizes these findings within the contemporary landscape of prostate cancer treatment.
Collapse
Affiliation(s)
- Luke Soliman
- Warren Alpert Medical School of Brown University
| | - Andre De Souza
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | | | - Matthew Danish
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
| | - Paul Bertone
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | - Wafik S El-Deiry
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI
| | - Benedito A Carneiro
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| |
Collapse
|
13
|
Xie L, Zhou Q, Chen X, Du X, Liu Z, Fei B, Hou J, Dai Y, She W. Elucidation of the Hdac2/Sp1/ miR-204-5p/ Bcl-2 axis as a modulator of cochlear apoptosis via in vivo/ in vitro models of acute hearing loss. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1093-1109. [PMID: 33614251 PMCID: PMC7875768 DOI: 10.1016/j.omtn.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that dysregulation of histone deacetylase 2 (Hdac2) was associated with the prognosis of sudden sensorineural hearing loss. However, the underlying molecular mechanisms are poorly understood. In the present study, we developed an acute hearing loss animal model in guinea pigs by infusing lipopolysaccharides (LPS) into the cochlea and measured the expression of Hdac2 in the sensory epithelium. We observed that the level of Hdac2 was significantly decreased in the LPS-infused cochleae. The levels of apoptosis-inhibition genes Bcl-2 and Bcl-xl were also decreased in the cochlea and correlated positively with the levels of Hdac2. Caspase3 or TUNEL-positive spiral ganglion neurons, hair cells, and supporting cells were observed in the LPS-infused cochleae. These in vivo observations were recapitulated in cell culture experiments. Based on bioinformatics analysis, we found miR-204-5p was engaged in the regulation of Hdac2 on Bcl-2. Molecular mechanism experiments displayed that miR-204-5p could be regulated by Hdac2 through interacting with transcription factor Sp1. Taken together, these results indicated that the Hdac2/Sp1/miR-204-5p/Bcl-2 regulatory axis mediated apoptosis in the cochlea, providing potential insights into the progression of acute hearing loss. To our knowledge, the study describes a miRNA-related mechanism for Hdac2-mediated regulation in the cochlea for the first time.
Collapse
Affiliation(s)
- Lisheng Xie
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qiongqiong Zhou
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaorui Chen
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, OK 73112, USA
| | - Zhibiao Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Bing Fei
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yanhong Dai
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: Yanhong Dai, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University: 321 Zhongshan Road, Nanjing 210008, China.
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Corresponding author Wandong She, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China.
| |
Collapse
|
14
|
Zhou H, Zheng XD, Lin CM, Min J, Hu S, Hu Y, Li LY, Chen JS, Liu YM, Li HD, Meng XM, Li J, Yang YR, Xu T. Advancement and properties of circular RNAs in prostate cancer: An emerging and compelling frontier for discovering. Int J Biol Sci 2021; 17:651-669. [PMID: 33613119 PMCID: PMC7893591 DOI: 10.7150/ijbs.52266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer (PC) is the most common carcinoma among men worldwide which results in 26% of leading causes of cancer-related death. However, the ideal and effective molecular marker remains elusive. CircRNA, initially observed in plant-infected viruses and Sendai virus in 1979, is generated from pre-mRNA back-splicing and comes in to play by adequate expression. The differential expression in prostate tissues compared with the control reveals the promising capacity in modulating processes including carcinogenesis and metastasis. However, the biological mechanisms of regulatory network in PC needs to systemically concluded. In this review, we enlightened the comprehensive studies on the definite mechanisms of circRNAs affecting tumor progression and metastasis. What's more, we validated the potential clinical application of circRNAs serving as diagnostic and prognostic biomarker. The discussion and analysis in circRNAs will broaden our knowledge of the pathogenesis of PC and further optimize the current therapies against different condition.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC West District, University of Science and Technology of China, Hefei 230031, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xu-Dong Zheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Chang-Ming Lin
- Department of Urology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230011, China
| | - Jie Min
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jia-Si Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Yu-Min Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Hao-Dong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Trial Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
15
|
ABT-737 and erufosine combination against castration-resistant prostate cancer: a promising but cell-type specific response associated with the modulation of anti-apoptotic signaling. Anticancer Drugs 2020; 30:383-393. [PMID: 30557204 DOI: 10.1097/cad.0000000000000736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A deeper understanding of the molecular basis of castration-resistant prostate cancer (CRPC) paved the way for the rational design and development of targeted therapies, which yielded promising preclinical results. However, translation of these potentially promising agents into clinics has usually failed, partly because of tumor heterogeneity. In this study, anticancer activities of the Bcl-2 inhibitor ABT-737 and the Akt-inhibitor erufosine (ErPC3) alone and in combination were compared between CRPC (PC-3 and DU-145) and healthy (PNT-1A) cell lines. The combination of ABT-737 and ErPC3 showed synergistic antiproliferative, antimigratory, and apoptotic effects in PC-3 cells. In DU-145 cells, ErPC3 showed a resistant profile, with half-maximal inhibitory concentration (IC50) values more than two-fold of PC-3, and combining ErPC3 with ABT-737 yielded no added benefit for all the incubation periods compared with ErPC3 alone. In PNT-1A cells, ABT-737 and ErPC3 alone and in combination reduced cell survival slightly and only at the highest concentrations. Apoptosis analysis showed that ABT-737 induced increased Akt expression and ErPC3 induced increased Mcl-1 expression in DU-145 cells. In conclusion, the ABT-737 and ErPC3 combination seems to be promising against CRPC, with a favorable safety profile in healthy cells. However, CRPC cell-type-specific resistance may be induced by enhancement of antiapoptotic signaling.
Collapse
|
16
|
Abd. Wahab NA, H. Lajis N, Abas F, Othman I, Naidu R. Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients 2020; 12:E679. [PMID: 32131560 PMCID: PMC7146610 DOI: 10.3390/nu12030679] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is a heterogeneous disease and ranked as the second leading cause of cancer-related deaths in males worldwide. The global burden of PCa keeps rising regardless of the emerging cutting-edge technologies for treatment and drug designation. There are a number of treatment options which are effectively treating localised and androgen-dependent PCa (ADPC) through hormonal and surgery treatments. However, over time, these cancerous cells progress to androgen-independent PCa (AIPC) which continuously grow despite hormone depletion. At this particular stage, androgen depletion therapy (ADT) is no longer effective as these cancerous cells are rendered hormone-insensitive and capable of growing in the absence of androgen. AIPC is a lethal type of disease which leads to poor prognosis and is a major contributor to PCa death rates. A natural product-derived compound, curcumin has been identified as a pleiotropic compound which capable of influencing and modulating a diverse range of molecular targets and signalling pathways in order to exhibit its medicinal properties. Due to such multi-targeted behaviour, its benefits are paramount in combating a wide range of diseases including inflammation and cancer disease. Curcumin exhibits anti-cancer properties by suppressing cancer cells growth and survival, inflammation, invasion, cell proliferation as well as possesses the ability to induce apoptosis in malignant cells. In this review, we investigate the mechanism of curcumin by modulating multiple signalling pathways such as androgen receptor (AR) signalling, activating protein-1 (AP-1), phosphatidylinositol 3-kinases/the serine/threonine kinase (PI3K/Akt/mTOR), wingless (Wnt)/ß-catenin signalling, and molecular targets including nuclear factor kappa-B (NF-κB), B-cell lymphoma 2 (Bcl-2) and cyclin D1 which are implicated in the development and progression of both types of PCa, ADPC and AIPC. In addition, the role of microRNAs and clinical trials on the anti-cancer effects of curcumin in PCa patients were also reviewed.
Collapse
Affiliation(s)
- Nurul Azwa Abd. Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Nordin H. Lajis
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (N.H.L.); (F.A.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; (N.A.A.W.); (I.O.)
| |
Collapse
|
17
|
Wolf P. Tumor-Specific Induction of the Intrinsic Apoptotic Pathway-A New Therapeutic Option for Advanced Prostate Cancer? Front Oncol 2019; 9:590. [PMID: 31312616 PMCID: PMC6614431 DOI: 10.3389/fonc.2019.00590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Zhou YD, Hou JG, Yang G, Jiang S, Chen C, Wang Z, Liu YY, Ren S, Li W. Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed Pharmacother 2019; 109:2309-2317. [DOI: 10.1016/j.biopha.2018.11.108] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/05/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022] Open
|
19
|
Choi JB, Kim JH, Lee H, Pak JN, Shim BS, Kim SH. Reactive Oxygen Species and p53 Mediated Activation of p38 and Caspases is Critically Involved in Kaempferol Induced Apoptosis in Colorectal Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9960-9967. [PMID: 30211553 DOI: 10.1021/acs.jafc.8b02656] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here the molecular mechanisms of Kaempferol were examined in colorectal cancers (CRCs). Kaempferol significantly exerted antiproliferative and cytotoxic effect in HCT116, HCT15, and SW480 cells. Also, Kaempferol increased sub G1 population, G2/M arrest, and the numbers of TUNEL cells in HCT116 colorectal cancer cells. Also, Kaempferol increased the PARP cleavages and activation of caspase-8, -9, and -3, phospho-p38 MAPK, p53, and p21 in HCT116 and HCT15 cells. Of note, Kaempferol generated reactive oxygen species (ROS) (43.7 ± 0.56 vs 25.8 ± 0.43, P < 0.01) in HCT116 cells and reversely ROS inhibitor NAC obstructed the effects of Kaempferol to cleave PARP and caspase-3 and activate phosphorylation of p38 MAPK in HCT116 colorectal cancer cells. Likewise, pancaspase inhibitor z-vad-fmk, p38 MAPK inhibitor SB203580, and p53 depletion blocked PARP and caspase-3 in Kaempferol treated HCT116 colorectal cancer cells. Therefore, these findings provide novel insight that ROS and p53 signalings mediate p38 phosphorylation and caspase activation in Kaempferol stimulated apoptosis in CRCs.
Collapse
Affiliation(s)
- Jhin-Baek Choi
- College of Korean Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Ju-Ha Kim
- College of Korean Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Hyemin Lee
- College of Korean Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Ji-Na Pak
- Department of East West Medical Science , Graduate School of East West Medical Science , Yongin 17104 , Korea
| | - Bum Sang Shim
- College of Korean Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Sung-Hoon Kim
- College of Korean Medicine , Kyung Hee University , Seoul 02447 , Korea
| |
Collapse
|
20
|
Awad D, Pulliam TL, Lin C, Wilkenfeld SR, Frigo DE. Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Curr Opin Pharmacol 2018; 41:1-11. [PMID: 29609138 DOI: 10.1016/j.coph.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 02/08/2023]
Abstract
Although androgen deprivation therapy (ADT) is initially effective for the treatment of progressive prostate cancer, it inevitably fails due to the onset of diverse resistance mechanisms that restore androgen receptor (AR) signaling. Thus, AR remains a desired therapeutic target even in the relapsed stages of the disease. Given the difficulties in stopping all AR reactivation mechanisms, we propose that the identification of the driver signaling events downstream of the receptor offer viable, alternative therapeutic targets. Here, we summarize recently described, AR-regulated processes that have been demonstrated to promote prostate cancer. By highlighting these signaling events and describing some of the ongoing efforts to pharmacologically modulate these pathways, our goal is to advocate potential new therapeutic targets that would represent an alternative approach for blocking AR actions.
Collapse
Affiliation(s)
- Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
21
|
Icariin Prevents IL-1 β-Induced Apoptosis in Human Nucleus Pulposus via the PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2198323. [PMID: 29259641 PMCID: PMC5702406 DOI: 10.1155/2017/2198323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023]
Abstract
Purpose To explore the effect and possible mechanism of icariin, a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that was applied to IL-1β pretreated human nucleus pulposus (NP) cells. Methods Human NP cells were isolated from intervertebral discs of patients with scoliosis and lumbar spondylolisthesis. The cells were divided into five groups: A (blank control); B (20 ng/ml IL-1β); C (20 ng/ml IL-1β + 20 μM icariin); D (20 μM icariin + 20 ng/ml IL-1β + 25 μM LY294002); E (20 ng/ml IL-1β + 25 μM LY294002). For each of the five groups, the CCK8, apoptosis rates, ROS rates, and JC-1 rates were determined and an electron micrograph was performed. Different expression levels of apoptosis proteins and proteins in the PI3K/AKT pathway were detected via western blot. Results We found that the damage effects on human nucleus pulposus cells from 20 ng/ml of IL-1β exposure were attenuated by icariin. When the PI3K/AKT pathway was blocked by LY294002, a specific inhibitor of this pathway, the protective effect of icariin was impaired. In summary, icariin might be a protective traditional Chinese medicine, which prevents inflammation-induced degeneration of intervertebral discs partly through the PI3K/AKT pathway.
Collapse
|