1
|
Sherrod BA, Porche K, Condie CK, Dailey AT. Pharmacologic Therapy for Spinal Cord Injury. Clin Spine Surg 2024; 37:433-439. [PMID: 39264675 DOI: 10.1097/bsd.0000000000001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Neuroprotective strategies aimed at preventing secondary neurologic injury following acute spinal cord injury remain an important area of clinical, translational, and basic science research. Despite recent advancement in the understanding of basic mechanisms of primary and secondary neurologic injury, few pharmacologic agents have shown consistent promise in improving neurologic outcomes following SCI in large randomized clinical trials. The authors review the existing literature and clinical guidelines for pharmacologic therapy investigated for managing acute SCI, including corticosteroids, GM-1 ganglioside (Sygen), Riluzole, opioid antagonists, Cethrin, minocycline, and vasopressors for mean arterial pressure augmentation. Therapies for managing secondary effects of SCI, such as bradycardia, are discussed. Current clinical trials for pharmacotherapy and cellular transplantation following acute SCI are also reviewed. Despite the paucity of current evidence for clinically beneficial post-SCI pharmacotherapy, future research efforts will hopefully elucidate promising therapeutic agents to improve neurologic function.
Collapse
|
2
|
肖 林, 段 婷, 夏 勇, 陈 悦, 孙 洋, 许 轶, 徐 磊, 闫 兴, 胡 建. [Linarin inhibits microglia activation-mediated neuroinflammation and neuronal apoptosis in mouse spinal cord injury by inhibiting the TLR4/NF-κB pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1589-1598. [PMID: 39276055 PMCID: PMC11378057 DOI: 10.12122/j.issn.1673-4254.2024.08.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the mechanism underlying the neuroprotective effect of linarin (LIN) against microglia activation-mediated inflammation and neuronal apoptosis following spinal cord injury (SCI). METHODS Fifty C57BL/6J mice (8- 10 weeks old) were randomized to receive sham operation, SCI and linarin treatment at 12.5, 25, and 50 mg/kg following SCI (n=10). Locomotor function recovery of the SCI mice was assessed using the Basso Mouse Scale, inclined plane test, and footprint analysis, and spinal cord tissue damage and myelination were evaluated using HE and LFB staining. Nissl staining, immunofluorescence assay and Western blotting were used to observe surviving anterior horn motor neurons in injured spinal cord tissue. In cultured BV2 cells, the effects of linarin against lipopolysaccharide (LPS)‑induced microglia activation, inflammatory factor release and signaling pathway changes were assessed with immunofluorescence staining, Western blotting, RT-qPCR, and ELISA. In a BV2 and HT22 cell co-culture system, Western blotting was performed to examine the effect of linarin against HT22 cell apoptosis mediated by LPS-induced microglia activation. RESULTS Linarin treatment significantly improved locomotor function (P < 0.05), reduced spinal cord damage area, increased spinal cord myelination, and increased the number of motor neurons in the anterior horn of the SCI mice (P < 0.05). In both SCI mice and cultured BV2 cells, linarin effectively inhibited glial cell activation and suppressed the release of iNOS, COX-2, TNF-α, IL-6, and IL-1β, resulting also in reduced neuronal apoptosis in SCI mice (P < 0.05). Western blotting suggested that linarin-induced microglial activation inhibition was mediated by inhibition of the TLR4/NF- κB signaling pathway. In the cell co-culture experiments, linarin treatment significantly decreased inflammation-mediated apoptosis of HT22 cells (P < 0.05). CONCLUSION The neuroprotective effect of linarin is medicated by inhibition of microglia activation via suppressing the TLR4/NF‑κB signaling pathway, which mitigates neural inflammation and reduce neuronal apoptosis to enhance motor function of the SCI mice.
Collapse
|
3
|
Fang B, Wang L, Liu S, Zhou M, Ma H, Chang N, Ning G. Sarsasapogenin regulates the immune microenvironment through MAPK/NF-kB signaling pathway and promotes functional recovery after spinal cord injury. Heliyon 2024; 10:e25145. [PMID: 38322941 PMCID: PMC10844052 DOI: 10.1016/j.heliyon.2024.e25145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Spinal cord injury (SCI) occurs as a result of traumatic events that damage the spinal cord, leading to motor, sensory, or autonomic function impairment. Sarsasapogenin (SA), a natural steroidal compound, has been reported to have various pharmacological applications, including the treatment of inflammation, diabetic nephropathy, and neuroprotection. However, the therapeutic efficacy and underlying mechanisms of SA in the context of SCI are still unclear. This research aimed to investigate the therapeutic effects and mechanisms of SA against SCI by integrating network pharmacology analysis and experimental verification. Network pharmacology results suggested that SA may effectively treat SCI by targeting key targets such as TNF, RELA, JUN, MAPK14, and MAPK8. The underlying mechanism of this treatment may involve the MAPK (JNK) signaling pathway and inflammation-related signaling pathways such as TNF and Toll-like receptor signaling pathways. These findings highlight the therapeutic potential of SA in SCI treatment and provide valuable insights into its molecular mechanisms of action. In vivo experiments confirmed the reparative effect of SA on SCI in rats and suggested that SA could repair SCI by modulating the immune microenvironment. In vitro experiments further investigated how SA regulates the immune microenvironment by inhibiting the MAPK/NF-kB pathways. Overall, this study successfully utilized a combination of network pharmacology and experimental verification to establish that SA can regulate the immune microenvironment via the MAPK/NF-kB signaling pathway, ultimately facilitating functional recovery from SCI. Furthermore, these findings emphasize the potential of natural compounds from traditional Chinese medicine as a viable therapy for SCI treatment.
Collapse
Affiliation(s)
- Bing Fang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Othopaedics, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Liyue Wang
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Liu
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Mi Zhou
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongpeng Ma
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangzhi Ning
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Othopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Jin LQ, Zhou Y, Li YS, Zhang G, Hu J, Selzer ME. Transcriptomes of Injured Lamprey Axon Tips: Single-Cell RNA-Seq Suggests Differential Involvement of MAPK Signaling Pathways in Axon Retraction and Regeneration after Spinal Cord Injury. Cells 2022; 11:cells11152320. [PMID: 35954164 PMCID: PMC9367414 DOI: 10.3390/cells11152320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Axotomy in the CNS activates retrograde signals that can trigger regeneration or cell death. Whether these outcomes use different injury signals is not known. Local protein synthesis in axon tips plays an important role in axon retraction and regeneration. Microarray and RNA-seq studies on cultured mammalian embryonic or early postnatal peripheral neurons showed that axon growth cones contain hundreds to thousands of mRNAs. In the lamprey, identified reticulospinal neurons vary in the probability that their axons will regenerate after axotomy. The bad regenerators undergo early severe axon retraction and very delayed apoptosis. We micro-aspirated axoplasms from 10 growing, 9 static and 5 retracting axon tips of spinal cord transected lampreys and performed single-cell RNA-seq, analyzing the results bioinformatically. Genes were identified that were upregulated selectively in growing (n = 38), static (20) or retracting tips (18). Among them, map3k2, csnk1e and gtf2h were expressed in growing tips, mapk8(1) was expressed in static tips and prkcq was expressed in retracting tips. Venn diagrams revealed more than 40 components of MAPK signaling pathways, including jnk and p38 isoforms, which were differentially distributed in growing, static and/or retracting tips. Real-time q-PCR and immunohistochemistry verified the colocalization of map3k2 and csnk1e in growing axon tips. Thus, differentially regulated MAPK and circadian rhythm signaling pathways may be involved in activating either programs for axon regeneration or axon retraction and apoptosis.
Collapse
Affiliation(s)
- Li-Qing Jin
- Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA 19140, USA; (G.Z.); (J.H.)
- Department of Neural Sciences, Lewis Katz School of Medicine (LKSOM), 3500 North Broad Street, Philadelphia, PA 19140, USA
- Correspondence: (L.-Q.J.); (M.E.S.)
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Yue-Sheng Li
- DNA Sequence & Genomics Core Facility at the NHLBI, Bethesda, MD 20892, USA;
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA 19140, USA; (G.Z.); (J.H.)
- Department of Neural Sciences, Lewis Katz School of Medicine (LKSOM), 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA 19140, USA; (G.Z.); (J.H.)
- Department of Neural Sciences, Lewis Katz School of Medicine (LKSOM), 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA 19140, USA; (G.Z.); (J.H.)
- Department of Neural Sciences, Lewis Katz School of Medicine (LKSOM), 3500 North Broad Street, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine (LKSOM), 3500 North Broad Street, Philadelphia, PA 19140, USA
- Correspondence: (L.-Q.J.); (M.E.S.)
| |
Collapse
|
5
|
[Advances of the role of mitochondrial dysfunction in the spinal cord injury and its relevant treatments]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:902-907. [PMID: 35848189 PMCID: PMC9288914 DOI: 10.7507/1002-1892.202203081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the advances of the role of mitochondrial dysfunction in the spinal cord injury (SCI) and its relevant treatments. METHODS Focusing on various mechanisms of mitochondrial dysfunction, recent relevant literature at home and abroad was identified to summarize the therapeutic strategies for SCI. RESULTS Mitochondrial dysfunction is mainly manifested in abnormalities in mitochondrial energy metabolism, mitochondrial oxidative stress, mitochondrial-mediated apoptosis, mitophagy, mitochondrial permeability transition, and mitochondrial biogenesis, playing a vital role in the development of SCI. Drug that enhanced mitochondrial function have been proved beneficial for the treatment of SCI. CONCLUSION Mitochondrial dysfunction can serve as a potential therapeutic target for SCI, providing ideas and basis for the development of SCI therapeutic candidates in the future.
Collapse
|
6
|
Wu X, Wei H, Wu JQ. Coding and long non-coding gene expression changes in the CNS traumatic injuries. Cell Mol Life Sci 2022; 79:123. [PMID: 35129669 PMCID: PMC8907010 DOI: 10.1007/s00018-021-04092-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are two main central nervous system (CNS) traumas, caused by external physical insults. Both injuries have devastating effects on the quality of life, and there is no effective therapy at present. Notably, gene expression profiling using bulk RNA sequencing (RNA-Seq) and single-cell RNA-Seq (scRNA-Seq) have revealed significant changes in many coding and non-coding genes, as well as important pathways in SCI and TBI. Particularly, recent studies have revealed that long non-coding RNAs (lncRNAs) with lengths greater than 200 nucleotides and without protein-coding potential have tissue- and cell type-specific expression pattern and play critical roles in CNS injury by gain- and loss-of-function approaches. LncRNAs have been shown to regulate protein-coding genes or microRNAs (miRNAs) directly or indirectly, participating in processes including inflammation, glial activation, cell apoptosis, and vasculature events. Therefore, lncRNAs could serve as potential targets for the diagnosis, treatment, and prognosis of SCI and TBI. In this review, we highlight the recent progress in transcriptome studies of SCI and TBI and insights into molecular mechanisms.
Collapse
Affiliation(s)
- Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Orem BC, Rajaee A, Stirling DP. Inhibiting Calcium Release from Ryanodine Receptors Protects Axons after Spinal Cord Injury. J Neurotrauma 2022; 39:311-319. [PMID: 34913747 PMCID: PMC8817717 DOI: 10.1089/neu.2021.0350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ryanodine receptors (RyRs) mediate calcium release from calcium stores and have been implicated in axonal degeneration. Here, we use an intravital imaging approach to determine axonal fate after spinal cord injury (SCI) in real-time and assess the efficacy of ryanodine receptor inhibition as a potential therapeutic approach to prevent intra-axonal calcium-mediated axonal degeneration. Adult 6-8 week old Thy1YFP transgenic mice that express YFP in axons, as well as triple transgenic Avil-Cre:Ai9:Ai95 mice that express the genetically-encoded calcium indicator GCaMP6f in tdTomato positive axons, were used to visualize axons and calcium changes in axons, respectively. Mice received a mild SCI at the T12 level of the spinal cord. Ryanodine, a RyR antagonist, was given at a concentration of 50 μM intrathecally within 15 min of SCI or delayed 3 h after injury and compared with vehicle-treated mice. RyR inhibition within 15 min of SCI significantly reduced axonal spheroid formation from 1 h to 24 h after SCI and increased axonal survival compared with vehicle controls. Delayed ryanodine treatment increased axonal survival and reduced intra-axonal calcium levels at 24 h after SCI but had no effect on axonal spheroid formation. Together, our results support a role for RyR in secondary axonal degeneration.
Collapse
Affiliation(s)
- Ben C. Orem
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Arezoo Rajaee
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - David P. Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Khan M, Qiao F, Kumar P, Touhidul Islam SM, Singh AK, Won J, Singh I. Neuroprotective effects of Alda-1 mitigate spinal cord injury in mice: involvement of Alda-1-induced ALDH2 activation-mediated suppression of reactive aldehyde mechanisms. Neural Regen Res 2022; 17:185-193. [PMID: 34100455 PMCID: PMC8451565 DOI: 10.4103/1673-5374.314312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) is associated with high production and excessive accumulation of pathological 4-hydroxy-trans-2-nonenal (4-HNE), a reactive aldehyde, formed by SCI-induced metabolic dysregulation of membrane lipids. Reactive aldehyde load causes redox alteration, neuroinflammation, neurodegeneration, pain-like behaviors, and locomotion deficits. Pharmacological scavenging of reactive aldehydes results in limited improved motor and sensory functions. In this study, we targeted the activity of mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) to detoxify 4-HNE for accelerated functional recovery and improved pain-like behavior in a male mouse model of contusion SCI. N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a selective activator of ALDH2, was used as a therapeutic tool to suppress the 4-HNE load. SCI was induced by an impactor at the T9–10 vertebral level. Injured animals were initially treated with Alda-1 at 2 hours after injury, followed by once-daily treatment with Alda-1 for 30 consecutive days. Locomotor function was evaluated by the Basso Mouse Scale, and pain-like behaviors were assessed by mechanical allodynia and thermal algesia. ALDH2 activity was measured by enzymatic assay. 4-HNE protein adducts and enzyme/protein expression levels were determined by western blot analysis and histology/immunohistochemistry. SCI resulted in a sustained and prolonged overload of 4-HNE, which parallels with the decreased activity of ALDH2 and low functional recovery. Alda-1 treatment of SCI decreased 4-HNE load and enhanced the activity of ALDH2 in both the acute and the chronic phases of SCI. Furthermore, the treatment with Alda-1 reduced neuroinflammation, oxidative stress, and neuronal loss and increased adenosine 5′-triphosphate levels stimulated the neurorepair process and improved locomotor and sensory functions. Conclusively, the results provide evidence that enhancing the ALDH2 activity by Alda-1 treatment of SCI mice suppresses the 4-HNE load that attenuates neuroinflammation and neurodegeneration, promotes the neurorepair process, and improves functional outcomes. Consequently, we suggest that Alda-1 may have therapeutic potential for the treatment of human SCI. Animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of MUSC (IACUC-2019-00864) on December 21, 2019.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
9
|
Cao Z, Man W, Xiong Y, Guo Y, Yang S, Liu D, Zhao H, Yang Y, Yao S, Li C, Zhao L, Sun X, Guo H, Wang G, Wang X. White matter regeneration induced by aligned fibrin nanofiber hydrogel contributes to motor functional recovery in canine T12 spinal cord injury. Regen Biomater 2021; 9:rbab069. [PMID: 35558095 PMCID: PMC9089163 DOI: 10.1093/rb/rbab069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
A hierarchically aligned fibrin hydrogel (AFG) that possesses soft stiffness and aligned nanofiber structure has been successfully proven to facilitate neuroregeneration in vitro and in vivo. However, its potential in promoting nerve regeneration in large animal models that is critical for clinical translation has not been sufficiently specified. Here, the effects of AFG on directing neuroregeneration in canine hemisected T12 spinal cord injuries were explored. Histologically obvious white matter regeneration consisting of a large area of consecutive, compact and aligned nerve fibers is induced by AFG, leading to a significant motor functional restoration. The canines with AFG implantation start to stand well with their defective legs from 3 to 4 weeks postoperatively and even effortlessly climb the steps from 7 to 8 weeks. Moreover, high-resolution multi-shot diffusion tensor imaging illustrates the spatiotemporal dynamics of nerve regeneration rapidly crossing the lesion within 4 weeks in the AFG group. Our findings indicate that AFG could be a potential therapeutic vehicle for spinal cord injury by inducing rapid white matter regeneration and restoring locomotion, pointing out its promising prospect in clinic practice.
Collapse
Affiliation(s)
- Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Weitao Man
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yuhui Xiong
- Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Yi Guo
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Dongkang Liu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - He Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Orthopedics, Dongzhimen Hospital, Beijing 100007, China
| | - Yongdong Yang
- Department of Orthopedics, Dongzhimen Hospital, Beijing 100007, China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing 100070, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
11
|
Wu C, Yu J, Xu G, Gao H, Sun Y, Huang J, Sun L, Zhang X, Cui Z. Bioinformatic Analysis of the Proteome in Exosomes Derived From Plasma: Exosomes Involved in Cholesterol Metabolism Process of Patients With Spinal Cord Injury in the Acute Phase. Front Neuroinform 2021; 15:662967. [PMID: 34305563 PMCID: PMC8299276 DOI: 10.3389/fninf.2021.662967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) is a common but severe disease caused by traffic accidents. Coronary atherosclerotic heart disease (CHD) caused by dyslipidemia is known as the leading cause of death in patients with SCI. However, the quantitative analysis showed that the cholesterol and lipoprotein concentrations in peripheral blood (PB) did not change significantly within 48 h after SCI. Due to the presence of the Blood spinal cord barrier (BSCB), there are only few studies concerning the plasma cholesterol metabolism in the acute phase of SCI. Exosomes have a smaller particle size, which enables them relatively less limitation of BSCB. This study uses exosomes derived from the plasma of 43 patients in the acute phase of SCI and 71 patients in the control group as samples. MS proteomics and bioinformatics analysis found 590 quantifiable proteins, in which 75 proteins were upregulated and 153 proteins were downregulated, and the top 10 differentially expressed proteins are those including downregulating proteins: HIST1H4A, HIST2H3A, HIST2H2BE, HCLS1, S100A9, HIST1H2BM, S100A8, CALM3, YWHAH, and SFN, and upregulating proteins: SERPIND1, C1QB, SPTLC3, IGHV4-28, C4A, IGHV4-38-2, IGHV4-30-2, SLC15A1, C4B, and ACTG2. Enrichment analysis showed that the largest part of proteins was related to cholesterol metabolism among the downregulated proteins. The main components of cholesterol [ApoB-48 and ApoB-100 increased, ApoA-I, ApoA-II, ApoA-IV, ApoC, ApoE, and Apo(a) decreased] were changed in exosomes derived from plasma of patients. ELISA analysis showed that some components were disordered in the acute phase of SCI. These results suggested that the exosomes might be involved in cholesterol metabolism regulation in the acute phase of SCI.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jinjuan Yu
- Department of Administrative Office, The Third People's Hospital of Nantong, Nantong, China
| | - Guanhua Xu
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Hong Gao
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yue Sun
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jiayi Huang
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Li Sun
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xu Zhang
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, Nantong First People's Hospital, The Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
12
|
The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules 2021; 11:biom11070972. [PMID: 34356596 PMCID: PMC8301989 DOI: 10.3390/biom11070972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impairs neuronal function and introduces a complex cascade of secondary pathologies that limit recovery. Despite decades of preclinical and clinical research, there is a shortage of efficacious treatment options to modulate the secondary response to injury. Protein kinases are crucial signaling molecules that mediate the secondary SCI-induced cellular response and present promising therapeutic targets. The objective of this study was to examine the safety and efficacy of midostaurin—a clinically-approved multi-target protein kinase inhibitor—on cervical SCI pathogenesis. High-throughput analyses demonstrated that intraperitoneal midostaurin injection (25 mg/kg) in C6/7 injured Wistar rats altered the local inflammasome and downregulated adhesive and migratory genes at 24 h post-injury. Treated animals also exhibited enhanced recovery and restored coordination between forelimbs and hindlimbs after injury, indicating the synergistic impact of midostaurin and its dimethyl sulfoxide vehicle to improve functional recovery. Furthermore, histological analyses suggested improved tissue preservation and functionality in the treated animals during the chronic phase of injury. This study serves as a proof-of-concept experiment and demonstrates that systemic midostaurin administration is an effective strategy for mitigating cervical secondary SCI damage.
Collapse
|
13
|
Li QP, Li J, Pan HY. Effects of Online Home Nursing Care Model Application on Patients with Traumatic Spinal Cord Injury. Risk Manag Healthc Policy 2021; 14:1703-1709. [PMID: 33935524 PMCID: PMC8079355 DOI: 10.2147/rmhp.s301874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022] Open
Abstract
Objective This study aims to explore the effects of an online home nursing care model application on patients with traumatic spinal cord injury (TSCI). Methods Eighty patients with TSCI discharged from the hospital between January 2015 and January 2018 were included in the study. The patients were randomly divided into two groups: the control group and the observation group (n = 40, each). The patients in the control group were given routine discharge guidance, while the patients in the observation group were given online home nursing care. The Oswestry Disability Index (ODI), Medical Outcomes Study 36-item short-form health survey (MOS SF-36), and complication-incidence rate were used to evaluate the efficiency of the online home nursing care model. Results There were no differences in the ODI and MOS SF-36 scores between the two groups at discharge. However, the ODI and MOS SF-36 scores in the observation group showed significant improvement compared with the control group (p < 0.05) during the most recent follow-up. The incidence of complications, such as constipation, joint stiffness, muscle atrophy, foot drop, and pressure sores, were significantly lower in the observation group than in the control group (p < 0.05). Conclusion The online home nursing care model can reduce complication incidence, alleviate dysfunction, and improve the quality of life of patients with TSCI.
Collapse
Affiliation(s)
- Qiao-Ping Li
- Department of Spine Surgery, Lishui Central Hospital, Lishui, People's Republic of China
| | - Jing Li
- Department of Spine Surgery, Lishui Central Hospital, Lishui, People's Republic of China
| | - Hong-Ying Pan
- Department of Nursing, Lishui Central Hospital, Lishui, People's Republic of China
| |
Collapse
|
14
|
Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci 2021; 13:650038. [PMID: 33762926 PMCID: PMC7982458 DOI: 10.3389/fnagi.2021.650038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles responsible for bioenergetic metabolism, calcium homeostasis, and signal transmission essential for neurons due to their high energy consumption. Accumulating evidence has demonstrated that mitochondria play a key role in axon degeneration and regeneration under physiological and pathological conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics, defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these defective mitochondria by enhancing mitochondrial transport, clearance of reactive oxidative species (ROS), and improving bioenergetic can greatly contribute to axon regeneration. In this paper, we focus on the biological behavior of axonal mitochondria in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative diseases (Alzheimer's disease, AD; Parkinson's disease, PD; Amyotrophic lateral sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also compare the behavior of mitochondria in different diseases and outline novel therapeutic strategies for addressing abnormal mitochondrial biological behavior to promote axonal regeneration in neurological diseases and injuries.
Collapse
Affiliation(s)
- Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Baohong Zhao
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
15
|
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach. Int J Mol Sci 2021; 22:ijms22041744. [PMID: 33572341 PMCID: PMC7916102 DOI: 10.3390/ijms22041744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the “core” area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Zahra Khalajzeyqami
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Maura Cescatti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Marzia Moretti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola (BO), Italy
- Correspondence:
| |
Collapse
|
16
|
Zhang H, Piao M, Guo M, Meng L, Yu H. MicroRNA-211-5p attenuates spinal cord injury via targeting of activating transcription factor 6. Tissue Cell 2021; 68:101459. [PMID: 33238217 DOI: 10.1016/j.tice.2020.101459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
The recovery of spinal cord injury (SCI) involves multiple factors, of which miRNAs take an important part. In this study, we evaluated the function of microRNA-211-5p (miR-211-5p) on SCI in a rat model. SCI model was established using modified Allen's weight-drop method and Basso-Bcattie-Bresnahan score was applied to assess the locomotor function. MiR-211-5p agomir was utilized to increase miR-211-5p expression and endoplasmic reticulum (ER) stress inhibitor, 4-PBA (4-phenylbutyric acid), was utilized to suppress ER stress. Neuron apoptosis and the expressions of miR-211-5p, activating transcription factor 6 (ATF6), apoptosis-related proteins, pro-inflammatory cytokines and endoplasmic reticulum stress-related proteins were detected. Dual luciferase reporter gene assay was performed to verify the binding between miR-211-5p and ATF6. The results showed that miR-211-5p directly targeted ATF6. MiR-211-5p was down-regulated and ATF6 was up-regulated in SCI rats. Both interferences with miR-211-5p agomir and 4-PBA effectively attenuated neuron apoptosis and reversed the expressions of apoptosis, inflammation and endoplasmic reticulum stress-related molecules post SCI in rats. These findings demonstrated that miR-211-5p could effectively alleviate SCI-induced neuron apoptosis and inflammation via directly targeting ATF-6 and regulating ER stress.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
17
|
A New Therapeutic Strategy Targeting Protein Deacetylation for Spinal Cord Injury. Neuroscience 2020; 451:197-206. [PMID: 33039524 DOI: 10.1016/j.neuroscience.2020.09.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Lysine acetylation is a post-translational modification that regulates a diversity of biological processes. However, its implication in spinal cord injury (SCI) remains unclear. Here we investigated the acetylation events in injured spinal cords on a proteomic scale for the first time. Additionally, whether promoting acetylation could mitigate SCI was evaluated. A total of 268 differentially acetylated peptides were identified. Among them, 2 peptides were up-acetylated and 141 peptides were down-acetylated in the injured spinal cord tissues (Fold change >2 and P < 0.05). There were also 116 unique acetylated peptides in the sham group and 9 unique acetylated peptides in the SCI group. Functional enrichment analysis revealed that differently acetylated proteins were involved in multiple cellular processes and metabolic processes. Kyoto Encyclopaedia of Genes and Genomes analysis showed that several pathways, including cGMP-PKG signaling pathway and hypoxia-inducible factor-1 (HIF-1) signaling pathway, were predominantly presented. Moreover, promoting acetylation using glycerol triacetate (GTA) showed a therapeutic effect on SCI, with improved Basso-Beattie-Bresnahan scores and histologic morphology, and decreased neuronal apoptosis and inflammation. In conclusion, our data indicated that protein deacetylation might play crucial roles in the development of secondary injury of SCI, and promoting acetylation by GTA effectively mitigated SCI. Our data not only enhance our understanding on acetylproteome dataset in the spinal cord tissues, but also provide novel insights for the treatment of SCI.
Collapse
|
18
|
The Beneficial Roles of SIRT1 in Neuroinflammation-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6782872. [PMID: 33014276 PMCID: PMC7519200 DOI: 10.1155/2020/6782872] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Sirtuins are the class III of histone deacetylases whose deacetylate of histones is dependent on nicotinamide adenine dinucleotide (NAD+). Among seven sirtuins, SIRT1 plays a critical role in modulating a wide range of physiological processes, including apoptosis, DNA repair, inflammatory response, metabolism, cancer, and stress. Neuroinflammation is associated with many neurological diseases, including ischemic stroke, bacterial infections, traumatic brain injury, Alzheimer's disease (AD), and Parkinson's disease (PD). Recently, numerous studies indicate the protective effects of SIRT1 in neuroinflammation-related diseases. Here, we review the latest progress regarding the anti-inflammatory and neuroprotective effects of SIRT1. First, we introduce the structure, catalytic mechanism, and functions of SIRT1. Next, we discuss the molecular mechanisms of SIRT1 in the regulation of neuroinflammation. Finally, we analyze the mechanisms and effects of SIRT1 in several common neuroinflammation-associated diseases, such as cerebral ischemia, traumatic brain injury, spinal cord injury, AD, and PD. Taken together, this information implies that SIRT1 may serve as a promising therapeutic target for the treatment of neuroinflammation-associated disorders.
Collapse
|
19
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
21
|
Khan TI, Hemalatha S, Waseem M. Promising Role of Nano-Encapsulated Drugs for Spinal Cord Injury. Mol Neurobiol 2020; 57:1978-1985. [PMID: 31900861 DOI: 10.1007/s12035-019-01862-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022]
Abstract
Nanomaterials have been utilized for the drug delivery in the central nervous system (CNS), and many research investigators are currently focussing on this specified area. There has been a lot of advancement in the nanoparticle-mediated drug delivery to the brain. Neuronal injuries including spinal cord injury (SCI) and their targeted therapies are still in its infancy on this planet. SCI has been known to cause axonal damage followed by the loss of communication between CNS and other non-neuronal systems. SCI has been critically associated with prolonged inflammation, sensory dysfunction, and motor impairment in SCI patients. There has been a critical crosstalk in SCI and blood brain barriers (BBBs) for drug absorption and distribution in patients. There is a paucity of possible therapies for proper intervention of SCI due to selective permeability of the drugs across BBB. Nanomaterials are contemplated in the drug delivery system for SCI. In addition, self-assembled nanomicelles, lipid nanoparticles, and other co-polymers have now been explored for neuronal injuries. This review focuses on the promising approach and/or role of nanodrug delivery to target SCI in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Tasneem Ismail Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Mohammad Waseem
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|