1
|
Tian Y, Sun J, Jiao D, Zhang W. The potential role of n-3 fatty acids and their lipid mediators on asthmatic airway inflammation. Front Immunol 2024; 15:1488570. [PMID: 39720728 PMCID: PMC11666451 DOI: 10.3389/fimmu.2024.1488570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Asthma, is a common, significant and diverse condition marked by persistent airway inflammation, with a major impact on human health worldwide. The predisposing factors for asthma are complex and widespread. The beneficial effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in asthma have increasingly attracted attention recently. In asthma therapy, n-3 PUFAs may reduce asthma risk by controlling on levels of inflammatory cytokines and regulating recruitment of inflammatory cells in asthma. The specialized pro-resolving mediators (SPMs) derived from n-3 PUFAs, including the E- and D-series resolvins, protectins, and maresins, were discovered in inflammatory exudates and their biosynthesis by lipoxygenase mediated pathways elucidated., SPMs alleviated T-helper (Th)1/Th17 and type 2 cytokine immune imbalance, and regulated macrophage polarization and recruitment of inflammatory cells in asthma via specific receptors such as formyl peptide receptor 2 (ALX/FPR2) and G protein-coupled receptor 32. In conclusion, the further study of n-3 PUFAs and their derived SPMs may lead to novel anti-inflammatory asthma treatments.
Collapse
Affiliation(s)
- Yuan Tian
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - JingMeng Sun
- Department of Pharmacy, First Hospital of Jilin University, Changchun, China
| | - DongMei Jiao
- Analytical Preparation Process Department, Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - WeiYu Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Li O, Hackney JA, Choy DF, Chang D, Nersesian R, Staton TL, Cai F, Toghi Eshghi S. A targeted amplicon next-generation sequencing assay for tryptase genotyping to support personalized therapy in mast cell-related disorders. PLoS One 2024; 19:e0291947. [PMID: 38335181 PMCID: PMC10857577 DOI: 10.1371/journal.pone.0291947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/09/2023] [Indexed: 02/12/2024] Open
Abstract
Tryptase, the most abundant mast cell granule protein, is elevated in severe asthma patients independent of type 2 inflammation status. Higher active β tryptase allele counts are associated with higher levels of peripheral tryptase and lower clinical benefit from anti-IgE therapies. Tryptase is a therapeutic target of interest in severe asthma and chronic spontaneous urticaria. Active and inactive allele counts may enable stratification to assess response to therapies in asthmatic patient subpopulations. Tryptase gene loci TPSAB1 and TPSB2 have high levels of sequence identity, which makes genotyping a challenging task. Here, we report a targeted next-generation sequencing (NGS) assay and downstream bioinformatics analysis for determining polymorphisms at tryptase TPSAB1 and TPSB2 loci. Machine learning modeling using multiple polymorphisms in the tryptase loci was used to improve the accuracy of genotyping calls. The assay was tested and qualified on DNA extracted from whole blood of healthy donors and asthma patients, achieving accuracy of 96%, 96% and 94% for estimation of inactive α and βΙΙΙFS tryptase alleles and α duplication on TPSAB1, respectively. The reported NGS assay is a cost-effective method that is more efficient than Sanger sequencing and provides coverage to evaluate known as well as unreported tryptase polymorphisms.
Collapse
Affiliation(s)
- Olga Li
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| | - Jason A. Hackney
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| | - David F. Choy
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| | - Diana Chang
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| | - Rhea Nersesian
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| | - Tracy L. Staton
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| | - Fang Cai
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| | - Shadi Toghi Eshghi
- Genentech Research and Early Development, Genentech, Inc, South San Francisco, CA, United States of America
| |
Collapse
|
3
|
Cui N, Zhu X, Zhao C, Meng C, Sha J, Zhu D. A Decade of Pathogenesis Advances in Non-Type 2 Inflammatory Endotypes in Chronic Rhinosinusitis: 2012-2022. Int Arch Allergy Immunol 2023; 184:1237-1253. [PMID: 37722364 DOI: 10.1159/000532067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by localized inflammation of the upper airways. CRS includes two main phenotypes, namely, CRS with nasal polyps and CRS without nasal polyps. The phenotype-based classification method cannot reflect the pathological mechanism. The endotype-based classification method has been paid more and more attention by researchers. It is mainly divided into type 2 and non-type 2 endotypes. The mechanism driving the pathogenesis of non-type 2 inflammation is currently unknown. In this review, the PubMed and Web of Science databases were searched to conduct a critical analysis of representative literature works on the pathogenesis of non-type 2 inflammation in CRS published in the past decade. This review summarizes the latest evidence that may lead to the pathogenesis of non-type 2 inflammation. It is the main method that analyzing the pathogenesis from the perspective of immunology. Genomics and proteomics technique provide new approaches to the study of the pathogenesis. Due to differences in race, environment, geography, and living habits, there are differences in the occurrence of non-type 2 inflammation, which increase the difficulty of understanding the pathogenesis of non-type 2 inflammation in CRS. Studies have confirmed that non-type 2 endotype is more common in Asian patients. The emergence of overlap and unclassified endotypes has promoted the study of heterogeneity in CRS. In addition, as the source of inflammatory cells and the initiation site of the inflammatory response, microvessels and microlymphatic vessels in the nasal mucosal subepithelial tissue participate in the inflammatory response and tissue remodeling. It is uncertain whether CRS patients affect the risk of infection with SARS-CoV-2. In addition, the pathophysiological mechanism of non-type 2 CRS combined with COVID-19 remains to be further studied, and it is worth considering how to select the befitting biologics for CRS patients with non-type 2 inflammation.
Collapse
Affiliation(s)
- Na Cui
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,
| | - Xuewei Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Cuida Meng
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jichao Sha
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Calderon AA, Dimond C, Choy DF, Pappu R, Grimbaldeston MA, Mohan D, Chung KF. Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. Eur Respir Rev 2023; 32:32/167/220144. [PMID: 36697211 PMCID: PMC9879340 DOI: 10.1183/16000617.0144-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023] Open
Abstract
Interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) are alarmins that are released upon airway epithelial injury from insults such as viruses and cigarette smoke, and play critical roles in the activation of immune cell populations such as mast cells, eosinophils and group 2 innate lymphoid cells. Both cytokines were previously understood to primarily drive type 2 (T2) inflammation, but there is emerging evidence for a role for these alarmins to additionally mediate non-T2 inflammation, with recent clinical trial data in asthma and COPD cohorts with non-T2 inflammation providing support. Currently available treatments for both COPD and asthma provide symptomatic relief with disease control, improving lung function and reducing exacerbation rates; however, there still remains an unmet need for further improving lung function and reducing exacerbations, particularly for those not responsive to currently available treatments. The epithelial cytokines/alarmins are involved in exacerbations; biologics targeting TSLP and IL-33 have been shown to reduce exacerbations in moderate-to-severe asthma, either in a broad population or in specific subgroups, respectively. For COPD, while there is clinical evidence for IL-33 blockade impacting exacerbations in COPD, clinical data from anti-TSLP therapies is awaited. Clinical data to date support an acceptable safety profile for patients with airway diseases for both anti-IL-33 and anti-TSLP antibodies in development. We examine the roles of IL-33 and TSLP, their potential use as drug targets, and the evidence for target patient populations for COPD and asthma, together with ongoing and future trials focused on these targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Divya Mohan
- Genentench, Inc., San Francisco, CA, USA,Corresponding author: Divya Mohan ()
| | - Kian Fan Chung
- National Heart and Lung institute, Imperial College London, London, UK
| |
Collapse
|
5
|
Huang YJ, Porsche C, Kozik AJ, Lynch SV. Microbiome-Immune Interactions in Allergy and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2244-2251. [PMID: 35724951 PMCID: PMC10566566 DOI: 10.1016/j.jaip.2022.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 06/13/2023]
Abstract
The human microbiota has been established as a key regulator of host health, in large part owing to its constant interaction with and impact on host immunity. A range of environmental exposures spanning from the prenatal period through adulthood are known to affect the composition and molecular productivity of microbiomes across mucosal and dermal tissues with short- and long-term consequences for host immune function. Here we review recent findings in the field that provide insights into how microbial-immune interactions promote and sustain immune dysfunction associated with allergy and asthma. We consider both early life microbiome perturbation and the molecular underpinnings of immune dysfunction associated with subsequent allergy and asthma development in childhood, as well as microbiome features that relate to phenotypic attributes of allergy and asthma in older patients with established disease.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich.
| | - Cara Porsche
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
6
|
The Role of Smoking in Asthma and Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:615-630. [DOI: 10.1016/j.iac.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Jackman JK, Stockwell A, Choy DF, Xie MM, Lu P, Jia G, Li H, Abbas AR, Bronson PG, Lin WY, Chiu CPC, Maun HR, Roose-Girma M, Tam L, Zhang J, Modrusan Z, Graham RR, Behrens TW, White SR, Naureckas T, Ober C, Ferreira M, Sedlacek R, Wu J, Lee WP, Lazarus RA, Koerber JT, Arron JR, Yaspan BL, Yi T. Genome-wide association study identifies kallikrein 5 in type 2 inflammation-low asthma. J Allergy Clin Immunol 2022; 150:972-978.e7. [PMID: 35487308 DOI: 10.1016/j.jaci.2022.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Clinical studies of type 2 (T2) cytokine-related neutralizing antibodies in asthma have identified a substantial subset of patients with low levels of T2 inflammation who do not benefit from T2 cytokine neutralizing antibody treatment. Non type 2 mechanisms are poorly understood in asthma but represent the redefined unmet medical need. OBJECTIVE To gain understanding of the genetic contribution to T2-low asthma. METHODS We utilized an unbiased genome-wide association study (GWAS) of moderate-severe asthma patients stratified by T2 serum biomarker periostin. We also performed additional expression and biological analysis for the top genetic hit. RESULTS This analysis identified a novel protective SNP at chr19q13.41 which is selectively associated with T2-low asthma and establishes KLK5 as the causal gene mediating this association. Heterozygous carriers of the SNP have reduced KLK5 expression. KLK5 is secreted by human bronchial epithelial cells and elevated in asthma bronchial alveolar lavage. T2 cytokines IL-4 and IL-13 downregulate KLK5 in human bronchial epithelial cells. KLK5, dependent on its catalytic function, induces epithelial chemokine/cytokine expression. Lastly, overexpression of KLK5 in airway, or lack of an endogenous KLK5 inhibitor, SPINK5, leads to spontaneous airway neutrophilic inflammation. CONCLUSION Our data identifies KLK5 as the causal gene at a novel locus at chr19q13.41 associated with T2-low asthma.
Collapse
Affiliation(s)
- Janet K Jackman
- Department of Immunology Discovery, South San Francisco, Calif
| | - Amy Stockwell
- Department of Human Genetics, South San Francisco, Calif
| | - David F Choy
- Department of Biomarker Discovery OMNI, South San Francisco, Calif
| | - Markus M Xie
- Department of Immunology Discovery, South San Francisco, Calif
| | - Peipei Lu
- Department of Immunology Discovery, South San Francisco, Calif
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, South San Francisco, Calif
| | - Hong Li
- Department of Protein Chemistry, South San Francisco, Calif
| | - Alexander R Abbas
- Department of Oncology Biomarker Development, South San Francisco, Calif
| | | | - Wei-Yu Lin
- Department of Antibody Engineering, South San Francisco, Calif
| | | | - Henry R Maun
- Department of Early Discovery Biochemistry, South San Francisco, Calif
| | | | - Lucinda Tam
- Department of Molecular Biology, South San Francisco, Calif
| | - Juan Zhang
- Department of Translational Immunology, South San Francisco, Calif
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, Calif
| | | | | | - Steven R White
- Department of Medicine, Section of Pulmonary and Critical Care, Chicago, Ill
| | - Ted Naureckas
- Department of Medicine, Section of Pulmonary and Critical Care, Chicago, Ill
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Manuel Ferreira
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, Australia
| | - Radislav Sedlacek
- Labortory of Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiansheng Wu
- Department of Protein Chemistry, South San Francisco, Calif
| | - Wyne P Lee
- Department of Translational Immunology, South San Francisco, Calif
| | - Robert A Lazarus
- Department of Early Discovery Biochemistry, South San Francisco, Calif
| | - James T Koerber
- Department of Antibody Engineering, South San Francisco, Calif
| | - Joseph R Arron
- Department of Immunology Discovery, South San Francisco, Calif
| | - Brian L Yaspan
- Department of Human Genetics, South San Francisco, Calif.
| | - Tangsheng Yi
- Department of Immunology Discovery, South San Francisco, Calif.
| |
Collapse
|
8
|
Souza HI, Pereira ABM, Oliveira JR, Silva PR, Teixeira DNS, Silva-Vergara ML, Rogério AP. Cryptococcus neoformans in Association with Dermatophagoides pteronyssinus has Pro- (IL-6/STAT3 Overproduction) and Anti-inflammatory (CCL2/ERK1/2 Downregulation) Effects on Human Bronchial Epithelial Cells. Inflammation 2022; 45:1269-1280. [PMID: 35015189 DOI: 10.1007/s10753-021-01619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Cryptococcosis (caused, for example, by Cryptococcus neoformans) and allergic asthma (caused, for example, by Dermatophagoides pteronyssinus) target the respiratory tract (the lung and bronchial epithelium). C. neoformans and D. pteronyssinus can coexist in the same indoor environment, and exposure to both can cause alterations in the local airway inflammatory milieu and exacerbation of airway inflammatory diseases. Here, we evaluated the effects of the association between C. neoformans and D. pteronyssinus in the modulation of airway inflammatory responses in an in vitro experimental model using human bronchial epithelial cells. BEAS-2B cells were cultivated and stimulated with D. pteronyssinus (10 μg/mL) and/or C. neoformans (MOI 100) for 24 h. No cytotoxic effect was observed in cells stimulated by C. neoformans and/or D. pteronyssinus. The production of IL-8, IL-6, and/or CCL2, but not IL-10, as well as the activation of NF-kB, STAT3, STAT6, and/or ERK1/2 were increased in cells stimulated by C. neoformans or D. pteronyssinus compared to controls. C. neoformans in association with D. pteronyssinus inhibited the CCL2‑ERK1/2 signaling pathway in cells treated with both pathogens compared to cells stimulated by D. pteronyssinus alone. In addition, their association induced an additive effect on the IL-6/STAT3 signaling pathway in cells compared to cells stimulated with D. pteronyssinus or C. neoformans only. D. pteronyssinus increased the internalization and growth of C. neoformans in BEAS-2B cells. D. pteronyssinus in association with C. neoformans promoted pro- and anti-inflammatory responses, which can modulate cryptococcal infection and asthmaticus status.
Collapse
Affiliation(s)
- Henrique Ismarsi Souza
- Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Aline Beatriz Mahler Pereira
- Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Jhony Robison Oliveira
- Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paulo Roberto Silva
- Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - David Nascimento Silva Teixeira
- Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mario Leon Silva-Vergara
- Department of Clinical Medicine, Laboratory of Mycology, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Alexandre Paula Rogério
- Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, Theess W, Yang X, Staton TL, Choy DF, Fong A, Dash A, Dolton M, Pappu R, Brightling CE. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J Allergy Clin Immunol 2021; 148:790-798. [PMID: 33872652 DOI: 10.1016/j.jaci.2021.03.044] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The IL-33/ST2 pathway is linked with asthma susceptibility. Inhaled allergens, pollutants, and respiratory viruses, which trigger asthma exacerbations, induce release of IL-33, an epithelial-derived "alarmin." Astegolimab, a human IgG2 mAb, selectively inhibits the IL-33 receptor, ST2. Approved biologic therapies for severe asthma mainly benefit patients with elevated blood eosinophils (type 2-high), but limited options are available for patients with low blood eosinophils (type 2-low). Inhibiting IL-33 signaling may target pathogenic pathways in a wider spectrum of asthmatics. OBJECTIVES This study evaluated astegolimab efficacy and safety in patients with severe asthma. METHODS This double-blind, placebo-controlled, dose-ranging study (ZENYATTA [A Study to Assess the Efficacy and Safety of MSTT1041A in Participants With Uncontrolled Severe Asthma]) randomized 502 adults with severe asthma to subcutaneous placebo or 70-mg, 210-mg, or 490-mg doses of astegolimab every 4 weeks. The primary endpoint was the annualized asthma exacerbation rate (AER) at week 54. Enrollment caps ensured ∼30 patients who were eosinophil-high (≥300 cells/μL) and ∼95 patients who were eosinophil-low (<300 cells/μL) per arm. RESULTS Overall, adjusted AER reductions relative to placebo were 43% (P = .005), 22% (P = .18), and 37% (P = .01) for 490-mg, 210-mg, and 70-mg doses of astegolimab, respectively. Adjusted AER reductions for patients who were eosinophil-low were comparable to reductions in the overall population: 54% (P = .002), 14% (P = .48), and 35% (P = .05) for 490-mg, 210-mg, and 70-mg doses of astegolimab. Adverse events were similar in astegolimab- and placebo-treated groups. CONCLUSIONS Astegolimab reduced AER in a broad population of patients, including those who were eosinophil-low, with inadequately controlled, severe asthma. Astegolimab was safe and well tolerated.
Collapse
Affiliation(s)
- Steven G Kelsen
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pa
| | - Ioana O Agache
- Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Weily Soong
- Alabama Allergy and Asthma Center and Clinical Research Center of Alabama, Birmingham, Ala
| | - Elliot Israel
- Divisions of Pulmonary and Critical Care Medicine and Allergy and Immunology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass
| | - Geoffrey L Chupp
- Division of Pulmonary and Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | | | | | | | | | | | - Alice Fong
- Genentech, Inc., South San Francisco, Calif
| | - Ajit Dash
- Genentech, Inc., South San Francisco, Calif
| | | | | | | |
Collapse
|