1
|
Zhao X, Wu G, Tao X, Dong D, Liu J. Targeted mitochondrial therapy for pancreatic cancer. Transl Oncol 2025; 54:102340. [PMID: 40048984 PMCID: PMC11928980 DOI: 10.1016/j.tranon.2025.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/05/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Pancreatic cancer (PC) is a highly invasive tumor characterized by delayed diagnosis, rapid progress, and resistance to chemotherapy. Mitochondria, as the "power chamber" of cells, not only play a central role in energy metabolism but also participate in the production of reactive oxygen species (ROS), calcium signaling, regulation, and differentiation of the cell cycle. The abnormal activity of mitochondria is closely related to the development of PC. In this paper, we discussed the key role of mitochondria in PC, including mitochondrial DNA, mitochondrial biogenesis, mitochondrial dynamics, metabolic regulation, ROS generation, and mitochondrial-dependent apoptosis. We elaborated on the importance of these mitochondrial mechanisms in the development of PC and emphasized the potential of targeted mitochondrial therapy strategies for these mechanisms in the treatment of PC. In addition, this article also reviews the latest developments in innovative drug carriers such as cell-penetrating peptides, nucleic acid aptamers, and nanomaterials, which can achieve precise localization of mitochondria and drug delivery. Therefore, this article comprehensively analyzed the important role of mitochondria in the treatment of PC and clarified the effectiveness and necessity of targeting mitochondria in the treatment of PC.
Collapse
Affiliation(s)
- Xinya Zhao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb PG, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 Stabilizes the Genome via Nuclear and Cell-Cycle Remodeling to Support Ovarian Cancer Cell Survival. CANCER RESEARCH COMMUNICATIONS 2025; 5:39-53. [PMID: 39625235 PMCID: PMC11705808 DOI: 10.1158/2767-9764.crc-24-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE High-grade serous ovarian carcinoma is marked by chromosomal instability, which can serve to promote disease progression and allow cancer to evade therapeutic insults. The report highlights the role of claudin-4 in regulating genomic instability and proposes a novel therapeutic approach to exploit claudin-4-mediated regulation.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia G. Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Zhang J, Li Z, Xie Z, You S, Chen Y, Zhang Y, Zhang J, Zhao N, Deng X, Sun S. Building of CuO 2@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells. Pharmaceutics 2024; 16:1614. [PMID: 39771592 PMCID: PMC11680075 DOI: 10.3390/pharmaceutics16121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Methods: Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO2) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO2@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs). In response to the tumor microenvironment, DHA interacts with copper ion (Cu2+) to produce ROS, and a double (diethylthiocarbamate)-copper (II) (CuET) is generated by the complexation of DSF and Cu2+, which consumes GSH and inhibits antioxidant system. Meanwhile, utilizing the Fenton-like effect induced by the multi-copper mode can achieve ROS storm, activate the MAPK pathway, and achieve chemotherapy (CT) and chemodynamic (CDT). Results: Taking pancreatic cancer cell lines PANC-1 and BxPC-3 as the research objects, cell line experiments in vitro proved that CCTDD NPs exhibit efficient cytotoxicity on cancer cells. Conclusions: The CCTDD NPs show great potential in resisting pancreatic cancer cells and provides a simple strategy for designing powerful metal matrix composites.
Collapse
Affiliation(s)
- Jiaru Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Zuoping Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Zhenzhen Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Shiwan You
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Yanbing Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Yuling Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Jing Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China
| | - Na Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Xiling Deng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China; (J.Z.); (Z.L.); (Z.X.); (S.Y.); (Y.C.); (Y.Z.); (J.Z.); (N.Z.); (X.D.)
- Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Xianyang 712100, China
- Shenzhen Research Institute, Northwest Agriculture and Forestry University, Shenzhen 518000, China
| |
Collapse
|
4
|
Liu X, Chai B, Wang X, Wu Z, Zou H, Liu Y, Zheng S, Qian G, Ma Z, Lu J. Environmentally Persistent Free Radical Promotes Lung Cancer Progression by Regulating the Expression Profile of miRNAs. Cancer Biother Radiopharm 2024; 39:584-592. [PMID: 35594306 DOI: 10.1089/cbr.2021.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Environmentally persistent free radicals (EPFRs) are generated in the combustion processes of solid waste and can cause adverse influences on human health, especially lung diseases. Lung cancer is one of the most serious malignancies in recent years, which the global deaths rate is about 1.6 million every year. Methods and Results: In this study, we verified that ZnO/MCB EPFRs promote cell proliferation and migration, impedes cell apoptosis in lung cancer. Furthermore, we found that ZnO/MCB could influence the expression of miRNAs (miR-18a and miR-34a). In vivo, ZnO/MCB and ZnO EPFRs can reduce the weight and survival rate of BALB/c male mice more than that of BALB/c female mice. In the ZnO/MCB exposed group, male mice lung became even smaller, while the female mice the lung increased significantly. Taken together, our results provide evidence for assessing the potential health risks of persistent free radicals on fine particles. Conclusions: This study linked toxicity of EPFRs with miRNAs revealed the potential health hazard to human lung cancer.
Collapse
Affiliation(s)
- Xiaomin Liu
- Shanghai Tobacco Group Corp, Shanghai, P.R. China
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Binshu Chai
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Heng Zou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Yangyang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | | | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Jie Lu
- Shanghai Tobacco Group Corp, Shanghai, P.R. China
| |
Collapse
|
5
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb P, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 remodeling of nucleus-cell cycle crosstalk maintains ovarian tumor genome stability and drives resistance to genomic instability-inducing agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611120. [PMID: 39282307 PMCID: PMC11398366 DOI: 10.1101/2024.09.04.611120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During cancer development, the interplay between the nucleus and the cell cycle leads to a state of genomic instability, often accompanied by observable morphological aberrations. These aberrations can be controlled by tumor cells to evade cell death, either by preventing or eliminating genomic instability. In epithelial ovarian cancer (EOC), overexpression of the multifunctional protein claudin-4 is a key contributor to therapy resistance through mechanisms associated with genomic instability. However, the molecular mechanisms underlying claudin-4 overexpression in EOC remain poorly understood. Here, we altered claudin-4 expression and employed a unique claudin-4 targeting peptide (CMP) to manipulate the function of claudin-4. We found that claudin-4 facilitates genome maintenance by linking the nuclear envelope and cytoskeleton dynamics with cell cycle progression. Claudin-4 caused nuclei constriction by excluding lamin B1 and promoting perinuclear F-actin accumulation, associated with remodeling nuclear architecture, thus altering nuclear envelope dynamics. Consequently, cell cycle modifications due to claudin-4 overexpression resulted in fewer cells entering the S-phase and reduced genomic instability. Importantly, disrupting biological interactions of claudin-4 using CMP and forskolin altered oxidative stress cellular response and increased the efficacy of PARP inhibitor treatment. Our data indicate that claudin-4 protects tumor genome integrity by remodeling the crosstalk between the nuclei and the cell cycle, leading to resistance to genomic instability formation and the effects of genomic instability-inducing agents.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
6
|
Baradaran-Bagherian S, Mehrab Mohseni M, Sharifi R, Amirinejad R, Shirvani-Farsani Z. The oxidative stress-associated long non-coding RNAs in pancreatic cancer. Adv Med Sci 2024; 69:231-237. [PMID: 38670228 DOI: 10.1016/j.advms.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/18/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE A lot of people are dying from pancreatic cancer (PC) annually. The early detection of this cancer is particularly challenging due to the fact that symptoms tend to appear in advanced stages. It has been suggested that oxidative stress may play a role in the development of PC. Several genes regulate this process, including long noncoding RNAs (lncRNAs). There is no comprehensive study on the expression pattern of lncRNAs related to oxidative stress in PC patients. In the present case-control study, we quantified levels of oxidative stress-associated lncRNAs in PC patients versus healthy controls. PATIENTS AND METHODS In the present study, we investigated the expression levels of lincRNA-p21, LUCAT, RMST, FOXD3-AS1, and MT1DP lncRNAs in the peripheral blood mononuclear cells (PBMCs) of 53 PC patients and 50 healthy controls. The association between lncRNA expression and clinical and pathological characteristics was also evaluated. RESULTS The expression of lincRNA-P21 and rhabdomyosarcoma 2-associated transcript (RMST) lncRNAs in PC patients has significantly decreased. Expression of lncRNA RMST was significantly higher in TNM stage III-IV patients in comparison to TNM stage I-II patients. In addition, a significant positive association was recognized between candidate lncRNA expression, and finally, the AUC values of the expression levels of lincRNA-p21 and RMST were 0.60 and 0.61, respectively. CONCLUSIONS Altogether, our study suggests a possible role of lincRNA-p21 and RMST lncRNAs in the etiology of PC pathobiology, and their biomarker role may be understood in future studies.
Collapse
Affiliation(s)
- Setayesh Baradaran-Bagherian
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Roya Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Amirinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
7
|
Wang Z, Chen H, Cai X, Bu H, Lin S. Andrographolide induces protective autophagy and targeting DJ-1 triggers reactive oxygen species-induced cell death in pancreatic cancer. PeerJ 2024; 12:e17619. [PMID: 38952980 PMCID: PMC11216212 DOI: 10.7717/peerj.17619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Andrographolide (Andro), an extract of Andrographis paniculate (Burm.f.) Wall. ex Nees (Acanthaceae), possesses diverse biologically active properties. However, the precise mechanisms and effects of Andro on pancreatic cancer (PC) remain unclear. Methods The cytotoxic potential of Andro and underlying mechanism towards PC cells was investigated through in vitro experiments and a xenograft mouse model. PC cells were first subjected to varying concentrations of Andro. The reactive oxygen species (ROS) was assessed using flow cytometry and DCFH-DA staining. The apoptosis rate was detected by flow cytometry. Additionally, western blot was applied to evaluate the expression levels of cleaved-caspase-3, DJ-1, LC3-I, LC3-II, and p62. To further elucidate the involvement of ROS accumulation and autophagy, we employed N-acetylcysteine as a scavenger of ROS and 3-Methyladenine as an inhibitor of autophagy. Results Andro demonstrated potent anti-proliferative effects on PC cells and induced apoptosis, both in vitro and in vivo. The cytotoxicity of Andro on PC cells was counteracted by DJ-1 overexpression. The reduction in DJ-1 expression caused by Andro led to ROS accumulation, subsequently inhibiting the growth of PC cells. Furthermore, Andro stimulated cytoprotective autophagy, thus weakening the antitumor effect. Pharmacological blockade of autophagy further enhanced the antitumor efficacy of Andro. Conclusion Our study indicated that ROS accumulation induced by the DJ-1 reduction played a key role in Andro-mediated PC cell inhibition. Furthermore, the protective autophagy induced by the Andro in PC cells is a mechanism that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Zhaohong Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Chen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xufan Cai
- Zhejiang Chinese Medical University, Hanzhou, China
| | - Heqi Bu
- Department of Surgery, Tongde Hospital of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Shengzhang Lin
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
8
|
Baiskhanova D, Schäfer H. The Role of Nrf2 in the Regulation of Mitochondrial Function and Ferroptosis in Pancreatic Cancer. Antioxidants (Basel) 2024; 13:696. [PMID: 38929135 PMCID: PMC11201043 DOI: 10.3390/antiox13060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) represents the master regulator of the cellular antioxidant response and plays a critical role in tumorigenesis. This includes a preventive effect of Nrf2 on cell death through ferroptosis, which represents an essential mechanism of therapy resistance in malignant tumors, such as pancreatic ductal adenocarcinoma (PDAC) as one of the most aggressive and still incurable tumors. Addressing this issue, we provide an overview on Nrf2 mediated antioxidant response with particular emphasis on its effect on mitochondria as the organelle responsible for the execution of ferroptosis. We further outline how deregulated Nrf2 adds to the progression and therapy resistance of PDAC, especially with respect to the role of ferroptosis in anti-cancer drug mediated cell killing and how this is impaired by Nrf2 as an essential mechanism of drug resistance. Our review further discusses recent approaches for Nrf2 inhibition by natural and synthetic compounds to overcome drug resistance based on enhanced ferroptosis. Finally, we provide an outlook on therapeutic strategies based on Nrf2 inhibition combined with ferroptosis inducing drugs.
Collapse
Affiliation(s)
- Dinara Baiskhanova
- Laboratory of Molecular Gastroenterology and Tumor Biology, Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany;
| | | |
Collapse
|
9
|
Beč A, Persoons L, Daelemans D, Starčević K, Vianello R, Hranjec M. Biological activity and computational analysis of novel acrylonitrile derived benzazoles as potent antiproliferative agents for pancreatic adenocarcinoma with antioxidative properties. Bioorg Chem 2024; 147:107326. [PMID: 38653153 DOI: 10.1016/j.bioorg.2024.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Continuing our research into the anticancer properties of acrylonitriles, we present a study involving the design, synthesis, computational analysis, and biological assessment of novel acrylonitriles derived from methoxy, hydroxy, and N-substituted benzazole. Our aim was to examine how varying the number of methoxy and hydroxy groups, as well as the N-substituents on the benzimidazole core, influences their biological activity. The newly synthesized acrylonitriles exhibited strong and selective antiproliferative effects against the Capan-1 pancreatic adenocarcinoma cell line, with IC50 values ranging from 1.2 to 5.3 μM. Consequently, these compounds were further evaluated in three other pancreatic adenocarcinoma cell lines, while their impact on normal PBMC cells was also investigated to determine selectivity. Among these compounds, the monohydroxy-substituted benzimidazole derivative 27 emerged with the most profound and broad-spectrum anticancer antiproliferative activity being emerged as a promising lead candidate. Moreover, a majority of the acrylonitriles in this series exhibited significant antioxidative activity, surpassing that of the reference molecule BHT, as demonstrated by the FRAP assay (ranging from 3200 to 5235 mmolFe2+/mmolC). Computational analysis highlighted the prevalence of electron ionization in conferring antioxidant properties, with computed ionization energies correlating well with observed activities.
Collapse
Affiliation(s)
- Anja Beč
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Leentje Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia.
| |
Collapse
|
10
|
Boček Pavlinac I, Persoons L, Daelemans D, Starčević K, Vianello R, Hranjec M. Novel acrylonitrile derived imidazo[4,5-b]pyridines as antioxidants and potent antiproliferative agents for pancreatic adenocarcinoma. Int J Biol Macromol 2024; 266:131239. [PMID: 38569992 DOI: 10.1016/j.ijbiomac.2024.131239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
We present the design, synthesis, computational analysis, and biological assessment of several acrylonitrile derived imidazo[4,5-b]pyridines, which were evaluated for their anticancer and antioxidant properties. Our aim was to explore how the number of hydroxy groups and the nature of nitrogen substituents influence their biological activity. The prepared derivatives exhibited robust and selective antiproliferative effects against several pancreatic adenocarcinoma cells, most markedly targeting Capan-1 cells (IC50 1.2-5.3 μM), while their selectivity was probed relative to normal PBMC cells. Notably, compound 55, featuring dihydroxy and bromo substituents, emerged as a promising lead molecule. It displayed the most prominent antiproliferative activity without any adverse impact on the viability of normal cells. Furthermore, the majority of studied derivatives also exhibited significant antioxidative activity within the FRAP assay, even surpassing the reference molecule BHT. Computational analysis rationalized the results by highlighting the dominance of the electron ionization for the antioxidant features with the trend in the computed ionization energies well matching the observed activities. Still, in trihydroxy derivatives, their ability to release hydrogen atoms and form a stable O-H⋯O•⋯H-O fragment upon the H• abstraction prevails, promoting them as excellent antioxidants in DPPH• assays as well.
Collapse
Affiliation(s)
- Ida Boček Pavlinac
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Leentje Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Saba E, Farhat M, Daoud A, Khashan A, Forkush E, Menahem NH, Makkawi H, Pandi K, Angabo S, Kawasaki H, Plaschkes I, Parnas O, Zamir G, Atlan K, Elkin M, Katz L, Nussbaum G. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024; 73:770-786. [PMID: 38233197 DOI: 10.1136/gutjnl-2023-330941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Collapse
Affiliation(s)
- Elias Saba
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Alaa Daoud
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Arin Khashan
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Esther Forkush
- Gastroenterology, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Hallel Menahem
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co Ltd, Koda-cho, Akitakata-shi, Hiroshima, Japan
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Parnas
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Experimental Surgery, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Michael Elkin
- Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Katz
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
12
|
Reis J, Gorgulla C, Massari M, Marchese S, Valente S, Noce B, Basile L, Törner R, Cox H, Viennet T, Yang MH, Ronan MM, Rees MG, Roth JA, Capasso L, Nebbioso A, Altucci L, Mai A, Arthanari H, Mattevi A. Targeting ROS production through inhibition of NADPH oxidases. Nat Chem Biol 2023; 19:1540-1550. [PMID: 37884805 DOI: 10.1038/s41589-023-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.
Collapse
Affiliation(s)
- Joana Reis
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Marta Massari
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sara Marchese
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Basile
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huel Cox
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Moon Hee Yang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy.
| |
Collapse
|
13
|
Xiao Z, Deng S, Liu H, Wang R, Liu Y, Dai Z, Gu W, Ni Q, Yu X, Liu C, Luo G. Glutamine deprivation induces ferroptosis in pancreatic cancer cells. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1288-1300. [PMID: 36942991 PMCID: PMC10449637 DOI: 10.3724/abbs.2023029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Ferroptosis is a type of programmed cell death closely related to amino acid metabolism. Pancreatic cancer cells have a strong dependence on glutamine, which serves as a carbon and nitrogen substrate to sustain rapid growth. Glutamine also aids in self-protection mechanisms. However, the effect of glutamine on ferroptosis in pancreatic cancer remains largely unknown. Here, we aim to explore the association between ferroptosis and glutamine deprivation in pancreatic cancer. The growth of pancreatic cancer cells in culture media with or without glutamine is evaluated using Cell Counting Kit-8. Reactive oxygen species (ROS) are measured by 2',7'-dichlorodihydrofluorescein diacetate staining. Ferroptosis is assessed by BODIPY-C11 dye using confocal microscopy and flow cytometry. Amino acid concentrations are measured using ultrahigh-performance liquid chromatography-tandem mass spectrometry. Isotope-labelled metabolic flux analysis is performed to track the metabolic flow of glutamine. Additionally, RNA sequencing is performed to analyse the genetic alterations. Glutamine deprivation inhibits pancreatic cancer growth and induces ferroptosis both in vitro and in vivo. Additionally, glutamine decreases ROS formation via glutathione production in pancreatic cancer cells. Interestingly, glutamine inhibitors (diazooxonorleucine and azaserine) promotes ROS formation and ferroptosis in pancreatic cancer cells. Furthermore, ferrostatin, a ferroptosis inhibitor, rescues ferroptosis in pancreatic cancer cells. Glutamine deprivation leads to changes in molecular pathways, including cytokine-cytokine receptor interaction pathways ( CCL5, CCR4, LTA, CXCR4, IL-6R, and IL-7R). Thus, exogenous glutamine is required for the detoxification of ROS in pancreatic cancer cells, thereby preventing ferroptosis.
Collapse
Affiliation(s)
- Zhiwen Xiao
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Shengming Deng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - He Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Ruijie Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Yu Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Zhengjie Dai
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Wenchao Gu
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashiGunma371-8511Japan
| | - Quanxing Ni
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Chen Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Guopei Luo
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan University; Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
14
|
Giri S, Park GH, Choi JS, Ma E, Chun KS, Joo SH. MS-5, a Naphthalene Derivative, Induces Apoptosis in Human Pancreatic Cancer BxPC-3 Cells by Modulating Reactive Oxygen Species. Biomol Ther (Seoul) 2023; 31:68-72. [PMID: 36380602 PMCID: PMC9810442 DOI: 10.4062/biomolther.2022.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic cancer is one of the most fatal cancers with a poor prognosis. Standard chemotherapies have proven largely ineffective because of their toxicity and the development of resistance. Therefore, there is an urgent need to develop novel therapies. In this study, we investigated the antitumor activity of MS-5, a naphthalene derivative, on BxPC-3, a human pancreatic cancer cell line. We observed that MS-5 was cytotoxic to BxPC-3 cells, as well as inhibited the growth of cells in a concentration- and time- dependent manner. Flow cytometry analysis revealed that the percentage of annexin V-positive cells increased after MS-5 treatment. We also observed cleavage of caspases and poly (ADP-ribose) polymerase, and downregulation of Bcl-xL protein. Flow cytometry analysis of intracellular levels of reactive oxygen species (ROS) and mitochondrial superoxide suggested that MS-5 induced the generation of mitochondrial superoxide while lowering the overall intracellular ROS levels. Thus, MS-5 may be potential candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Suman Giri
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Gyu Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joon-Seok Choi
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Eunsook Ma
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea,Corresponding Authors E-mail: (Joo SH), (Chun KS), Tel: +82-53-850-3614 (Joo SH), +82-53-580-6647 (Chun KS), Fax: +82-53-359-6729 (Joo SH), +82-53-580-6645 (Chun KS)
| | - Sang Hoon Joo
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea,Corresponding Authors E-mail: (Joo SH), (Chun KS), Tel: +82-53-850-3614 (Joo SH), +82-53-580-6647 (Chun KS), Fax: +82-53-359-6729 (Joo SH), +82-53-580-6645 (Chun KS)
| |
Collapse
|
15
|
Sarwar A, Zhu M, Su Q, Zhu Z, Yang T, Chen Y, Peng X, Zhang Y. Targeting mitochondrial dysfunctions in pancreatic cancer evokes new therapeutic opportunities. Crit Rev Oncol Hematol 2022; 180:103858. [DOI: 10.1016/j.critrevonc.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
16
|
Zhang X, Ding J, Feng L, Wu H, Xu Z, Tao W, Wang Y, Zheng Y, Ling Y, Zhu P. Development of novel nitric oxide-releasing quinolinedione/furoxan hybrids as NQO1 inhibitors for intervention of drug-resistant hepatocellular cancer. Bioorg Chem 2022; 129:106174. [DOI: 10.1016/j.bioorg.2022.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
|
17
|
Tsai HY, Bronner MP, March JK, Valentine JF, Shroyer NF, Lai LA, Brentnall TA, Pan S, Chen R. Metabolic targeting of NRF2 potentiates the efficacy of the TRAP1 inhibitor G-TPP through reduction of ROS detoxification in colorectal cancer. Cancer Lett 2022; 549:215915. [PMID: 36113636 PMCID: PMC11262000 DOI: 10.1016/j.canlet.2022.215915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial homolog of HSP90 chaperones. It plays an important role in protection against oxidative stress and apoptosis by regulating reactive oxidative species (ROS). To further elucidate the mechanistic role of TRAP1 in regulating tumor cell survival, we used gamitrinib-triphenylphosphonium (G-TPP) to inhibit TRAP1 signaling pathways in colon cancer. Inhibition of TRAP1 by G-TPP disrupted redox homeostasis and induced cell death. However, colon cancers show a wide range of responses to G-TPP treatment through the induction of variable ER stress responses and ROS accumulation. Interestingly, a strong inverse correlation was observed between the expression of TRAP1 and antioxidant genes in colon tumor tissues using the GSE106582 database. Using a luciferase reporter assay, we detected increased transcriptional activation of antioxidant response elements (AREs) in G-TPP-treated DLD1 and RKO cells but not in SW48 cells. We found that G-TPP induced upregulation of GRP78, CHOP and PARP cleavage in G-TPP-sensitive cells (SW48). In contrast, G-TPP treatment of G-TPP-resistant cells (DLD1 and RKO) resulted in excessive activation of the antioxidant gene NRF2, leading to ROS detoxification and improved cell survival. The NRF2 target genes HO1 and NQO1 were upregulated in G-TPP-treated DLD1 cells, making the cells more resistant to G-TPP treatment. Furthermore, treatment with both a NRF2 inhibitor and a TRAP1 inhibitor led to excessive ROS production and exacerbated G-TPP-induced cell death in G-TPP-resistant cells. Taken together, dual targeting of TRAP1 and NRF2 may potentially overcome colon cancer resistance by raising cellular ROS levels above the cytotoxic threshold.
Collapse
Affiliation(s)
- Hong-Yuan Tsai
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jordon K March
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John F Valentine
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lisa A Lai
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Sheng Pan
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Hernandezine induces autophagic cell death in human pancreatic cancer cells via activation of the ROS/AMPK signaling pathway. Acta Pharmacol Sin 2022; 44:865-876. [PMID: 36284209 PMCID: PMC10042859 DOI: 10.1038/s41401-022-01006-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023]
Abstract
AbstractHernandezine (Her) is a bisbenzylisoquinoline alkaloid extracted from the traditional Chinese herbal medicine Thalictrum glandulosissimum. Evidence shows that Her is a natural agonist of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and induces apoptosis and autophagy in tumor cells. In this study, we investigated the role of autophagy in Her-induced cell death in human pancreatic cancer cell lines. We showed that Her dose-dependently suppressed cell proliferation, promoted autophagy and induced autophagic death in pancreatic ductal adenocarcinoma (PDAC) cell lines Capan-1 and SW1990. The IC50 values of Her in inhibition of Capan-1 and SW1990 cells were 47.7 μM and 40.1 μM, respectively. Immunoblotting showed that Her (1−40 μM) promoted the conversion of LC3-I to LC3-II, and Her exerted concentration-dependent and time-dependent effects on autophagy activation in PDAC cells. In transmission electron microscopy and fluorescence image analysis, we found that autophagic vacuoles were significantly increased in Her-treated cells. Knockdown of ATG5, a key gene in the autophagy pathway, alleviated the activation of autophagy by Her. These results demonstrated that Her induced autophagy in PDAC cells. Intensely activated autophagy could promote cell death. The autophagy inhibitors, BafA1 and HCQ significantly inhibited Her-induced cell death, implying that Her induced autophagic cell death in PDAC cells. Moreover, we showed that Her activated autophagy by increasing the phosphorylation of AMPK and decreasing the phosphorylation of mTOR/p70S6K. Knockdown of AMPKα relieves the autophagic cell death induced by Her. Furthermore, Her concentration-dependently enhanced reactive oxygen species (ROS) generation in PDAC cells. Antioxidants could reduce the phosphorylation of AMPK and suppress autophagic cell death induced by Her. Our study provides evidence for the development of Her as a therapeutic agent for the treatment of pancreatic cancer.
Collapse
|
19
|
Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species. Oncogenesis 2022; 11:23. [PMID: 35504863 PMCID: PMC9065067 DOI: 10.1038/s41389-022-00389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.
Collapse
|
20
|
Shen R, Chen Y, Wu J, Zhao L, Yang A, Kou X. Effect of Bis-Dimethylamine Substitution on DNA Binding Property and Cytotoxic Activity of Polyhydroxyxanthone. Chem Biodivers 2022; 19:e202101021. [PMID: 35324082 DOI: 10.1002/cbdv.202101021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
A bis-dimethylamine substituted xanthone (Xan-2) was obtained by cationic modification of the free C3 and C6 hydroxy groups of 1,3,6-trihydroxyxanthone (Xan-1) which was isolated from Polygala hongkongensis Hemsl.. The results of the spectroscopic analysis, melting profiles, electrophoretic migration, PCR assay and molecular docking indicated that the hydrophobic plane of Xan-1 and Xan-2 could intercalate into the DNA base pairs meanwhile the basic amine alkyl chain of Xan-2 could bind with DNA phosphate framework via electrostatic interaction. Thus, Xan-2 exhibited higher DNA binding affinity than Xan-1. Further study showed that Xan-2 could inhibit the proliferation of HeLa, SGC-7901 and A549 cells effectively by MTT assay and induce apoptosis of HeLa cells as detected by AO/EB staining and flow cytometry assay. Interestingly, Xan-2 exhibited selective cytotoxicity to cells, which was proved by its relatively low inhibitory effect on Raw 264.7 cell. What these studies mean is that disubstituted amine alkyl chains will play an important role in DNA binding property and cytotoxic activity, providing a direction for the development of novel potential antitumor agents.
Collapse
Affiliation(s)
- Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jianhua Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lihua Zhao
- Tianjin Renai College, Tianjin, 301636, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
21
|
Wu G, Li Y. TGF-β induced reprogramming and drug resistance in triple-negative breast cells. BMC Pharmacol Toxicol 2022; 23:23. [PMID: 35395809 PMCID: PMC8994282 DOI: 10.1186/s40360-022-00561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The development of drug resistance remains to be a major cause of therapeutic failure in breast cancer patients. How drug-sensitive cells first evade drug inhibition to proliferate remains to be fully investigated. METHODS Here we characterized the early transcriptional evolution in response to TGF-β in the human triple-negative breast cells through bioinformatical analysis using a published RNA-seq dataset, for which MCF10A cells were treated with 5 ng/ml TGF-β1 for 0 h, 24 h, 48 h and 72 h, and the RNA-seq were performed in biological duplicates. The protein-protein interaction networks of the differentially expressed genes were constructed. KEGG enrichment analysis, cis-regulatory sequence analysis and Kaplan-Meier analysis were also performed to analyze the cellular reprograming induced by TGF-β and its contribution to the survival probability decline of breast cancer patients. RESULT Transcriptomic analysis revealed that cell growth was severely suppressed by TGF-β in the first 24 h but this anti-proliferate impact attenuated between 48 h and 72 h. The oncogenic actions of TGF-β happened within the same time frame with its anti-proliferative effects. In addition, sustained high expression of several drug resistance markers was observed after TGF-β treatment. We also identified 17 TGF-β induced genes that were highly correlated with the survival probability decline of breast cancer patients. CONCLUSION Together, TGF-β plays an important role in tumorigenesis and the development of drug resistance, which implies potential therapeutic strategies targeting the early-stage TGF-β signaling activities.
Collapse
Affiliation(s)
- Guoyu Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yuchao Li
- MegaLab, MegaRobo Technologies Co., Ltd, Beijing, China
| |
Collapse
|
22
|
Zhao Q, Zhang L, Wang Y, Sun Y, Wang T, Cao J, Qi M, Du X, Xia Z, Zhang R, Yang Y. A Bioinformatic Analysis: The Overexpression and Prognostic Potential of GPX7 in Lower-Grade Glioma. Int J Gen Med 2022; 15:4321-4337. [PMID: 35480989 PMCID: PMC9037894 DOI: 10.2147/ijgm.s356850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Glutathione peroxidase-7 (GPX7) is a newly discovered non-selenium-containing protein with glutathione peroxidase activity, which mainly protects the organism from oxidative damage and is very important for basic biology studies. This study aims to reveal the expression pattern of GPX7 and its prognosis potential from a pan-cancer perspective. Methods Expression levels of GPX7 in human tumor tissues and normal tissues were evaluated using Human Protein Atlas (HPA), the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and UALCAN databases. The prognostic potential of GPX7 for 33 TCGA tumors was evaluated by Kaplan–Meier analysis and Cox regression analysis. Subsequently, the Chinese Glioma Genome Atlas (CGGA) dataset was used to further verify the expression of GPX7 and its prognostic potential in glioma. We explored the correlation between GPX7 and immune infiltration, tumor mutational burden (TMB) and microsatellite instability (MSI). Furthermore, a nomogram lower-grade glioma (LGG) was constructed to verify the prognostic outcome of patients. Finally, the relationship between GPX7 and treatment regimens for LGG was also explored. Results GPX7 was overexpressed in multiple tumors. Elevated expression of GPX7 was associated with poor prognosis of LGG patients (OS hazard ratio (HR) = 1.044, P < 0.0001; DFS HR = 1.035, P < 0.0001; PFS HR = 1.045, P < 0.0001). GPX7 was proved to be an independent prognostic factor of LGG through univariate and multivariate Cox analysis. The nomogram confirmed a better predictability (Concordance index (C-index): 0.845; 95% CI, 0.825–0.865). GPX7 was positively correlated with TMB in LGG. GPX7 expression was negatively correlated with half-maximal inhibitory concentration (IC50) of temozolomide (TMZ) (\documentclass[12pt]{minimal}
\usepackage{wasysym}
\usepackage[substack]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage[mathscr]{eucal}
\usepackage{mathrsfs}
\DeclareFontFamily{T1}{linotext}{}
\DeclareFontShape{T1}{linotext}{m}{n} {linotext }{}
\DeclareSymbolFont{linotext}{T1}{linotext}{m}{n}
\DeclareSymbolFontAlphabet{\mathLINOTEXT}{linotext}
\begin{document}
$$\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over \rho } $$
\end{document}spearman= −0.59, P =1.3e-48). Conclusion GPX7 was upregulated in multiple tumors, and it was a potential prognostic biomarker in LGG. High-expressed GPX7 can predict the sensitivity of TMZ in LGG patients.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Luyu Zhang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Yingying Wang
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Ye Sun
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Tianpei Wang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Jingjing Cao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Meng Qi
- Ankang R&D Center of Se-Enriched Products, Ankang, Shaanxi, People’s Republic of China
| | - Xiaoping Du
- Ankang R&D Center of Se-Enriched Products, Ankang, Shaanxi, People’s Republic of China
| | - Zengrun Xia
- Ankang R&D Center of Se-Enriched Products, Ankang, Shaanxi, People’s Republic of China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
- Correspondence: Rongqiang Zhang, School of Public Health, Shaanxi University of Chinese Medicine, No.1 Middle Section of Century Avenue, Xianyang, Shaanxi, 712046, People’s Republic of China, Tel/Fax +86-029-38185219 Email
| | - Yin Yang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
- The Second Department of Orthopedics, Xi’an Central Hospital, Xi’an, Shaanxi, People’s Republic of China
- Yin Yang, The Second Department of Orthopedics, Xi’an Central Hospital, No. 161, West Fifth Road, Xincheng District, Xi’an, Shaanxi, 710003, People’s Republic of China, Email
| |
Collapse
|
23
|
Döppler HR, Liou GY, Storz P. Generation of Hydrogen Peroxide and Downstream Protein Kinase D1 Signaling Is a Common Feature of Inducers of Pancreatic Acinar-to-Ductal Metaplasia. Antioxidants (Basel) 2022; 11:antiox11010137. [PMID: 35052641 PMCID: PMC8772746 DOI: 10.3390/antiox11010137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic acinar-to-ductal metaplasia (ADM) is a reversible process that occurs after pancreatic injury, but becomes permanent and leads to pancreatic lesions in the presence of an oncogenic mutation in KRAS,. While inflammatory macrophage-secreted chemokines, growth factors that activate epidermal growth factor receptor (EGFR) and oncogenic KRAS have been implicated in the induction of ADM, it is currently unclear whether a common underlying signaling mechanism exists that drives this process. In this study, we show that different inducers of ADM increase levels of hydrogen peroxide, most likely generated at the mitochondria, and upregulate the expression of Protein Kinase D1 (PKD1), a kinase that can be activated by hydrogen peroxide. PKD1 expression in acinar cells affects their survival and mediates ADM, which is in part due to the PKD1 target NF-κB. Overall, our data implicate ROS-PKD1 signaling as a common feature of different inducers of pancreatic ADM.
Collapse
Affiliation(s)
- Heike R. Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.D.); (G.-Y.L.)
| | - Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.D.); (G.-Y.L.)
- Department of Biological Sciences, Center for Cancer Research & Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.D.); (G.-Y.L.)
- Correspondence: ; Tel.: +1-904-953-6909; Fax: +1-904-953-0277
| |
Collapse
|
24
|
Musiol R, Malecki P, Pacholczyk M, Mularski J. Terpyridines as promising antitumor agents: an overview of their discovery and development. Expert Opin Drug Discov 2021; 17:259-271. [PMID: 34928186 DOI: 10.1080/17460441.2022.2017877] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The fused aromatic system of terpyridines makes them good, innocent ligands for various metals. The resulting complexes have been extensively studied for both their biological activity and physico-chemical properties. However, although free ligands also have an interesting biological activity, their share in recent research is considerably limited. AREAS COVERED This review covers the literature on the anticancer activity of terpyridines with special attention being paid to their use as free ligands. Whenever possible, the mechanism of action has been discussed, thereby providing evidence of the substantial differences between sole ligands or less stable complexes and those that have heavier elements. EXPERT OPINION The existing literature indicates that there is a specific attitude for investigating terpyridines and their transition metal complexes. While the latter have been well explored and recognized in the scientific community, the free terpyridines are considered to be useful solely due to their complexing ability. At the same time, terpyridines could have similar or even higher anticancer potency than their complexes. Moreover, a mechanistic analysis of the stability and intracellular activity would provide information that would be useful for designing new drugs.
Collapse
Affiliation(s)
- Robert Musiol
- Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 7, Katowice, Poland
| | | | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, Poland
| | - Jacek Mularski
- Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 7, Katowice, Poland
| |
Collapse
|
25
|
GSH/ROS Dual-Responsive Supramolecular Nanoparticles Based on Pillar[6]arene and Betulinic Acid Prodrug for Chemo-Chemodynamic Combination Therapy. Molecules 2021; 26:molecules26195900. [PMID: 34641443 PMCID: PMC8512399 DOI: 10.3390/molecules26195900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Chemodynamic therapy (CDT) based on intracellular Fenton reactions is attracting increasing interest in cancer treatment. A simple and novel method to regulate the tumor microenvironment for improved CDT with satisfactory effectiveness is urgently needed. Therefore, glutathione (GSH)/ROS (reactive oxygen species) dual-responsive supramolecular nanoparticles (GOx@BNPs) for chemo–chemodynamic combination therapy were constructed via host–guest complexation between water-soluble pillar[6]arene and the ferrocene-modified natural anticancer product betulinic acid (BA) prodrug, followed by encapsulation of glucose oxidase (GOx) in the nanoparticles. The novel supramolecular nanoparticles could be activated by the overexpressed GSH and ROS in the tumor microenvironment (TME), not only accelerating the dissociation of nanoparticles—and, thus, improving the BA recovery and release capability in tumors—but also showing the high-efficiency conversion of glucose into hydroxyl radicals (·OH) in succession through intracellular Fenton reactions. Investigation of antitumor activity and mechanisms revealed that the dramatic suppression of cancer cell growth induced by GOx@BNPs was derived from the elevation of ROS, decrease in ATP and mitochondrial transmembrane potential (MTP) and, finally, cell apoptosis. This work presents a novel method for the regulation of the tumor microenvironment for improved CDT, and the preparation of novel GSH/ROS dual-responsive supramolecular nanoparticles, which could exert significant cytotoxicity against cancer cells through the synergistic interaction of chemodynamic therapy, starvation therapy, and chemotherapy (CDT/ST/CT).
Collapse
|
26
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
27
|
Chang CH, Pauklin S. ROS and TGFβ: from pancreatic tumour growth to metastasis. J Exp Clin Cancer Res 2021; 40:152. [PMID: 33941245 PMCID: PMC8091747 DOI: 10.1186/s13046-021-01960-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGFβ) signalling pathway switches between anti-tumorigenic function at early stages of cancer formation and pro-tumorigenic effects at later stages promoting cancer metastasis. A similar contrasting role has been uncovered for reactive oxygen species (ROS) in pancreatic tumorigenesis. Down-regulation of ROS favours premalignant tumour development, while increasing ROS level in pancreatic ductal adenocarcinoma (PDAC) enhances metastasis. Given the functional resemblance, we propose that ROS-mediated processes converge with the spatial and temporal activation of TGFβ signalling and thereby differentially impact early tumour growth versus metastatic dissemination. TGFβ signalling and ROS could extensively orchestrate cellular processes and this concerted function can be utilized by cancer cells to facilitate their malignancy. In this article, we revisit the interplay of canonical and non-canonical TGFβ signalling with ROS throughout pancreatic tumorigenesis and metastasis. We also discuss recent insight that helps to understand their conflicting effects on different stages of tumour development. These considerations open new strategies in cancer therapeutics.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK.
| |
Collapse
|
28
|
The Significance of Targeting Poly (ADP-Ribose) Polymerase-1 in Pancreatic Cancer for Providing a New Therapeutic Paradigm. Int J Mol Sci 2021. [PMID: 33805293 DOI: 10.3390/ijms22073509.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.
Collapse
|
29
|
Jeong KY, Park MH. The Significance of Targeting Poly (ADP-Ribose) Polymerase-1 in Pancreatic Cancer for Providing a New Therapeutic Paradigm. Int J Mol Sci 2021; 22:3509. [PMID: 33805293 PMCID: PMC8037971 DOI: 10.3390/ijms22073509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research Center, MetiMedi Pharmaceuticals Co., Incheon 22006, Korea;
| | | |
Collapse
|
30
|
Zuo T, Zhang J, Yang J, Xu R, Hu Z, Wang Z, Deng H, Shen Q. On-demand responsive nanoplatform mediated targeting of CAFs and down-regulating mtROS-PYK2 signaling for antitumor metastasis. Biomater Sci 2021; 9:1872-1885. [PMID: 33464242 DOI: 10.1039/d0bm01878c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The desmoplastic tumor microenvironment (DTME), including overexpressed stromal cells and extracellular matrix, formed the first barrier for the accumulation and penetration of nanoparticles in tumors, which compromised the therapeutic efficacy and prognosis. In some metastatic cells, overactivity of the tricarboxylic cycle could overload the electron transport chain resulting in increased mtROS production, which triggered the mitochondria-driven tumor migration and metastasis. Hence, we developed HPBC@TRP/NPs for down-regulating the mtROS-PYK2 pathway and remodeling the DTME to inhibit tumor growth and metastasis for the first time. TPP-RSV prodrugs were synthesized and targeted at mitochondria, resulting in the scavenging of mtROS, lower PYK2 expression, and activation of the mitochondria-driven apoptotic pathway. Pirfenidone fully remodeled the DTME through inhibiting the expression of CAFs, hyaluronan and collagen I, thereby reducing IFP, eliminating the immunosuppressive microenvironment by decreasing the expression of TGF-β, and increasing the infiltration of cytotoxic T lymphocytes. The combination therapy of different mechanisms via targeting the mtROS-PYK2 pathway and CAFs might provide deeper insights into the inhibition of malignant breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zongwei Hu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zhihua Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Huizi Deng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
31
|
Garcia-Gil M, Turri B, Gabriele M, Pucci L, Agnarelli A, Lai M, Freer G, Pistello M, Vignali R, Batistoni R, Marracci S. Protopine/Gemcitabine Combination Induces Cytotoxic or Cytoprotective Effects in Cell Type-Specific and Dose-Dependent Manner on Human Cancer and Normal Cells. Pharmaceuticals (Basel) 2021; 14:ph14020090. [PMID: 33530428 PMCID: PMC7912662 DOI: 10.3390/ph14020090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56127 Pisa, Italy
| | - Benedetta Turri
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy; (M.G.); (L.P.)
| | - Alessandro Agnarelli
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Giulia Freer
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Mauro Pistello
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.L.); (G.F.); (M.P.)
| | - Robert Vignali
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
| | - Renata Batistoni
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
| | - Silvia Marracci
- Department of Biology, University of Pisa, 56127 Pisa, Italy; (M.G.-G.); (B.T.); (A.A.); (R.V.); (R.B.)
- Istituto Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
32
|
Zhang W, Zhu Y, Yu H, Liu X, Jiao B, Lu X. Libertellenone H, a Natural Pimarane Diterpenoid, Inhibits Thioredoxin System and Induces ROS-Mediated Apoptosis in Human Pancreatic Cancer Cells. Molecules 2021; 26:molecules26020315. [PMID: 33435380 PMCID: PMC7827531 DOI: 10.3390/molecules26020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Libertellenone H (LH), a marine-derived pimarane diterpenoid isolated from arctic fungus Eutypella sp. D-1, has shown effective cytotoxicity on a range of cancer cells. The present study is to explore the anticancer effect of LH on human pancreatic cancer cells and to investigate the intracellular molecular target and underlying mechanism. As shown, LH exhibited anticancer activity in human pancreatic cancer cells by promoting cell apoptosis. Mechanistic studies suggested that LH-induced reactive oxygen species (ROS) accumulation was responsible for apoptosis as antioxidant N-acetylcysteine (NAC) and antioxidant enzyme superoxide dismutase (SOD) antagonized the inhibitory effect of LH. Zymologic testing demonstrated that LH inhibited Trx system but had little effect on the glutathione reductase and glutaredoxin. Mass spectrometry (MS) analysis revealed that the mechanism of action was based on the direct conjugation of LH to the Cys32/Cys35 residue of Trx1 and Sec498 of TrxR, leading to a decrease in the cellular level of glutathione (GSH) and activation of downstream ASK1/JNK signaling pathway. Taken together, our findings revealed LH was a marine derived inhibitor of Trx system and an anticancer candidate.
Collapse
Affiliation(s)
- Weirui Zhang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
| | - Yuping Zhu
- College of Basic Medical Sciences, Experimental Teacher Center, Naval Medical University, Shanghai 200433, China;
| | - Haobing Yu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
| | - Xiaoyu Liu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
| | - Binghua Jiao
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
- Correspondence: (B.J.); (X.L.); Tel.: +86-21-81870970 (ext. 8001) (B.J.); +86-21-81870970 (ext. 8004) (X.L.)
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai 200433, China; (W.Z.); (H.Y.); (X.L.)
- Correspondence: (B.J.); (X.L.); Tel.: +86-21-81870970 (ext. 8001) (B.J.); +86-21-81870970 (ext. 8004) (X.L.)
| |
Collapse
|
33
|
Onodera T, Momose I, Adachi H, Yamazaki Y, Sawa R, Ohba SI, Kawada M. Human pancreatic cancer cells under nutrient deprivation are vulnerable to redox system inhibition. J Biol Chem 2020; 295:16678-16690. [PMID: 32978257 PMCID: PMC7864064 DOI: 10.1074/jbc.ra120.013893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Large regions in tumor tissues, particularly pancreatic cancer, are hypoxic and nutrient-deprived because of unregulated cell growth and insufficient vascular supply. Certain cancer cells, such as those inside a tumor, can tolerate these severe conditions and survive for prolonged periods. We hypothesized that small molecular agents, which can preferentially reduce cancer cell survival under nutrient-deprived conditions, could function as anticancer drugs. In this study, we constructed a high-throughput screening system to identify such small molecules and screened chemical libraries and microbial culture extracts. We were able to determine that some small molecular compounds, such as penicillic acid, papyracillic acid, and auranofin, exhibit preferential cytotoxicity to human pancreatic cancer cells under nutrient-deprived compared with nutrient-sufficient conditions. Further analysis revealed that these compounds target to redox systems such as GSH and thioredoxin and induce accumulation of reactive oxygen species in nutrient-deprived cancer cells, potentially contributing to apoptosis under nutrient-deprived conditions. Nutrient-deficient cancer cells are often deficient in GSH; thus, they are susceptible to redox system inhibitors. Targeting redox systems might be an attractive therapeutic strategy under nutrient-deprived conditions of the tumor microenvironment.
Collapse
Affiliation(s)
- Takefumi Onodera
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| | - Isao Momose
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan.
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| | - Yohko Yamazaki
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| | - Ryuichi Sawa
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Shun-Ichi Ohba
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| |
Collapse
|
34
|
Malarz K, Zych D, Gawecki R, Kuczak M, Musioł R, Mrozek-Wilczkiewicz A. New derivatives of 4'-phenyl-2,2':6',2″-terpyridine as promising anticancer agents. Eur J Med Chem 2020; 212:113032. [PMID: 33261897 DOI: 10.1016/j.ejmech.2020.113032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Terpyridine derivatives are known from their broad application including anticancer properties. In this work we present the newly synthesized 4'-phenyl-2,2':6',2″-terpyridine group with high antiproliferative activity. We suggest that these compounds influence cellular redox homeostasis. Cancer cells are particularly susceptible to any changes in the redox balance because of their handicapped and inefficient antioxidant cellular systems. The antiproliferative activity of the studied compounds was tested on five different cell lines that represent several types of tumours; glioblastoma, leukemia, breast, pancreatic and colon. Additionally, we also tested their selectivity towards normal cells. We performed molecular biology studies in order to detect the response of a cell to its treatment with the compounds that were tested. We looked at the in-depth changes in the proteins and cellular pathways that lead to cell cycle inhibition (G0/G1 and S), and consequently, death on the apoptosis and autophagy pathways. We proved that the studied compounds targeted DNA as well. Special attention was paid to the targets connected with ROS generation.
Collapse
Affiliation(s)
- Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland.
| | - Dawid Zych
- Wroclaw School of Information Technology, Ks. M. Lutra 4, 54-239, Wrocław, Poland
| | - Robert Gawecki
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
| | - Michał Kuczak
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006, Katowice, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006, Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland.
| |
Collapse
|
35
|
Wang X, Qian J, Zhu P, Hua R, Liu J, Hang J, Meng C, Shan W, Miao J, Ling Y. Novel Phenylmethylenecyclohexenone Derivatives as Potent TrxR Inhibitors Display High Antiproliferative Activity and Induce ROS, Apoptosis, and DNA Damage. ChemMedChem 2020; 16:702-712. [PMID: 33085980 DOI: 10.1002/cmdc.202000660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Indexed: 02/06/2023]
Abstract
The natural product piperlonguminine (PL) has been shown to exert potential anticancer activity against several types of cancer via elevation of reactive oxidative species (ROS). However, the application of PL has been limited due to its poor water solubility and moderate activity. To improve PL's potency, we designed and synthesized a series of 17 novel phenylmethylenecyclohexenone derivatives and evaluated their pharmacological properties. Most of them exerted antiproliferative activities against four cancer cell lines with IC50 values lower than PL. Among these, compound 10 e not only showed good water solubility and exerted the most potent antiproliferative activity against HGC27 cells (IC50 =0.76 μM), which was 10-fold lower than PL (IC50 =7.53 μM), but also exhibited lower cytotoxicity in human normal gastric epithelial cells GES-1 compared with HGC27 cells. Mechanistically, compound 10 e inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, and diminished mitochondrial transmembrane potential (MTP) in HGC27 cells. Furthermore, 10 e also induced G2 /M cell-cycle arrest, and triggered cancer cell apoptosis through the regulation of apoptotic proteins. Finally, 10 e promoted DNA damage in HGC27 cells via the activation of the H2AX(S139ph) and p53 signaling. In conclusion, 10 e, with prominent tumor selectivity and water solubility, could be a promising candidate for the treatment of cancer and, as such, warrants further investigation.
Collapse
Affiliation(s)
- Xiaomei Wang
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizhou, 225300, China.,School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Rong Hua
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizhou, 225300, China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Jiaying Hang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Jiefei Miao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| |
Collapse
|
36
|
Rai V, Agrawal S. Targets (Metabolic Mediators) of Therapeutic Importance in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E8502. [PMID: 33198082 PMCID: PMC7697422 DOI: 10.3390/ijms21228502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), an extremely aggressive invasive cancer, is the fourth most common cause of cancer-related death in the United States. The higher mortality in PDAC is often attributed to the inability to detect it until it has reached advanced stages. The major challenge in tackling PDAC is due to its elusive pathology, minimal effectiveness, and resistance to existing therapeutics. The aggressiveness of PDAC is due to the capacity of tumor cells to alter their metabolism, utilize the diverse available fuel sources to adapt and grow in a hypoxic and harsh environment. Therapeutic resistance is due to the presence of thick stroma with poor angiogenesis, thus making drug delivery to tumor cells difficult. Investigating the metabolic mediators and enzymes involved in metabolic reprogramming may lead to the identification of novel therapeutic targets. The metabolic mediators of glucose, glutamine, lipids, nucleotides, amino acids and mitochondrial metabolism have emerged as novel therapeutic targets. Additionally, the role of autophagy, macropinocytosis, lysosomal transport, recycling, amino acid transport, lipid transport, and the role of reactive oxygen species has also been discussed. The role of various pro-inflammatory cytokines and immune cells in the pathogenesis of PDAC and the metabolites involved in the signaling pathways as therapeutic targets have been previously discussed. This review focuses on the therapeutic potential of metabolic mediators in PDAC along with stemness due to metabolic alterations and their therapeutic importance.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE 68178, USA;
| |
Collapse
|
37
|
Zhu P, Qian J, Xu Z, Meng C, Liu J, Shan W, Zhu W, Wang Y, Yang Y, Zhang W, Zhang Y, Ling Y. Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling. JOURNAL OF NATURAL PRODUCTS 2020; 83:3041-3049. [PMID: 33026807 DOI: 10.1021/acs.jnatprod.0c00599] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The natural products piperlongumine and piperine have been shown to inhibit cancer cell proliferation through elevation of reactive oxidative species (ROS) and eventually cell death, but only have modest cytotoxic potencies. A series of 14 novel phenylallylidenecyclohexenone analogues based on piperlongumine and piperine therefore were designed and synthesized, and their pharmacological properties were evaluated. Most of the compounds produced antiproliferative activities against five human cancer cells with IC50 values lower than those of piperlongumine and piperine. Among these, compound 9m exerted the most potent antiproliferative activity against drug-resistant Bel-7402/5-FU human liver cancer 5-FU resistant cells (IC50 = 0.8 μM), which was approximately 10-fold lower than piperlongumine (IC50 = 8.4 μM). Further, 9m showed considerably lower cytotoxicity against LO2 human normal liver epithelial cells compared to Bel-7402/5-FU. Mechanistically, compound 9m inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, reduced mitochondrial transmembrane potential (MTP), and induced autophagy in Bel-7402/5-FU cells via regulation of autophagy-related proteins LC3, p62, and beclin-1. Finally, 9m activated significantly the p38 signaling pathways and suppressed the Akt/mTOR signaling pathways. In conclusion, 9m could be a promising candidate for the treatment of drug-resistant cancer cells and, as such, warrants further investigation.
Collapse
Affiliation(s)
- Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Weizhong Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, People's Republic of China
| | - Yumin Yang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong 226001, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
38
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang JQ, Wang LY, Li SJ, Tong T, Wang L, Huang CS, Xu QC, Huang XT, Li JH, Wu J, Zhao W, Yin XY. Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy. NANOSCALE 2020; 12:15767-15774. [PMID: 32729861 DOI: 10.1039/d0nr03138k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Survival data have shown little therapeutic improvement in pancreatic ductal adenocarcinoma (PDAC) over the past several decades, mostly due to aggressive growth and resistance to therapy. Glutathione (GSH) depletion in PDAC may serve as a strategy to suppress tumour malignancy and sensitize tumour cells to therapy. Herein, novel l-cysteine-based poly(disulfide amide) polymers were fabricated to deliver a histone methyltransferase G9a inhibitor (UNC0638) that can simultaneously block GSH biosynthesis and clear cellular GSH levels in PDAC. The optimal UNC0638 nanodrug (NPUNC0638) had the desired particle size, reasonable drug loading capacity, and GSH-controlled drug release. Moreover, compared to UNC0638 alone, NPUNC0638 showed better efficacy in inhibiting cell viability, arresting the cell cycle, inducing apoptosis, and suppressing the invasion and self-renewal capacity of PDAC cells. Furthermore, NPUNC0638 was found to be tumour-specific and well tolerated with no apparent toxicity to vital organs and haematopoietic stem and progenitor cells. Additionally, treatment with NPUNC0638 provided favourable outcomes in the PDAC xenograft model. Therefore, this work presents a potent drug delivery platform to overcome the GSH-induced malignant potential of PDAC.
Collapse
Affiliation(s)
- Jie-Qin Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cheng G, Pan J, Podsiadly R, Zielonka J, Garces AM, Dias Duarte Machado LG, Bennett B, McAllister D, Dwinell MB, You M, Kalyanaraman B. Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses. Free Radic Biol Med 2020; 147:167-174. [PMID: 31874251 PMCID: PMC6948008 DOI: 10.1016/j.freeradbiomed.2019.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that reactive oxygen species (ROS) such as superoxide or hydrogen peroxide generated at low levels can exert a tumor-promoting role via a redox-signaling mechanism. Reports also suggest that both tumorigenesis and tumor growth are associated with enhanced ROS formation. However, whether ROS levels or ROS-derived oxidative marker levels increase during tumor growth remains unknown. In this study, in vivo bioluminescence imaging with a boronate-based pro-luciferin probe was used to assess ROS formation. Additionally, probe-free cryogenic electron paramagnetic resonance was used to quantify a characteristic aconitase [3Fe4S]+ center that arises in the tumor tissue of mouse xenografts from the reaction of the native [4Fe4S]2+ cluster with superoxide. Results indicated that tumor growth is accompanied by increased ROS formation, and revealed differences in oxidant formation in the inner and outer sections of tumor tissue, respectively, demonstrating redox heterogeneity. Studies using luciferin and pro-luciferin probes enabled the assessment of tumor size, ROS formation, and bioenergetic status (e.g., ATP) in luciferase-transfected mice tumor xenografts. Probe-free ex vivo low-temperature electron paramagnetic resonance can also be translated to clinical studies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Jing Pan
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Radoslaw Podsiadly
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Alexander M Garces
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | | | - Brian Bennett
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Michael B Dwinell
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Ming You
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
41
|
Nassar AY, Mahgoub SA, Omar HEDM, Bakkar SM, Osman AA. Comparative ameliorative actions of extracted bradykinin potentiating fraction from cobra snake venom and synthetic antioxidants on hepatic tissue of aflatoxicosed rats. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1850459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmed Y. Nassar
- Biochemistry Department, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Safaa A. Mahgoub
- Chemistry Department, Faculty of Science, Assiut University, Cairo, Egypt
| | | | - Sally M. Bakkar
- Biochemistry Department, Faculty of Medicine, Assiut University, Cairo, Egypt
| | - Amany A. Osman
- Chemistry Department, Faculty of Science, Assiut University, Cairo, Egypt
| |
Collapse
|
42
|
H-Ferritin Affects Cisplatin-Induced Cytotoxicity in Ovarian Cancer Cells through the Modulation of ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3461251. [PMID: 31781333 PMCID: PMC6875340 DOI: 10.1155/2019/3461251] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) mediates cisplatin-induced cytotoxicity in tumor cells. However, when cisplatin-induced ROS do not reach cytotoxic levels, cancer cells may develop chemoresistance. This phenomenon can be attributed to the inherited high expression of antioxidant protein network. H-Ferritin is an important member of the antioxidant system due to its ability to store iron in a nontoxic form. Altered expression of H-Ferritin has been described in ovarian cancers; however, its functional role in cisplatin-based chemoresistance of this cancer type has never been explored. Here, we investigated whether the modulation of H-Ferritin might affect cisplatin-induced cytotoxicity in ovarian cancer cells. First, we characterized OVCAR3 and OVCAR8 cells for their relative ROS and H-Ferritin baseline amounts. OVCAR3 exhibited lower ROS levels compared to OVCAR8 and greater expression of H-Ferritin. In addition, OVCAR3 showed pronounced growth potential and survival accompanied by the strong activation of pERK/pAKT and overexpression of c-Myc and cyclin E1. When exposed to different concentrations of cisplatin, OVCAR3 were less sensitive than OVCAR8. At the lowest concentration of cisplatin (6 μM), OVCAR8 underwent a consistent apoptosis along with a downregulation of H-Ferritin and a consistent increase of ROS levels; on the other hand, OVCAR3 cells were totally unresponsive, H-Ferritin was almost unaffected, and ROS amounts met a slight increase. Thus, we assessed whether the modulation of H-Ferritin levels was able to affect the cisplatin-mediated cytotoxicity in both the cell lines. H-Ferritin knockdown strengthened cisplatin-mediated ROS increase and significantly restored sensitivity to 6 μM cisplatin in resistant OVCAR3 cells. Conversely, forced overexpression of H-Ferritin significantly suppressed the cisplatin-mediated elevation of intracellular ROS subsequently leading to a reduced responsiveness in OVCAR8 cells. Overall, our findings suggest that H-Ferritin might be a key protein in cisplatin-based chemoresistance and that its inhibition may represent a potential approach for enhancing cisplatin sensitivity of resistant ovarian cancer cells.
Collapse
|
43
|
Ilghami R, Barzegari A, Mashayekhi MR, Letourneur D, Crepin M, Pavon-Djavid G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr Rev 2019; 78:65-76. [DOI: 10.1093/nutrit/nuz027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Although chemotherapy succeeds in reducing tumor burden, the efficacy is limited due to acquired drug resistance and often irreparable side effects. Studies show that antioxidants may influence the response to chemotherapy and its side effects, although their use remains controversial. The evidence shows that some chemo-drugs induce oxidative stress and lead to normal tissue apoptosis and the entry of cancer cells to a dormant G0 state. Through the suppression of oxidative stress, antioxidants could protect normal cells and bring the tumor out of dormancy so as to expose it to chemotherapies. This review is focused on the redox biology of cancer/normal cells and association of reactive oxygen species with drug resistance, cancer dormancy, and side effects. To this end, evidence from cellular, animal, and clinical studies is provided to better understand the conundrum of dietary antioxidants in cancer chemotherapy.
Collapse
Affiliation(s)
- Roghayeh Ilghami
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Abolfazl Barzegari
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Mohammad Reza Mashayekhi
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Didier Letourneur
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Michel Crepin
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Graciela Pavon-Djavid
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| |
Collapse
|
44
|
Ahmad A, Khan F, Mishra RK, Khan R. Precision Cancer Nanotherapy: Evolving Role of Multifunctional Nanoparticles for Cancer Active Targeting. J Med Chem 2019; 62:10475-10496. [DOI: 10.1021/acs.jmedchem.9b00511] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Farheen Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali 160062, Punjab, India
| |
Collapse
|
45
|
Foo CHJ, Pervaiz S. gRASping the redox lever to modulate cancer cell fate signaling. Redox Biol 2019; 25:101094. [PMID: 30638892 PMCID: PMC6859584 DOI: 10.1016/j.redox.2018.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023] Open
Abstract
RAS proteins are critical regulators of signaling networks controlling diverse cellular functions such as cell proliferation and survival and its mutation are among the most powerful oncogenic drivers in human cancers. Despite intense efforts, direct RAS-targeting strategies remain elusive due to its "undruggable" nature. To that end, bulk of the research efforts has been directed towards targeting upstream and/or downstream of RAS signaling. However, the therapeutic efficacies of these treatments are limited in the long run due to the acquired drug resistance in RAS-driven cancers. Interestingly, recent studies have uncovered a potential role of RAS in redox-regulation as well as the interplay between ROS and RAS-associated signaling networks during process of cancer initiation and progression. More specifically, these studies provide ample evidence to implicate RAS as a redox-rheostat, manipulating ROS levels to provide a redox-milieu conducive for carcinogenesis. Importantly, the understanding of RAS-ROS interplay could provide us with novel targetable vulnerabilities for designing therapeutic strategies. In this review, we provide a brief summary of the advances in the field to illustrate the dual role of RAS in redox-regulation and its implications in RAS signaling outcomes and also emerging redox-based strategies to target RAS-driven cancers.
Collapse
Affiliation(s)
- Chuan Han Jonathan Foo
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; Medical Science Cluster Cancer Program, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore; National University Cancer Institute, NUHS, Singapore.
| |
Collapse
|
46
|
Tafazzin-dependent cardiolipin composition in C6 glioma cells correlates with changes in mitochondrial and cellular functions, and cellular proliferation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:452-465. [PMID: 30639735 DOI: 10.1016/j.bbalip.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/07/2018] [Accepted: 01/06/2019] [Indexed: 11/20/2022]
Abstract
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function and, more recently, with cellular proliferation. Tafazzin, an acyltransferase with key functions in CL remodeling determining actual CL composition, affects mitochondrial oxidative phosphorylation. Here, we show that the CRISPR-Cas9 mediated knock-out of tafazzin (Taz) is associated with substantial alterations of various mitochondrial and cellular characteristics in C6 glioma cells. The knock-out of tafazzin substantially changed the profile of fatty acids incorporated in CL and the distribution of molecular CL species. Taz knock-out was further associated with decreased capacity of oxidative phosphorylation that mainly originates from impaired complex I associated energy metabolism in C6 glioma cells. The lack of tafazzin switched energy metabolism from oxidative phosphorylation to glycolysis indicated by lower respiration rates, membrane potential and higher levels of mitochondria-derived reactive oxygen species but keeping the cellular ATP content unchanged. The impact of tafazzin on mitochondria was also indicated by altered morphology and arrangement in tafazzin deficient C6 glioma cells. In the cells we observed tafazzin-dependent changes in the distribution of cellular fatty acids as an indication of altered lipid metabolism as well as in stability/morphology. Most impressive is the dramatic reduction in cell proliferation in tafazzin deficient C6 glioma cells that is not mediated by reactive oxygen species. Our data clearly indicate that defects in CL phospholipid remodeling trigger a cascade of events including modifications in CL linked to subsequent alterations in mitochondrial and cellular functions.
Collapse
|
47
|
Abstract
Pancreatic cancer is a devastating disease with poor prognosis in the modern era. Inflammatory processes have emerged as key mediators of pancreatic cancer development and progression. Recently, studies have been carried out to investigate the underlying mechanisms that contribute to tumorigenesis induced by inflammation. In this review, the role of inflammation in the initiation and progression of pancreatic cancer is discussed.
Collapse
Affiliation(s)
- Kamleshsingh Shadhu
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
- School of International Education of Nanjing Medical University, Nanjing, P.R. China
| | - Chunhua Xi
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
48
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
49
|
Kalyanaraman B, Cheng G, Zielonka J, Bennett B. Low-Temperature EPR Spectroscopy as a Probe-Free Technique for Monitoring Oxidants Formed in Tumor Cells and Tissues: Implications in Drug Resistance and OXPHOS-Targeted Therapies. Cell Biochem Biophys 2018; 77:89-98. [PMID: 30259334 DOI: 10.1007/s12013-018-0858-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Oxidants formed from oxidative and nitrative metabolism include reactive oxygen species (ROS) such as superoxide, hydrogen peroxide/lipid hydroperoxides and reactive nitrogen species (RNS) (e.g., peroxynitrite [ONOO-] and nitrogen dioxide), and reactive halogenated species (e.g., hypochlorous acid [HOCl]). Increasingly, ROS and RNS are implicated in tumorigenesis as well as tumor growth, progression, and metastasis. Recently, ROS were implicated in drug resistance, metabolic reprogramming, and T-cell metabolism in immunotherapy. Mostly, fluorescent probes have been used in cell culture systems. The identity of species is obtained by LC-MS analyses of diagnostic marker products. However, extrapolation of these assays to cancer xenografts is difficult if not impossible. Thus, development of a probe-free assay for monitoring and assessing oxidant formation in tumor cells and tumor xenografts is critical and timely. Here, we describe the use of ex vivo electron paramagnetic resonance (EPR) spectroscopy at cryogenic temperatures as a uniquely useful probe-free technique for assessing intracellular oxidation and oxidants via EPR signals from redox centers, particularly iron-sulfur clusters, in mitochondrial and cytosolic redox proteins. Examples of cancer cells subjected to inhibition of mitochondrial oxidative phosphorylation are presented. This ex vivo methodology can be readily extended to monitor oxidant formation in tumor tissues isolated from mice and humans.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Brian Bennett
- Department of Physics, Marquette University, 540 N. 15th St., Milwaukee, WI, 53233, USA.
| |
Collapse
|
50
|
Annu A, Ahmed S, Kaur G, Sharma P, Singh S, Ikram S. Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|