1
|
Viall S, Held P. Five years of newborn screening for Pompe, Mucopolysaccharidosis type I, Gaucher, and Fabry diseases in Oregon. Mol Genet Metab Rep 2025; 43:101221. [PMID: 40276559 PMCID: PMC12020907 DOI: 10.1016/j.ymgmr.2025.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
In October 2018, the Oregon newborn screening program began screening for four lysosomal storage disorders (LSDs) Pompe, Mucopolysaccharidosis Type I (MPSI), Gaucher, and Fabry. The laboratory used two different methodologies, digital microfluidics and tandem mass spectrometry, to measure the four LSD enzyme activities. Accuracy and precision were improved and lower false positive rates were observed with use of the Revvity NeoLSD assay on the mass spectrometry platform, as compared to the Baebies digital microfluidics method. All newborn specimens with screen positive results were reflexed to a second-tier molecular assay to identify variants in the target gene. Over the first five years of screening, 139 cases were referred for confirmatory testing and clinical evaluation due to presence of pathogenic/likely pathogenic variant(s)or variant(s) of unknown significance. These identified newborns were evaluated at the Oregon Health & Science University (OHSU) metabolic clinic in Portland, Oregon. However, due to the COVID-19 pandemic, clinicians had to pivot from in-person to virtual visits and triage on acuity, which impacted the time to diagnosis. Of referred babies, 3 are currently receiving treatment for their detected LSD. Over 50 babies have an inconclusive or possible late onset diagnosis with uncertain timeline for development of symptoms.
Collapse
Affiliation(s)
- Sarah Viall
- Dept of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Patrice Held
- Newborn Screening Program Manager, Oregon State Public Health Laboratory, Oregon Health Authority, Public Health Division, Hillsboro, OR, United States
| |
Collapse
|
2
|
Schiffmann R. Role of Biomarkers in Diagnosing Disease, Assessing the Severity and Progression of Disease, and Evaluating the Efficacy of Therapies. J Inherit Metab Dis 2025; 48:e70034. [PMID: 40265560 PMCID: PMC12016010 DOI: 10.1002/jimd.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
This paper reviews biomarkers in lysosomal disease according to their categories and definitions. There are numerous biomarkers in lysosomal diseases. Some are disease or organ-specific, but most are not. Organ-specific biomarkers are especially useful, but most biomarkers help with diagnosis, assessing disease severity, prognosis, and pharmacodynamic response. There are as yet no truly validated biomarkers in lysosomal diseases by the Prentice, Fleming, and DeMets criteria. None so far can serve as surrogate endpoints in clinical trials, or as substitutes for clinically meaningful endpoints that evaluate how patients feel, function, or survive. The US Food and Drug Administration has thus far used surrogate biomarkers to license therapy only for 3 lysosomal diseases-Gaucher disease, Fabry disease, and lysosomal lipase deficiency. The paucity of surrogate biomarkers reflects success in using clinically important endpoints for the licensing of therapies for Pompe disease, mucopolysaccharidosis IVA, VI, and VII, Niemann-Pick type C, and CLN2. In conclusion, biomarkers in lysosomal diseases are best used for diagnosis, patient categorization, pharmacodynamic response, and sometimes for patient prognosis and risk. Thus far, they have been less useful as surrogate biomarkers in pivotal clinical trials.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Department of Internal MedicineTexas Christian UniversityFort WorthTexasUSA
| |
Collapse
|
3
|
Ayodele O, Fertek D, Evuarherhe O, Siffel C, Audi J, Yee KS, Burton BK. A Systematic Literature Review on the Global Status of Newborn Screening for Mucopolysaccharidosis II. Int J Neonatal Screen 2024; 10:71. [PMID: 39449359 PMCID: PMC11503380 DOI: 10.3390/ijns10040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
A systematic literature review was conducted to determine the global status of newborn screening (NBS) for mucopolysaccharidosis (MPS) II (Hunter syndrome; OMIM 309900). Electronic databases were searched in July 2023 for articles referencing NBS for lysosomal storage diseases: 53 featured MPS II. Until recently, only Taiwan and two US states (Illinois and Missouri) formally screened newborns for MPS II, although pilot programs have been conducted elsewhere (Japan, New York, and Washington). In 2022, MPS II was added to the US Recommended Uniform Screening Panel, with increased uptake of NBS anticipated across the USA. While the overall MPS II birth prevalence, determined from NBS initiatives, was higher than in previous reports, it was lower in the USA (approximately 1 in 73,000 according to recent studies in Illinois and Missouri) than in Asia (approximately 1 in 15,000 in Japan). NBS programs typically rely on tandem mass spectrometry quantification of iduronate-2-sulfatase activity for first-tier testing. Diagnosis is often confirmed via molecular genetic testing and/or biochemical testing but may be complicated by factors such as pseudodeficiency alleles and variants of unknown significance. Evidence relating to MPS II NBS is lacking outside Taiwan and the USA. Although broad benefits of NBS are recognized, few studies specifically explored the perspectives of families of children with MPS II.
Collapse
Affiliation(s)
- Olulade Ayodele
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Daniel Fertek
- Takeda Pharmaceuticals International AG, 8152 Zurich, Switzerland
| | | | - Csaba Siffel
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
- College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA
| | - Jennifer Audi
- Takeda Pharmaceuticals International AG, 8152 Zurich, Switzerland
| | - Karen S. Yee
- Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| | - Barbara K. Burton
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Aththanayaka A, Dayananda B, Ranasinghe H, Amarasinghe L. Evolution of dirofilariasis diagnostic techniques from traditional morphological analysis to molecular-based techniques: a comprehensive review. FRONTIERS IN PARASITOLOGY 2024; 3:1427449. [PMID: 39817161 PMCID: PMC11731637 DOI: 10.3389/fpara.2024.1427449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 01/18/2025]
Abstract
Dirofilariasis, caused by the nematode Dirofilaria spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis. The review traces the historical progression of diagnostic modalities, encompassing traditional approaches such as microscopic examination, serological tests (including ELISA and IFA), radiographic imaging, ultrasonography, and necropsy, which laid the foundation for subsequent advancements. The integration of molecular diagnostics marks a significant turning point in dirofilariasis diagnosis with the adoption of polymerase chain reaction (PCR) assays and real-time PCR (qPCR) facilitating enhanced sensitivity and specificity. Furthermore, recent strides in next-generation sequencing (NGS) technologies, including whole-genome sequencing (WGS), targeted sequencing (TS), metagenomic sequencing (MS), and RNA sequencing (transcriptome sequencing), have revolutionized the landscape of dirofilariasis diagnostics. Emerging techniques such as loop-mediated isothermal amplification (LAMP), digital PCR (dPCR), and digital microfluidics are also explored for their potential to augment diagnostic accuracy. The review addresses challenges associated with standardizing molecular protocols, tackling false positives/negatives, and discusses the advantages and limitations of each technique. By providing a comprehensive overview of dirofilariasis diagnostic strategies, from traditional to cutting-edge methods, this review aims to enhance understanding of the disease's diagnostic landscape. The insights gained have implications for improved disease management and guide future research endeavors toward refining diagnostic protocols and advancing therapeutic interventions.
Collapse
Affiliation(s)
- A.M.M.T.B. Aththanayaka
- Department of Biomedical Sciences, Faculty of Health Sciences, Colombo International Nautical and Engineering College (CINEC Campus), Malabe, Sri Lanka
| | - B.S.W.M.T.B. Dayananda
- Department of Biomedical Sciences, Faculty of Health Sciences, Colombo International Nautical and Engineering College (CINEC Campus), Malabe, Sri Lanka
| | - H.A.K. Ranasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya, Sri Lanka
| | - L.D. Amarasinghe
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya, Sri Lanka
| |
Collapse
|
5
|
Hirachan R, Horman A, Burke D, Heales S. Evaluation, in a highly specialised enzyme laboratory, of a digital microfluidics platform for rapid assessment of lysosomal enzyme activity in dried blood spots. JIMD Rep 2024; 65:124-131. [PMID: 38444576 PMCID: PMC10910220 DOI: 10.1002/jmd2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Lysosomal storage disorders (LSDs) are predominantly enzyme deficiencies leading to substrate accumulation, causing progressive damage to multiple organs. To date, a crucial part of diagnosing LSDs is measuring enzymatic activity in leucocytes, plasma, or dried blood spots (DBS). Here, we present results from a proof-of-principle study, evaluating an innovative digital microfluidics (DMF) platform, referred to as SEEKER®, that can measure the activity of the following four lysosomal enzymes from DBS: α-L-iduronidase (IDUA) for mucopolysaccharidosis I (MPS I), acid α-glucosidase (GAA) for Pompe disease, β-glucosidase (GBA) for Gaucher disease, and α-galactosidase A (GLA) for Fabry disease. Over 900 DBS were analysed from newborns, children, and adults. DMF successfully detected known patients with MPS I, Pompe disease, and Gaucher disease, and known males with Fabry disease. This is the first demonstration of this multiplexed DMF platform for identification of patients with LSDs in a specialised diagnostic enzyme laboratory environment. We conclude that this DMF platform is relatively simple, high-throughput, and could be readily accommodated into a specialised laboratory as a first-tier test for MPS I, Pompe disease, and Gaucher disease for all patients, and Fabry disease for male patients only.
Collapse
Affiliation(s)
- Rohit Hirachan
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Alistair Horman
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Derek Burke
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon Heales
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Neurometabolic UnitNational Hospital for Neurology and NeurosurgeryLondonUK
| |
Collapse
|
6
|
Burrow DT, Heggestad JT, Kinnamon DS, Chilkoti A. Engineering Innovative Interfaces for Point-of-Care Diagnostics. Curr Opin Colloid Interface Sci 2023; 66:101718. [PMID: 37359425 PMCID: PMC10247612 DOI: 10.1016/j.cocis.2023.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) pandemic illustrates the need for sensitive and reliable tools to diagnose and monitor diseases. Traditional diagnostic approaches rely on centralized laboratory tests that result in long wait times to results and reduce the number of tests that can be given. Point-of-care tests (POCTs) are a group of technologies that miniaturize clinical assays into portable form factors that can be run both in clinical areas --in place of traditional tests-- and outside of traditional clinical settings --to enable new testing paradigms. Hallmark examples of POCTs are the pregnancy test lateral flow assay and the blood glucose meter. Other uses for POCTs include diagnostic assays for diseases like COVID-19, HIV, and malaria but despite some successes, there are still unsolved challenges for fully translating these lower cost and more versatile solutions. To overcome these challenges, researchers have exploited innovations in colloid and interface science to develop various designs of POCTs for clinical applications. Herein, we provide a review of recent advancements in lateral flow assays, other paper based POCTs, protein microarray assays, microbead flow assays, and nucleic acid amplification assays. Features that are desirable to integrate into future POCTs, including simplified sample collection, end-to-end connectivity, and machine learning, are also discussed in this review.
Collapse
Affiliation(s)
- Damon T Burrow
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| | - David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| |
Collapse
|
7
|
Castillon G, Chang SC, Moride Y. Global Incidence and Prevalence of Gaucher Disease: A Targeted Literature Review. J Clin Med 2022; 12:jcm12010085. [PMID: 36614898 PMCID: PMC9821068 DOI: 10.3390/jcm12010085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Incidence and prevalence estimates for Gaucher disease (GD) are scarce for this rare disease and can be variable within the same region. This review provides a qualitative synthesis of global GD incidence and prevalence estimates, GD1-3 type-specific and overall, published in the last 10 years. A targeted literature search was conducted across multiple databases from January 2011 to September 2020, including web-based sources and congress proceedings to May 2021. Searches yielded 490 publications, with 31 analyzed: 20 cohort studies (15 prospective, 5 retrospective), 6 cross-sectional studies, 5 online reports (most from Europe (n = 11) or North America (n = 11); one multiregional). Across all GD types, incidence estimates ranged 0.45-25.0/100,000 live births (16 studies), lowest for Asia-Pacific. Incidence of GD1: 0.45-22.9/100,000 live births (Europe and North America) and GD3: 1.36/100,000 live births (Asia-Pacific only). GD type-specific prevalence estimates per 100,000 population were GD1: 0.26-0.63; GD2 and GD3: 0.02-0.08 (Europe only); estimates for GD type unspecified or overall ranged 0.11-139.0/100,000 inhabitants (17 studies), highest for North America. Generalizability was assessed as "adequate"or "intermediate" for all regions with data. GD incidence and prevalence estimates for the last 10 years varied considerably between regions and were poorly documented outside Europe and North America. Data for GD2 and GD3 were limited.
Collapse
Affiliation(s)
| | - Shun-Chiao Chang
- Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
- Correspondence:
| | - Yola Moride
- YolaRX Consultants Inc., Montreal, QC H3H 1V4, Canada
- Center for Pharmacoepidemiology and Treatment Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Dardis A, Michelakakis H, Rozenfeld P, Fumic K, Wagner J, Pavan E, Fuller M, Revel-Vilk S, Hughes D, Cox T, Aerts J. Patient centered guidelines for the laboratory diagnosis of Gaucher disease type 1. Orphanet J Rare Dis 2022; 17:442. [PMID: 36544230 PMCID: PMC9768924 DOI: 10.1186/s13023-022-02573-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder due to the deficient activity of the acid beta-glucosidase (GCase) enzyme, resulting in the progressive lysosomal accumulation of glucosylceramide (GlcCer) and its deacylated derivate, glucosylsphingosine (GlcSph). GCase is encoded by the GBA1 gene, located on chromosome 1q21 16 kb upstream from a highly homologous pseudogene. To date, more than 400 GBA1 pathogenic variants have been reported, many of them derived from recombination events between the gene and the pseudogene. In the last years, the increased access to new technologies has led to an exponential growth in the number of diagnostic laboratories offering GD testing. However, both biochemical and genetic diagnosis of GD are challenging and to date no specific evidence-based guidelines for the laboratory diagnosis of GD have been published. The objective of the guidelines presented here is to provide evidence-based recommendations for the technical implementation and interpretation of biochemical and genetic testing for the diagnosis of GD to ensure a timely and accurate diagnosis for patients with GD worldwide. The guidelines have been developed by members of the Diagnostic Working group of the International Working Group of Gaucher Disease (IWGGD), a non-profit network established to promote clinical and basic research into GD for the ultimate purpose of improving the lives of patients with this disease. One of the goals of the IWGGD is to support equitable access to diagnosis of GD and to standardize procedures to ensure an accurate diagnosis. Therefore, a guideline development group consisting of biochemists and geneticists working in the field of GD diagnosis was established and a list of topics to be discussed was selected. In these guidelines, twenty recommendations are provided based on information gathered through a systematic review of the literature and two different diagnostic algorithms are presented, considering the geographical differences in the access to diagnostic services. Besides, several gaps in the current diagnostic workflow were identified and actions to fulfill them were taken within the IWGGD. We believe that the implementation of recommendations provided in these guidelines will promote an equitable, timely and accurate diagnosis for patients with GD worldwide.
Collapse
Affiliation(s)
- A Dardis
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy.
| | - H Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - P Rozenfeld
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos Y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, La Plata, Argentina
| | - K Fumic
- Department for Laboratory Diagnostics, University Hospital Centre Zagreb and School of Medicine, Zagreb, Croatia
| | - J Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
- International Gaucher Alliance, Dursley, UK
| | - E Pavan
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy
| | - M Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - S Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - D Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust and University College London, London, UK
| | - T Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
9
|
Shen R, Lv A, Yi S, Wang P, Mak PI, Martins RP, Jia Y. Nucleic acid analysis on electrowetting-based digital microfluidics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Minear MA, Phillips MN, Kau A, Parisi MA. Newborn screening research sponsored by the NIH: From diagnostic paradigms to precision therapeutics. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:138-152. [PMID: 36102292 PMCID: PMC10328555 DOI: 10.1002/ajmg.c.31997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Newborn screening (NBS) is a successful public health initiative that effectively identifies pre-symptomatic neonates so that treatment can be initiated before the onset of irreversible morbidity and mortality. Legislation passed in 2008 has supported a system of state screening programs, educational resources, and an evidence-based review process to add conditions to a recommended universal newborn screening panel (RUSP). The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, has promoted NBS research to advance legislative goals by supporting research that will uncover fundamental mechanisms of disease, develop treatments for NBS disorders, and promote pilot studies to test implementation of new conditions. NICHD's partnerships with other federal agencies have contributed to activities that support nominations of new conditions to the RUSP. The NIH's Newborn Sequencing In Genomic Medicine and Public Health (NSIGHT) initiative funded research projects that considered how genomic sequencing could be integrated into NBS and its ethical ramifications. Recently, the workshop, "Gene Targeted Therapies: Early Diagnosis and Equitable Delivery," has explored the possibility of expanding NBS to include genetic diagnosis and precision, gene-based therapies. Although hurdles remain to realize such a vision, broad engagement of multiple stakeholders is essential to advance genomic medicine within NBS.
Collapse
Affiliation(s)
- Mollie A. Minear
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan N. Phillips
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Present address: Allen Institute for Brain Science, Seattle, WA, USA
| | - Alice Kau
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa A. Parisi
- Intellectual and Developmental Disabilities Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Pančík F, Pakanová Z, Květoň F, Baráth P. Diagnostics of lysosomal storage diseases by mass spectrometry: a review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Digital Microfluidic qPCR Cartridge for SARS-CoV-2 Detection. MICROMACHINES 2022; 13:mi13020196. [PMID: 35208320 PMCID: PMC8874717 DOI: 10.3390/mi13020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
Point-of-care (POC) tests capable of individual health monitoring, transmission reduction, and contact tracing are especially important in a pandemic such as the coronavirus disease 2019 (COVID-19). We develop a disposable POC cartridge that can be mass produced to detect the SARS-CoV-2 N gene through real-time quantitative polymerase chain reaction (qPCR) based on digital microfluidics (DMF). Several critical parameters are studied and improved, including droplet volume consistency, temperature uniformity, and fluorescence intensity linearity on the designed DMF cartridge. The qPCR results showed high accuracy and efficiency for two primer-probe sets of N1 and N2 target regions of the SARS-CoV-2 N gene on the DMF cartridge. Having multiple droplet tracks for qPCR, the presented DMF cartridge can perform multiple tests and controls at once.
Collapse
|
13
|
Abstract
Mucopolysaccharidosis type I (MPS I), a lysosomal storage disease caused by a deficiency of α-L-iduronidase, leads to storage of the glycosaminoglycans, dermatan sulfate and heparan sulfate. Available therapies include enzyme replacement and hematopoietic stem cell transplantation. In the last two decades, newborn screening (NBS) has focused on early identification of the disorder, allowing early intervention and avoiding irreversible manifestations. Techniques developed and optimized for MPS I NBS include tandem mass-spectrometry, digital microfluidics, and glycosaminoglycan quantification. Several pilot studies have been conducted and screening programs have been implemented worldwide. NBS for MPS I has been established in Taiwan, the United States, Brazil, Mexico, and several European countries. All these programs measure α-L-iduronidase enzyme activity in dried blood spots, although there are differences in the analytical strategies employed. Screening algorithms based on published studies are discussed. However, some limitations remain: one is the high rate of false-positive results due to frequent pseudodeficiency alleles, which has been partially solved using post-analytical tools and second-tier tests; another involves the management of infants with late-onset forms or variants of uncertain significance. Nonetheless, the risk-benefit ratio is favorable. Furthermore, long-term follow-up of patients detected by neonatal screening will improve our knowledge of the natural history of the disease and inform better management.
Collapse
Affiliation(s)
- Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| |
Collapse
|
14
|
Sathish S, Shen AQ. Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. JACS AU 2021; 1:1815-1833. [PMID: 34841402 PMCID: PMC8611667 DOI: 10.1021/jacsau.1c00318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in nano/microfluidics have led to the miniaturization of surface-based chemical and biochemical sensors, with applications ranging from environmental monitoring to disease diagnostics. These systems rely on the detection of analytes flowing in a liquid sample, by exploiting their innate nature to react with specific receptors immobilized on the microchannel walls. The efficiency of these systems is defined by the cumulative effect of analyte detection speed, sensitivity, and specificity. In this perspective, we provide a fresh outlook on the use of important parameters obtained from well-characterized analytical models, by connecting the mass transport and reaction limits with the experimentally attainable limits of analyte detection efficiency. Specifically, we breakdown when and how the operational (e.g., flow rates, channel geometries, mode of detection, etc.) and molecular (e.g., receptor affinity and functionality) variables can be tailored to enhance the analyte detection time, analytical specificity, and sensitivity of the system (i.e., limit of detection). Finally, we present a simple yet cohesive blueprint for the development of high-efficiency surface-based microfluidic sensors for rapid, sensitive, and specific detection of chemical and biochemical analytes, pertinent to a variety of applications.
Collapse
Affiliation(s)
- Shivani Sathish
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
15
|
Wasserstein MP, Orsini JJ, Goldenberg A, Caggana M, Levy PA, Breilyn M, Gelb MH. The future of newborn screening for lysosomal disorders. Neurosci Lett 2021; 760:136080. [PMID: 34166724 PMCID: PMC10387443 DOI: 10.1016/j.neulet.2021.136080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 10/25/2022]
Abstract
The goal of newborn screening is to enhance the outcome of individuals with serious, treatable disorders through early, pre-symptomatic detection. The lysosomal storage disorders (LSDs) comprise a group of more than 50 diseases with a combined frequency of approximately 1:7000. With the availability of existing and new enzyme replacement therapies, small molecule treatments and gene therapies, there is increasing interest in screening newborns for LSDs with the goal of reducing disease-related morbidity and mortality through early detection. Novel screening methods are being developed, including efforts to enhance accuracy of screening using an array of multi-tiered, genomic, statistical, and bioinformatic approaches. While NBS data for Gaucher disease, Fabry disease, Krabbe disease, MPS I, and Pompe disease has demonstrated the feasibility of widespread screening, it has also highlighted some of the complexities of screening for LSDs. These include the identification of infants with later-onset, untreatable, and uncertain phenotypes, raising interesting ethical concerns that should be addressed as part of the NBS implementation process. Taken together, these efforts will provide critical, detailed data to help guide objective, ethically sensitive decision-making about NBS for LSDs.
Collapse
Affiliation(s)
- Melissa P Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States.
| | - Joseph J Orsini
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Goldenberg
- Department of Bioethics, Case Western Reserve University, Cleveland, OH, United States
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Paul A Levy
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Margo Breilyn
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Zhou P, He J, Huang L, Yu Z, Su Z, Shi X, Zhou J. Microfluidic High-Throughput Platforms for Discovery of Novel Materials. NANOMATERIALS 2020; 10:nano10122514. [PMID: 33333718 PMCID: PMC7765132 DOI: 10.3390/nano10122514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
High-throughput screening is a potent technique to accelerate the discovery and development of new materials. By performing massive synthesis and characterization processes in parallel, it can rapidly discover materials with desired components, structures and functions. Among the various approaches for high-throughput screening, microfluidic platforms have attracted increasing attention. Compared with many current strategies that are generally based on robotic dispensers and automatic microplates, microfluidic platforms can significantly increase the throughput and reduce the consumption of reagents by several orders of magnitude. In this review, we first introduce current advances of the two types of microfluidic high-throughput platforms based on microarrays and microdroplets, respectively. Then the utilization of these platforms for screening different types of materials, including inorganic metals, metal alloys and organic polymers are described in detail. Finally, the challenges and opportunities in this promising field are critically discussed.
Collapse
Affiliation(s)
- Peipei Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China; (P.Z.); (J.H.); (Z.Y.); (Z.S.)
- School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Jinxu He
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China; (P.Z.); (J.H.); (Z.Y.); (Z.S.)
| | - Lu Huang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China; (P.Z.); (J.H.); (Z.Y.); (Z.S.)
- Correspondence: (L.H.); (J.Z.); Tel./Fax: +86-20-3938-7890 (J.Z.)
| | - Ziming Yu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China; (P.Z.); (J.H.); (Z.Y.); (Z.S.)
| | - Zhenning Su
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China; (P.Z.); (J.H.); (Z.Y.); (Z.S.)
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China; (P.Z.); (J.H.); (Z.Y.); (Z.S.)
- Correspondence: (L.H.); (J.Z.); Tel./Fax: +86-20-3938-7890 (J.Z.)
| |
Collapse
|
17
|
Sathyanarayanan G, Haapala M, Sikanen T. Digital Microfluidics-Enabled Analysis of Individual Variation in Liver Cytochrome P450 Activity. Anal Chem 2020; 92:14693-14701. [PMID: 33099994 DOI: 10.1021/acs.analchem.0c03258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The superfamily of hepatic cytochrome P450 (CYP) enzymes is responsible for the intrinsic clearance of the majority of therapeutic drugs in humans. However, the kinetics of drug clearance via CYPs varies significantly among individuals due to both genetic and external factors, and the enzyme amount and function are also largely impacted by many liver diseases. In this study, we developed a new methodology, based on digital microfluidics (DMF), for rapid determination of individual alterations in CYP activity from human-derived liver samples in biopsy-scale. The assay employs human liver microsomes (HLMs), immobilized on magnetic beads to facilitate determination of the activity of microsomal CYP enzymes in a parallelized system at physiological temperature. The thermal control is achieved with the help of a custom-designed, inkjet-printed microheater array modularly integrated with the DMF platform. The CYP activities are determined with the help of prefluorescent, enzyme-selective model compounds by quantifying the respective fluorescent metabolites based on optical readout in situ. The selectivity and sensitivity of the assay was established for four different CYP model reactions, and the diagnostic concept was validated by determining the interindividual variation in one of the four model reaction activities, that is, ethoxyresorufin O-deethylation (CYP1A1/2), between five donors. Overall, the developed protocol consumes only about 15 μg microsomal protein per assay. It is thus technically adaptable to screening of individual differences in CYP enzyme function from biopsy-scale liver samples in an automated fashion, so as to support tailoring of medical therapies, for example, in the context of liver disease diagnosis.
Collapse
Affiliation(s)
- Gowtham Sathyanarayanan
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology University of Helsinki, Viikinkaari 5 E 00014, Finland
| | - Markus Haapala
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology University of Helsinki, Viikinkaari 5 E 00014, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology University of Helsinki, Viikinkaari 5 E 00014, Finland
| |
Collapse
|
18
|
Bosfield K, Regier DS, Viall S, Hicks R, Shur N, Grant CL. Mucopolysaccharidosis type I newborn screening: Importance of second tier testing for ethnically diverse populations. Am J Med Genet A 2020; 185:134-140. [PMID: 33098355 DOI: 10.1002/ajmg.a.61930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022]
Abstract
Mucopolysaccharidosis type I (MPS I)/Hurler syndrome newborn screening was added to the recommended uniform screening panel (RUSP) in 2016. As states have added screening for MPS I, programs have reported increased rates of false positives. Reasons for false positive screens include carrier status, true false positive, late-onset/attenuated forms, and in about half of cases, pseudodeficiency alleles. These alleles have DNA variants that can cause falsely decreased enzyme activity on biochemical enzyme studies and have increased frequency in individuals of African American and African descent. We describe the District of Columbia (DC) experience with MPS I screening from December 2017 to February 2019. In the context of a review of the literature on newborn screening and family experiences and this DC-based experience, we offer potential solutions to address preliminary concerns regarding this screening. The impact of overrepresentation of screen positives in a minority group and unintentional creation of health disparities and community wariness regarding medical genetics evaluations must be considered to improve the newborn screen programs nationally and internationally.
Collapse
Affiliation(s)
| | | | - Sarah Viall
- Children's National Hospital, Washington, DC, USA
| | | | - Natasha Shur
- Children's National Hospital, Washington, DC, USA
| | | |
Collapse
|
19
|
Washburn J, Millington DS. Digital Microfluidics in Newborn Screening for Mucopolysaccharidoses: A Progress Report. Int J Neonatal Screen 2020; 6:ijns6040078. [PMID: 33124616 PMCID: PMC7711648 DOI: 10.3390/ijns6040078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022] Open
Abstract
Newborn screening (NBS) for mucopolysaccharidosis type I (MPS I, Hurler syndrome) is currently conducted in about two-fifths of the NBS programs in the United States and in a few other countries. Screening is performed by measurement of residual activity of the enzyme alpha-l-iduronidase in dried blood spots using either tandem mass spectrometry or digital microfluidic fluorometry (DMF). In this article, we focus on the development and practical experience of using DMF to screen for MPS I in the USA. By means of their responses to a questionnaire, we determined for each responding program that is screening for MPS I using DMF the screen positive rate, follow-up methods, and classification of confirmed cases as either severe or attenuated. Overall, the results show that at the time of reporting, over 1.3 million newborns in the US were screened for MPS I using DMF, 2094 (0.173%) of whom were screen positive. Of these, severe MPS I was confirmed in five cases, attenuated MPS I was confirmed in two cases, and undetermined phenotype was reported in one case. We conclude that DMF is an effective and economical method to screen for MPS I and recommend second-tier testing owing to high screen positive rates. Preliminary results of NBS for MPS II and MPS III using DMF are discussed.
Collapse
Affiliation(s)
| | - David S. Millington
- Duke University Hospital Biochemical Genetics Lab, Durham, NC 27709, USA
- Correspondence: ; Tel.: +1-919-448-8221
| |
Collapse
|
20
|
Liu D, Yang Z, Zhang L, Wei M, Lu Y. Cell-free biology using remote-controlled digital microfluidics for individual droplet control. RSC Adv 2020; 10:26972-26981. [PMID: 35515808 PMCID: PMC9055536 DOI: 10.1039/d0ra04588h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Cell-free biology for diverse protein expression and biodetection in vitro has developed rapidly in recent years because of its more open and controllable reaction environment. However, complex liquid handling schemes are troublesome, especially when scaling up to perform multiple different reactions simultaneously. Digital microfluidic (DMF) technology can operate a single droplet by controlling its movement, mixing, separation, and some other actions, and is a suitable scaffold for cell-free reactions with higher efficiency. In this paper, a commercial DMF board, OpenDrop, was used, and DMF technology via remote real-time control inspired by the Internet of Things (IoT) was developed for detecting glucose enzyme catalytic cell-free reactions and verifying the feasibility of programmed cell-free protein expression. A cell-free biological reaction process which can be remote-controlled visually with excellent interactivity, controllability and flexibility was achieved. As proof-of-concept research, this work proposed a new control interface for single-drop cell-free biological reactions. It is much like the "droplet operation desktop" concept, used for remote-controllable operations and distributions of cell-free biology for efficient biological screening and protein synthesis in complex reaction networks, with expanded operability and less artificial interference.
Collapse
Affiliation(s)
- Dong Liu
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Zhenghuan Yang
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Luyang Zhang
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Minglun Wei
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
21
|
Kothamachu VB, Zaini S, Muffatto F. Role of Digital Microfluidics in Enabling Access to Laboratory Automation and Making Biology Programmable. SLAS Technol 2020; 25:411-426. [PMID: 32584152 DOI: 10.1177/2472630320931794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Digital microfluidics (DMF) is a liquid handling technique that has been demonstrated to automate biological experimentation in a low-cost, rapid, and programmable manner. This review discusses the role of DMF as a "digital bioconverter"-a tool to connect the digital aspects of the design-build-learn cycle with the physical execution of experiments. Several applications are reviewed to demonstrate the utility of DMF as a digital bioconverter, namely, genetic engineering, sample preparation for sequencing and mass spectrometry, and enzyme-, immuno-, and cell-based screening assays. These applications show that DMF has great potential in the role of a centralized execution platform in a fully integrated pipeline for the production of novel organisms and biomolecules. In this paper, we discuss how the function of a DMF device within such a pipeline is highly dependent on integration with different sensing techniques and methodologies from machine learning and big data. In addition to that, we examine how the capacity of DMF can in some cases be limited by known technical and operational challenges and how consolidated efforts in overcoming these challenges will be key to the development of DMF as a major enabling technology in the computer-aided biology framework.
Collapse
|
22
|
|
23
|
Li J, Kim CJC. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. LAB ON A CHIP 2020; 20:1705-1712. [PMID: 32338272 DOI: 10.1039/d0lc00144a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The emergence of electrowetting-on-dielectric (EWOD) in the early 2000s made the once-obscure electrowetting phenomenon practical and led to numerous activities over the last two decades. As an eloquent microscale liquid handling technology that gave birth to digital microfluidics, EWOD has served as the basis for many commercial products over two major application areas: optical, such as liquid lenses and reflective displays, and biomedical, such as DNA library preparation and molecular diagnostics. A number of research or start-up companies (e.g., Phillips Research, Varioptic, Liquavista, and Advanced Liquid Logic) led the early commercialization efforts and eventually attracted major companies from various industry sectors (e.g., Corning, Amazon, and Illumina). Although not all of the pioneering products became an instant success, the persistent growth of liquid lenses and the recent FDA approvals of biomedical analyzers proved that EWOD is a powerful tool that deserves a wider recognition and more aggressive exploration. This review presents the history around major EWOD products that hit the market to show their winding paths to commercialization and summarizes the current state of product development to peek into the future. In providing the readers with a big picture of commercializing EWOD and digital microfluidics technology, our goal is to inspire further research exploration and new entrepreneurial adventures.
Collapse
Affiliation(s)
- Jia Li
- Mechanical and Aerospace Engineering Department, University of California at Los Angeles (UCLA), Los Angeles, California 90095, USA.
| | | |
Collapse
|
24
|
Kubaski F, de Oliveira Poswar F, Michelin-Tirelli K, Burin MG, Rojas-Málaga D, Brusius-Facchin AC, Leistner-Segal S, Giugliani R. Diagnosis of Mucopolysaccharidoses. Diagnostics (Basel) 2020; 10:E172. [PMID: 32235807 PMCID: PMC7151013 DOI: 10.3390/diagnostics10030172] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The mucopolysaccharidoses (MPSs) include 11 different conditions caused by specific enzyme deficiencies in the degradation pathway of glycosaminoglycans (GAGs). Although most MPS types present increased levels of GAGs in tissues, including blood and urine, diagnosis is challenging as specific enzyme assays are needed for the correct diagnosis. Enzyme assays are usually performed in blood, with some samples (as leukocytes) providing a final diagnosis, while others (such as dried blood spots) still being considered as screening methods. The identification of variants in the specific genes that encode each MPS-related enzyme is helpful for diagnosis confirmation (when needed), carrier detection, genetic counseling, prenatal diagnosis (preferably in combination with enzyme assays) and phenotype prediction. Although the usual diagnostic flow in high-risk patients starts with the measurement of urinary GAGs, it continues with specific enzyme assays and is completed with mutation identification; there is a growing trend to have genotype-based investigations performed at the beginning of the investigation. In such cases, confirmation of pathogenicity of the variants identified should be confirmed by measurement of enzyme activity and/or identification and/or quantification of GAG species. As there is a growing number of countries performing newborn screening for MPS diseases, the investigation of a low enzyme activity by the measurement of GAG species concentration and identification of gene mutations in the same DBS sample is recommended before the suspicion of MPS is taken to the family. With specific therapies already available for most MPS patients, and with clinical trials in progress for many conditions, the specific diagnosis of MPS as early as possible is becoming increasingly necessary. In this review, we describe traditional and the most up to date diagnostic methods for mucopolysaccharidoses.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501-970, Brazil; (F.K.); (F.d.O.P.); (D.R.-M.)
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
- INAGEMP, Porto Alegre 90035-903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035-903, Brazil
| | - Fabiano de Oliveira Poswar
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501-970, Brazil; (F.K.); (F.d.O.P.); (D.R.-M.)
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
| | - Kristiane Michelin-Tirelli
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035-903, Brazil
| | - Maira Graeff Burin
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035-903, Brazil
| | - Diana Rojas-Málaga
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501-970, Brazil; (F.K.); (F.d.O.P.); (D.R.-M.)
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
| | - Ana Carolina Brusius-Facchin
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
- INAGEMP, Porto Alegre 90035-903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035-903, Brazil
- Postgraduate Program in Medicine, Clinical Sciences, UFRGS, Porto Alegre 90035-003, Brazil
| | - Sandra Leistner-Segal
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
- INAGEMP, Porto Alegre 90035-903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035-903, Brazil
- Postgraduate Program in Medicine, Clinical Sciences, UFRGS, Porto Alegre 90035-003, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501-970, Brazil; (F.K.); (F.d.O.P.); (D.R.-M.)
- Medical Genetics Service, HCPA, Porto Alegre 90035-903, Brazil; (K.M.-T.); (M.G.B.); (A.C.B.-F.); (S.L.-S.)
- INAGEMP, Porto Alegre 90035-903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035-903, Brazil
- Postgraduate Program in Medicine, Clinical Sciences, UFRGS, Porto Alegre 90035-003, Brazil
| |
Collapse
|
25
|
Kubaski F, de Oliveira Poswar F, Michelin-Tirelli K, Matte UDS, Horovitz DD, Barth AL, Baldo G, Vairo F, Giugliani R. Mucopolysaccharidosis Type I. Diagnostics (Basel) 2020; 10:161. [PMID: 32188113 PMCID: PMC7151028 DOI: 10.3390/diagnostics10030161] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by the deficiency of α-l-iduronidase, leading to the storage of dermatan and heparan sulfate. There is a broad phenotypical spectrum with the presence or absence of neurological impairment. The classical form is known as Hurler syndrome, the intermediate form as Hurler-Scheie, and the most attenuated form is known as Scheie syndrome. Phenotype seems to be largely influenced by genotype. Patients usually develop several somatic symptoms such as abdominal hernias, extensive dermal melanocytosis, thoracolumbar kyphosis odontoid dysplasia, arthropathy, coxa valga and genu valgum, coarse facial features, respiratory and cardiac impairment. The diagnosis is based on the quantification of α-l-iduronidase coupled with glycosaminoglycan analysis and gene sequencing. Guidelines for treatment recommend hematopoietic stem cell transplantation for young Hurler patients (usually at less than 30 months of age). Intravenous enzyme replacement is approved and is the standard of care for attenuated-Hurler-Scheie and Scheie-forms (without cognitive impairment) and for the late-diagnosed severe-Hurler-cases. Intrathecal enzyme replacement therapy is under evaluation, but it seems to be safe and effective. Other therapeutic approaches such as gene therapy, gene editing, stop codon read through, and therapy with small molecules are under development. Newborn screening is now allowing the early identification of MPS I patients, who can then be treated within their first days of life, potentially leading to a dramatic change in the disease's progression. Supportive care is very important to improve quality of life and might include several surgeries throughout the life course.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
| | - Fabiano de Oliveira Poswar
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
| | - Kristiane Michelin-Tirelli
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
| | - Ursula da Silveira Matte
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
- Gene Therapy Center, HCPA, Porto Alegre 90035903, Brazil
- Department of Genetics, UFRGS, Porto Alegre 91501970, Brazil
| | - Dafne D. Horovitz
- Medical Genetics Department, National Institute of Women, Children, and Adolescent Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil; (D.D.H.); (A.L.B.)
| | - Anneliese Lopes Barth
- Medical Genetics Department, National Institute of Women, Children, and Adolescent Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil; (D.D.H.); (A.L.B.)
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
- Gene Therapy Center, HCPA, Porto Alegre 90035903, Brazil
- Department of Physiology, UFRGS, Porto Alegre 90050170, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre 91501970, Brazil; (F.K.); (F.d.O.P.); (U.d.S.M.); (G.B.)
- Medical Genetics Service, HCPA, Porto Alegre 90035903, Brazil;
- INAGEMP, Porto Alegre 90035903, Brazil
- Biodiscovery Research Group, Experimental Research Center, HCPA, Porto Alegre 90035903, Brazil
- Gene Therapy Center, HCPA, Porto Alegre 90035903, Brazil
- Department of Genetics, UFRGS, Porto Alegre 91501970, Brazil
- Postgraduation Program in Medicine, Clinical Sciences, UFRGS, Porto Alegre 90035003, Brazil
| |
Collapse
|
26
|
Tohgha UN, Alvino EL, Jarnagin CC, Iacono ST, Godman NP. Electrowetting Behavior and Digital Microfluidic Applications of Fluorescent, Polymer-Encapsulated Quantum Dot Nanofluids. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28487-28498. [PMID: 31290307 DOI: 10.1021/acsami.9b07983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Digital microfluidics is a liquid-handling technology capable of rapidly and autonomously controlling multiple discrete droplets across an array of electrodes and has seen continual growth in the fields of chemistry, biology, and optics. This technology is enabled by rapidly switching the wettability of a surface through the application of an electric field: a phenomenon known as electrowetting-on-dielectric. The results reported here elucidate the wetting behavior of fluorescent quantum dot nanofluids by varying the aqueous-solubilizing polymers, changing the size of the nanocrystals, and the addition of surfactants. Nanofluid droplets were demonstrated to have very large changes in contact angle (>100°) by employing alternating current voltage to aqueous droplets within a dodecane medium. The stability of quantum dot nanofluids is also evaluated within a digital microfluidics platform, and the optical properties are not perturbed even under high voltages (250 V). Multiple fluorescent droplets with varying emission can be simultaneously actuated and rapidly mixed (<10 s) to generate a new nanofluid with optical properties different from the parent solutions.
Collapse
Affiliation(s)
- Urice N Tohgha
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright-Patterson Air Force Base , Dayton , Ohio 45433-7750 , United States
- Azimuth Corporation , 4027 Colonel Glenn Highway , Beavercreek , Ohio 45431 , United States
| | - Ernest L Alvino
- Department of Chemistry and Chemistry Research Center , United States Air Force Academy , Colorado Springs , Colorado 80840 , United States
| | - Clark C Jarnagin
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright-Patterson Air Force Base , Dayton , Ohio 45433-7750 , United States
- Azimuth Corporation , 4027 Colonel Glenn Highway , Beavercreek , Ohio 45431 , United States
| | - Scott T Iacono
- Department of Chemistry and Chemistry Research Center , United States Air Force Academy , Colorado Springs , Colorado 80840 , United States
| | - Nicholas P Godman
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright-Patterson Air Force Base , Dayton , Ohio 45433-7750 , United States
| |
Collapse
|
27
|
Bailey DB, Gehtland LM, Lewis MA, Peay H, Raspa M, Shone SM, Taylor JL, Wheeler AC, Cotten M, King NMP, Powell CM, Biesecker B, Bishop CE, Boyea BL, Duparc M, Harper BA, Kemper AR, Lee SN, Moultrie R, Okoniewski KC, Paquin RS, Pettit D, Porter KA, Zimmerman SJ. Early Check: translational science at the intersection of public health and newborn screening. BMC Pediatr 2019; 19:238. [PMID: 31315600 PMCID: PMC6636013 DOI: 10.1186/s12887-019-1606-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/30/2019] [Indexed: 01/06/2023] Open
Abstract
Background Newborn screening (NBS) occupies a unique space at the intersection of translational science and public health. As the only truly population-based public health program in the United States, NBS offers the promise of making the successes of translational medicine available to every infant with a rare disorder that is difficult to diagnose clinically, but for which strong evidence indicates that presymptomatic treatment will substantially improve outcomes. Realistic NBS policy requires data, but rare disorders face a special challenge: Screening cannot be done without supportive data, but adequate data cannot be collected in the absence of large-scale screening. The magnitude and scale of research to provide this expanse of data require working with public health programs, but most do not have the resources or mandate to conduct research. Methods To address this gap, we have established Early Check, a research program in partnership with a state NBS program. Early Check provides the infrastructure needed to identify conditions for which there have been significant advances in treatment potential, but require a large-scale, population-based study to test benefits and risks, demonstrate feasibility, and inform NBS policy. Discussion Our goal is to prove the benefits of a program that can, when compared with current models, accelerate understanding of diseases and treatments, reduce the time needed to consider inclusion of appropriate conditions in the standard NBS panel, and accelerate future research on new NBS conditions, including clinical trials for investigational interventions. Trial registration Clinicaltrials.gov registration #NCT03655223. Registered on August 31, 2018.
Collapse
Affiliation(s)
- Donald B Bailey
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA.
| | - Lisa M Gehtland
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | | | - Holly Peay
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | - Melissa Raspa
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | - Scott M Shone
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | - Jennifer L Taylor
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | - Anne C Wheeler
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | | | | | - Cynthia M Powell
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | | | - Beth Lincoln Boyea
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | - Martin Duparc
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | - Blake A Harper
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | | | - Stacey N Lee
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | | | - Katherine C Okoniewski
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | | | - Denise Pettit
- North Carolina State Laboratory of Public Health, Raleigh, NC, USA
| | - Katherine Ackerman Porter
- Center for Newborn Screening, Ethics, and Disability Studies, RTI International, 3040 E. Cornwallis Rd., Research Triangle Park, NC, 27709, USA
| | | |
Collapse
|
28
|
Feng S, Shirani E, Inglis DW. Droplets for Sampling and Transport of Chemical Signals in Biosensing: A Review. BIOSENSORS 2019; 9:E80. [PMID: 31226857 PMCID: PMC6627903 DOI: 10.3390/bios9020080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The chemical, temporal, and spatial resolution of chemical signals that are sampled and transported with continuous flow is limited because of Taylor dispersion. Droplets have been used to solve this problem by digitizing chemical signals into discrete segments that can be transported for a long distance or a long time without loss of chemical, temporal or spatial precision. In this review, we describe Taylor dispersion, sampling theory, and Laplace pressure, and give examples of sampling probes that have used droplets to sample or/and transport fluid from a continuous medium, such as cell culture or nerve tissue, for external analysis. The examples are categorized, as follows: (1) Aqueous-phase sampling with downstream droplet formation; (2) preformed droplets for sampling; and (3) droplets formed near the analyte source. Finally, strategies for downstream sample recovery for conventional analysis are described.
Collapse
Affiliation(s)
- Shilun Feng
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| | - Elham Shirani
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
29
|
Skrinjar P, Schwarz M, Lexmüller S, Mechtler TP, Zeyda M, Greber-Platzer S, Trometer J, Kasper DC, Mikula H. Rapid and Modular Assembly of Click Substrates To Assay Enzyme Activity in the Newborn Screening of Lysosomal Storage Disorders. ACS CENTRAL SCIENCE 2018; 4:1688-1696. [PMID: 30648152 PMCID: PMC6311692 DOI: 10.1021/acscentsci.8b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Synthetic substrates play a pivotal role in the development of enzyme assays for medical diagnostics. However, the preparation of these chemical tools often requires multistep synthetic procedures complicating structural optimization and limiting versatility. In particular, substrates for enzyme assays based on tandem mass spectrometry need to be designed and optimized to fulfill the requirements to finally enable the development of robust diagnostic assays. In addition, isotope-labeled standards need to be prepared to facilitate accurate quantification of enzyme assay products. Here we report the development of a building block strategy for rapid and modular assembly of enzyme substrates using click chemistry as a key step. These click substrates are made up of a sugar moiety as enzyme responsive unit, a linker that can easily be isotope-labeled for the synthesis of internal standards, and a modifier compound that can readily be exchanged for structural optimization and analytical/diagnostic tuning. Moreover, the building block assembly eliminates the need for extensive optimization of different glycosylation reactions as it enables the divergent synthesis of substrates using a clickable enzyme responsive unit. The outlined strategy has been applied to obtain a series of synthetic α-l-iduronates and sulfated β-d-galactosides as substrates for assaying α-l-iduronidase and N-acetylgalactosamine-6-sulfate sulfatase, enzymes related to the lysosomal storage disorders mucopolysaccharidosis type I and type IVa, respectively. Selected click substrates were finally shown to be suitable to assay enzyme activities in dried blood spot samples from affected patients and random newborns.
Collapse
Affiliation(s)
- Philipp Skrinjar
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
| | - Markus Schwarz
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
- ARCHIMED
Life Science GmbH, 1110 Vienna, Austria
| | - Stefan Lexmüller
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
| | | | - Maximilian Zeyda
- Department
of Pediatrics and Adolescent Medicine, Medical
University of Vienna, 1090 Vienna, Austria
| | - Susanne Greber-Platzer
- Department
of Pediatrics and Adolescent Medicine, Medical
University of Vienna, 1090 Vienna, Austria
| | - Joe Trometer
- PerkinElmer,
Diagnostics, Waltham, Massachusetts 02451, United States
| | | | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
- E-mail:
| |
Collapse
|