1
|
Rossetto RZ, Maciel SFVDO, Cardoso AM. Relationship between purinergic signalling and oxidative stress in prostate cancer: Perspectives for future therapy. Crit Rev Oncol Hematol 2025; 209:104675. [PMID: 40015351 DOI: 10.1016/j.critrevonc.2025.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Prostate cancer (PCa) is a complex and lethal disease in men, influenced by risk factors such as age, heredity, and lifestyle. This article reviews the roles of purinergic signaling and reactive species in PCa progression. The purinergic system involves signaling molecules, such as ATP and adenosine, specific receptors (P1 and P2), and catalytic enzymes (for example, CD39 and CD73), whose alterations contribute to cell proliferation, angiogenesis, and immune evasion. The purinergic receptors P2X7 and P2X4 modulate the prostate tumor microenvironment (TME), impacting hypoxia, apoptosis, and inflammatory pathways. Reactive oxygen species (ROS) and nitrogen species (RNS) also play crucial roles. At elevated levels, they lead to oxidative damage to DNA and mitochondria, promoting genetic instability and uncontrolled cell proliferation. These species interact with the purinergic signaling pathway, with enzymes like CD39 and CD73 playing dual roles: degrading extracellular ATP to generate immunosuppressive adenosine while simultaneously protecting against oxidative damage. This review emphasizes the dynamic interplay between inflammatory and immunosuppressive signals within the TME, mediated by ATP, ROS, and their signaling cascades. This balance determines whether the environment supports tumor progression or regression. Targeting these mechanisms through innovative therapies, including receptor inhibitors and ROS modulation, presents promising avenues for PCa treatment. Understanding the intricate roles of purinergic signaling and reactive species provides valuable insights into potential therapeutic strategies to combat PCa.
Collapse
Affiliation(s)
- Rafael Zatti Rossetto
- Graduate Program of Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Andréia Machado Cardoso
- Graduate Program of Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
2
|
Tang C, Lai Y, Li L, Situ MY, Li S, Cheng B, Chen Y, Lei Z, Ren Y, Zhou J, Wu Y, Zhong H, Li K, Zeng L, Guo Z, Peng S, Huang H. SERPINH1 modulates apoptosis by inhibiting P62 ubiquitination degradation to promote bone metastasis of prostate cancer. iScience 2024; 27:110427. [PMID: 39161960 PMCID: PMC11332800 DOI: 10.1016/j.isci.2024.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent urogenital malignancies. Bone metastasis from PCa reduces patient survival rates significantly. There currently exists no effective treatment for bone metastatic PCa, and the underlying mechanisms remain unclear. This study performed transcriptomic screening on PCa bone metastasis specimens and intersection analysis in public databases and identified SERPINH1 as a potential target for treatment. SERPINH1 was found to be upregulated in PCa bone metastases and with poor prognosis, high Gleason score, and advanced metastatic status. SERPINH1 induced PCa cells' bone metastasis in vivo, promoted their proliferation, and mitigated apoptosis. Mechanistically, SERPINH1 bound to P62, reducing TRIM21-mediated K63-linked ubiquitination degradation of P62 and promoting proliferation and resistance to apoptosis of PCa. This study suggests the regulation of ubiquitination degradation of P62 by SERPINH1 that promotes PCa bone metastasis and can be considered as a potential target for treatment of bone metastatic PCa.
Collapse
Affiliation(s)
- Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| | - Lingfeng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Min-yi Situ
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shurui Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Yongming Chen
- Beijing Hospital, National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, Dongcheng, P.R. China
| | - Zhen Lei
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - YanTing Ren
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Jie Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Yongxin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Haitao Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Lexiang Zeng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Zhenghui Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| |
Collapse
|
3
|
Ahmadpour S, Habibi MA, Ghazi FS, Molazadeh M, Pashaie MR, Mohammadpour Y. The effects of tumor-derived supernatants (TDS) on cancer cell progression: A review and update on carcinogenesis and immunotherapy. Cancer Treat Res Commun 2024; 40:100823. [PMID: 38875884 DOI: 10.1016/j.ctarc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pashaie
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Mohammadpour
- Department of Medical Education, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Stitz R, Stoiber F, Silye R, Vlachos G, Andaloro S, Rebhan E, Dunzinger M, Pühringer F, Gallo C, El-Heliebi A, Heitzer E, Hauser-Kronberger C. Clinical Implementation of a Noninvasive, Multi-Analyte Droplet Digital PCR Test to Screen for Androgen Receptor Alterations. J Mol Diagn 2024; 26:467-478. [PMID: 38522838 DOI: 10.1016/j.jmoldx.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024] Open
Abstract
Alterations of the androgen receptor (AR) are associated with resistance to AR-directed therapy in prostate cancer. Thus, it is crucial to develop robust detection methods for AR alterations as predictive biomarkers to enable applicability in clinical practice. We designed and validated five multiplex droplet digital PCR assays for reliable detection of 12 AR targets including AR amplification, AR splice variant 7, and 10 AR hotspot mutations, as well as AR and KLK3 gene expression from plasma-derived cell-free DNA and cell-free RNA. The assays demonstrated excellent analytical sensitivity and specificity ranging from 95% to 100% (95% CI, 75% to 100%). Intrarun and interrun variation analyses revealed a high level of repeatability and reproducibility. The developed assays were applied further in peripheral blood samples from 77 patients with advanced prostate cancer to assess their feasibility in a real-world scenario. Optimizing the reverse transcription of RNA increased the yield of plasma-derived cell-free RNA by 30-fold. Among 23 patients with castration-resistant prostate cancer, 6 patients (26.1%) had one or a combination of several AR alterations, whereas only 2 of 54 patients (3.7%) in the hormone-sensitive stage showed AR alterations. These findings were consistent with other studies and suggest that implementation of comprehensive AR status detection in clinical practice is feasible and can support the treatment decision-making process.
Collapse
Affiliation(s)
- Regina Stitz
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Doctoral Program Medical Science, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Franz Stoiber
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Renè Silye
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Silvia Andaloro
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Elisabeth Rebhan
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Michael Dunzinger
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Franz Pühringer
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Caroline Gallo
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| | - Cornelia Hauser-Kronberger
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Department of Anatomy and Cell Biology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
5
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
6
|
Sun J, Tian T, Wang N, Jing X, Qiu L, Cui H, Liu Z, Liu J, Yan L, Li D. Pretreatment level of serum sialic acid predicts both qualitative and quantitative bone metastases of prostate cancer. Front Endocrinol (Lausanne) 2024; 15:1338420. [PMID: 38384968 PMCID: PMC10880016 DOI: 10.3389/fendo.2024.1338420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Background Recently, serum sialic acid (SA) has emerged as a distinct prognostic marker for prostate cancer (PCa) and bone metastases, warranting differential treatment and prognosis for low-volume (LVD) and high-volume disease (HVD). In clinical settings, evaluating bone metastases can prove advantageous. Objectives We aimed to establish the correlation between SA and both bone metastasis and HVD in newly diagnosed PCa patients. Methods We conducted a retrospective analysis of 1202 patients who received a new diagnosis of PCa between November 2014 and February 2021. We compared pretreatment SA levels across multiple groups and investigated the associations between SA levels and the clinical parameters of patients. Additionally, we compared the differences between HVD and LVD. We utilized several statistical methods, including the non-parametric Mann-Whitney U test, Spearman correlation, receiver operating characteristic (ROC) curve analysis, and logistic regression. Results The results indicate that SA may serve as a predictor of bone metastasis in patients with HVD. ROC curve analysis revealed a cut-off value of 56.15 mg/dL with an area under the curve of 0.767 (95% CI: 0.703-0.832, P < 0.001) for bone metastasis versus without bone metastasis and a cut-off value of 65.80 mg/dL with an area under the curve of 0.766 (95% CI: 0.644-0.888, P = 0.003) for HVD versus LVD. Notably, PCa patients with bone metastases exhibited significantly higher SA levels than those without bone metastases, and HVD patients had higher SA levels than LVD patients. In comparison to the non-metastatic and LVD cohorts, the cohort with HVD exhibited higher levels of alkaline phosphatase (AKP) (median, 122.00 U/L), fibrinogen (FIB) (median, 3.63 g/L), and prostate-specific antigen (PSA) (median, 215.70 ng/mL), as well as higher Gleason scores (> 7). Multivariate logistic regression analysis demonstrated that an SA level of > 56.15 mg/dL was independently associated with the presence of bone metastases in PCa patients (OR = 2.966, P = 0.018), while an SA level of > 65.80 mg/dL was independently associated with HVD (OR = 1.194, P = 0.048). Conclusion The pretreatment serum SA level is positively correlated with the presence of bone metastases.
Collapse
Affiliation(s)
- Jingtao Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Tian Tian
- Respiratory and Critical Care Medicine Department, Qilu Hospital of Shandong University, Jinan, China
| | - Naiqiang Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuehui Jing
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, Yucheng People’s Hospital, Dezhou, China
| | - Laiyuan Qiu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Haochen Cui
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Alqualo NO, Campos-Fernandez E, Picolo BU, Ferreira EL, Henriques LM, Lorenti S, Moreira DC, Simião MPS, Oliveira LBT, Alonso-Goulart V. Molecular biomarkers in prostate cancer tumorigenesis and clinical relevance. Crit Rev Oncol Hematol 2024; 194:104232. [PMID: 38101717 DOI: 10.1016/j.critrevonc.2023.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men and assessing circulating tumor cells (CTCs) by liquid biopsy is a promising tool to help in cancer early detection, staging, risk of recurrence evaluation, treatment prediction and monitoring. Blood-based liquid biopsy approaches enable the enrichment, detection and characterization of CTCs by biomarker analysis. Hence, comprehending the molecular markers, their role on each stage of cancer development and progression is essential to provide information that can help in future implementation of these biomarkers in clinical assistance. In this review, we studied the molecular markers most associated with PCa CTCs to better understand their function on tumorigenesis and metastatic cascade, the methodologies utilized to analyze these biomarkers and their clinical significance, in order to summarize the available information to guide researchers in their investigations, new hypothesis formulation and target choice for the development of new diagnostic and treatment tools.
Collapse
Affiliation(s)
- Nathalia Oliveira Alqualo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Esther Campos-Fernandez
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Bianca Uliana Picolo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Emanuelle Lorrayne Ferreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Laila Machado Henriques
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Sabrina Lorenti
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Danilo Caixeta Moreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Maria Paula Silva Simião
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Luciana Beatriz Tiago Oliveira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil.
| |
Collapse
|
8
|
Li X, Bai Y, Feng K, Chu Z, Li H, Lin Z, Tian L. Therapeutic, diagnostic and prognostic values of TRIM proteins in prostate cancer. Pharmacol Rep 2023; 75:1445-1453. [PMID: 37921966 DOI: 10.1007/s43440-023-00534-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2023]
Abstract
Prostate cancer is the second most prevalent cancer in men worldwide. The TRIM (tripartite motif) family of proteins is involved in the regulation of various cellular processes, including antiviral immunity, apoptosis, and cancer progression. In recent years, several TRIM proteins have been found to play important roles in prostate cancer initiation and progression. TRIM proteins have indicated oncogenic activity in prostate cancer by enhancing androgen or estrogen receptor signaling and promoting cancer cell growth. Inhibition of TRIM proteins has been raised as a potential therapeutic strategy for the treatment of prostate cancer. Overall, these studies suggest that TRIM family proteins exert tumor-promoting effects in prostate cancer, and targeting these proteins can provide a promising therapeutic strategy for prostate cancer treatment. On the other hand, some TRIM proteins can be differentially expressed in prostate cancer cells compared to normal cells, thus providing novel diagnostic/prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Xiaojiang Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Zhendong Chu
- Department of Orthopedics, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Haijun Li
- Department of Orthopedics, Tonghua County Hospital of Traditional Chinese Medicine, Tonghua, 134100, China
| | - Zhicheng Lin
- Department of Internal Medicine, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China.
| |
Collapse
|
9
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
10
|
Lawrence R, Watters M, Davies CR, Pantel K, Lu YJ. Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00781-y. [PMID: 37268719 DOI: 10.1038/s41571-023-00781-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Given that cancer mortality is usually a result of late diagnosis, efforts in the field of early detection are paramount to reducing cancer-related deaths and improving patient outcomes. Increasing evidence indicates that metastasis is an early event in patients with aggressive cancers, often occurring even before primary lesions are clinically detectable. Metastases are usually formed from cancer cells that spread to distant non-malignant tissues via the blood circulation, termed circulating tumour cells (CTCs). CTCs have been detected in patients with early stage cancers and, owing to their association with metastasis, might indicate the presence of aggressive disease, thus providing a possible means to expedite diagnosis and treatment initiation for such patients while avoiding overdiagnosis and overtreatment of those with slow-growing, indolent tumours. The utility of CTCs as an early diagnostic tool has been investigated, although further improvements in the efficiency of CTC detection are required. In this Perspective, we discuss the clinical significance of early haematogenous dissemination of cancer cells, the potential of CTCs to facilitate early detection of clinically relevant cancers, and the technological advances that might improve CTC capture and, thus, diagnostic performance in this setting.
Collapse
Affiliation(s)
- Rachel Lawrence
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Melissa Watters
- Barts and London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Caitlin R Davies
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yong-Jie Lu
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
11
|
Ye J, Wu M, He L, Chen P, Liu H, Yang H. Glutathione-S-Transferase p1 Gene Promoter Methylation in Cell-Free DNA as a Diagnostic and Prognostic Tool for Prostate Cancer: A Systematic Review and Meta-Analysis. Int J Endocrinol 2023; 2023:7279243. [PMID: 36747996 PMCID: PMC9899149 DOI: 10.1155/2023/7279243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Promoter methylation of glutathione-S-transferase p1 (GSTP1) is related to the occurrence of prostate cancer (PCa), but reports are inconsistent about the accuracy of GSTP1 promoter methylation in PCa diagnosis and prognosis. Therefore, we systematically evaluated the diagnostic and prognostic value of GSTP1 promoter methylation in PCa. METHODS The PubMed, EMBASE, Web of Science, and PMC databases were searched for all relevant studies from the date of inception to November 31, 2021. We compared differences in the incidence of GSTP1 promoter methylation in cfDNA between prostate cancer patients and controls. The odds ratio (OR) and hazard ratio (HR) were used as effect sizes, and the result of each effect size is expressed as a 95% confidence interval (95% CI). RESULTS Our meta-analysis showed that the combined sensitivity and specificity of GSTP1 promoter methylation in cfDNA for the diagnosis of prostate cancer were 0.37 (95% CI = 0.23, 0.53) and 0.97 (95% CI = 0.88, 0.99), respectively. The area under the curve (AUC) with 95% CI was 0.78 (95% CI = 0.75, 0.82). For prognostic variables, hypermethylation of GSTP1 was associated with shorter survival in PCa (HR = 2.57, 95% CI = 1.30, 5.10), with statistical significance in between-study heterogeneity (I 2 = 72%, P=0.006). The results of the subgroup analysis indicated that the heterogeneity of studies may be due to differences in the observed indicators. CONCLUSIONS The results of the meta-analysis substantiate the high specificity of promoter methylation of GSTP1 in cfDNA for the diagnosis of prostate cancer, and it may be used to more precisely evaluate the prognosis of patients with prostate cancer. It may be helpful for the early detection of prostate cancer, but it still must be combined with traditional prostate-specific antigen (PSA) or other methylated genes to accomplish this goal.
Collapse
Affiliation(s)
- Jinghe Ye
- Department of Graduate School, China Medical University, Shenyang, China
- Department of Organ Transplantation Center, General Hospital of Northern Theatre Command, Shenyang, China
| | - Mao Wu
- Department of Graduate School, China Medical University, Shenyang, China
- Department of Urology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Long He
- Department of Organ Transplantation Center, General Hospital of Northern Theatre Command, Shenyang, China
| | - Peng Chen
- Department of Urology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Hongtao Liu
- Department of Urology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Hongwei Yang
- Department of Organ Transplantation Center, General Hospital of Northern Theatre Command, Shenyang, China
| |
Collapse
|
12
|
Application of tumor-educated platelets as new fluid biopsy markers in various tumors. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:114-125. [PMID: 36284061 DOI: 10.1007/s12094-022-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
The incidence of malignant tumors is increasing year by year. Early detection and diagnosis of malignant tumors can improve the prognosis of patients and prolong their life. Pathological biopsy is the current gold standard for diagnosis, but the results of pathological biopsy are affected by the sampling site and cannot fully reflect the nature of the disease. Moreover, the invasive nature of pathological biopsy limits repeated detection. Liquid biopsies are non-invasive and can be used for early detection and monitoring of tumors, which considered to represent a promising tool. Platelets make themselves to be one of the richest liquid biopsy sources by the capacity to take up proteins and nucleic acids and alter their megakaryocyte-derived transcripts and proteins in response to external signals, which are called tumor-educated platelets (TEPs). In this article, we will review the application of tumor-educated platelets in various malignancies (nasopharyngeal carcinoma, prostate cancer, lung cancer, glioblastoma, colorectal cancer, pancreas cancer, ovarian cancer, sarcoma, breast cancer and hepatocellular carcinoma) and provide theoretical basis for the research of TEPs in tumor diagnosis, monitoring and treatment.
Collapse
|
13
|
Swami U, Sayegh N, Jo Y, Haaland B, McFarland TR, Nussenzveig RH, Goel D, Sirohi D, Hahn AW, Maughan BL, Goldkorn A, Agarwal N. External Validation of Association of Baseline Circulating Tumor Cell Counts with Survival Outcomes in Men with Metastatic Castration-Sensitive Prostate Cancer. Mol Cancer Ther 2022; 21:1857-1861. [PMID: 36198026 DOI: 10.1158/1535-7163.mct-22-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Approximately 20% of men with metastatic castration-sensitive prostate cancer (mCSPC) progress within 1 year of treatment, and biomarkers to identify them up front are lacking. In a randomized phase III trial in men with mCSPC (SWOG S1216), higher baseline circulating tumor cells (CTCs) were prognostic of inferior outcomes. We aimed to validate these findings and interrogate corresponding tumor genomic profiles. Consecutively seen men with newly diagnosed mCSPC undergoing systemic therapy and baseline CTC enumeration by CellSearch assay were included. Gene alterations were determined by comprehensive genomic profiling of tumor tissue by Clinical Laboratory Improvement Amendments-certified lab. The relationship between categorized CTC counts and both progression-free survival (PFS) and overall survival (OS) was assessed in the context of Cox proportional hazards models, both unadjusted and adjusted for age, Gleason score, PSA at androgen-deprivation therapy initiation, disease volume, de novo status, treatment intensification, and number of altered genes. Overall, 103 patients were included in the analysis. On multivariate analysis high CTCs (≥ 5 vs. 0) were associated with poorer PFS [HR, 4.52; 95% confidence interval (CI), 1.84-11.11; P = 0.001) and OS (HR, 3.59; 95% CI, 0.95-13.57; P = 0.060). Patients with higher CTC counts had a greater number of altered genes and total number of alterations (all P < 0.02). In this article, for the first time, we externally validate the association of higher CTC counts with inferior survival outcomes in men with mCSPC and show a distinct associated tumor genomic landscape. These findings may improve prognostication, patient counseling, and treatment selection in men with mCSPC.
Collapse
Affiliation(s)
- Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Yeonjung Jo
- Division of Oncology and Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Benjamin Haaland
- Division of Oncology and Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Taylor Ryan McFarland
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Roberto H Nussenzveig
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Divyam Goel
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Deepika Sirohi
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, Utah
| | - Andrew W Hahn
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin L Maughan
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Amir Goldkorn
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), Los Angeles, California
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
Chauhan N, Manojkumar A, Jaggi M, Chauhan SC, Yallapu MM. microRNA-205 in prostate cancer: Overview to clinical translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188809. [PMID: 36191828 PMCID: PMC9996811 DOI: 10.1016/j.bbcan.2022.188809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PrCa) is the most common type of cancer among men in the United States. The metastatic and advanced PrCa develops drug resistance to current regimens which accounts for the poor management. microRNAs (miRNAs) have been well-documented for their diagnostic, prognostic, and therapeutic roles in various human cancers. Recent literature confirmed that microRNA-205 (miR-205) has been established as one of the tumor suppressors in PrCa. miR-205 regulates number of cellular functions, such as proliferation, invasion, migration/metastasis, and apoptosis. It is also evident that miR-205 can serve as a key biomarker in diagnostic, prognostic, and therapy of PrCa. Therefore, in this review, we will provide an overview of tumor suppressive role of miR-205 in PrCa. This work also outlines miR-205's specific role in targeted mechanisms for chemosensitization and radiosensitization in PrCa. A facile approach of delivery paths for successful clinical translation is documented. Together, all these studies provide a novel insight of miR-205 as an adjuvant agent for reducing the widening gaps in clinical outcome of PrCa patients.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
15
|
Constâncio V, Tavares NT, Henrique R, Jerónimo C, Lobo J. MiRNA biomarkers in cancers of the male reproductive system: are we approaching clinical application? Andrology 2022; 11:651-667. [PMID: 35930290 DOI: 10.1111/andr.13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Specific cancer types face specific clinical management challenges. Owing to their stability, robustness and fast, easy, and cost-effective detection, microRNAs (miRNAs) are attractive candidate biomarkers to the clinic. OBJECTIVES Based on a comprehensive review of the relevant literature in the field, we explore the potential of miRNAs as biomarkers to answer relevant clinical dilemmas inherent to cancers of the male reproductive tract (prostate (PCa), testis (TGCTs) and penis (PeCa)) and identify some of the challenges/limitations hampering their widely application. RESULTS AND DISCUSSION We conclude that the use of miRNAs as biomarkers is at different stages for these distinct cancer types. While for TGCTs, miRNA-371a-3p is universally accepted to fill in important clinicals gaps and is moving fast towards clinical implementation, for PCa almost no overlap of miRNAs exists between studies, denoting the absence of a consistent miRNA biomarker, and for PeCa the field of miRNAs has just recently started, with only a few studies attempting to explore their clinical usefulness. CONCLUSION Technological advances influencing miRNA detection and quantification will be instrumental to continue to move forward with implementation of miRNAs in the clinic as biomarkers for non-invasive diagnosis, risk stratification, treatment monitoring and follow-up. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Doctoral Programme in Biomedical Sciences, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto / Porto Comprehensive Cancer Centre (Porto.CCC), R. Dr. António Bernardino de Almeida, Porto, 4200-072, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, 4050-513, Portugal
| |
Collapse
|
16
|
Crocetto F, Russo G, Di Zazzo E, Pisapia P, Mirto BF, Palmieri A, Pepe F, Bellevicine C, Russo A, La Civita E, Terracciano D, Malapelle U, Troncone G, Barone B. Liquid Biopsy in Prostate Cancer Management—Current Challenges and Future Perspectives. Cancers (Basel) 2022; 14:cancers14133272. [PMID: 35805043 PMCID: PMC9265840 DOI: 10.3390/cancers14133272] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) is a widespread malignancy, representing the second leading cause of cancer-related death in men. In the last years, liquid biopsy has emerged as an attractive and promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis, follow-up and treatment response. Liquid biopsy is employed to assess several body fluids biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). This review dissects recent advancements and future perspectives of liquid biopsy, highlighting its strength and weaknesses in PCa management. Abstract Although appreciable attempts in screening and diagnostic approaches have been achieved, prostate cancer (PCa) remains a widespread malignancy, representing the second leading cause of cancer-related death in men. Drugs currently used in PCa therapy initially show a potent anti-tumor effect, but frequently induce resistance and PCa progresses toward metastatic castration-resistant forms (mCRPC), virtually incurable. Liquid biopsy has emerged as an attractive and promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis and treatment. Liquid biopsy shows the ability to represent the tumor microenvironment, allow comprehensive information and follow-up the progression of the tumor, enabling the development of different treatment strategies as well as permitting the monitoring of therapy response. Liquid biopsy, indeed, is endowed with a significant potential to modify PCa management. Several blood biomarkers could be analyzed for diagnostic, prognostic and predictive purposes, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). In addition, several other body fluids may be adopted (i.e., urine, sperm, etc.) beyond blood. This review dissects recent advancements and future perspectives of liquid biopsies, highlighting their strength and weaknesses in PCa management.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence:
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Alessandro Palmieri
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | | | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (D.T.)
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (G.R.); (P.P.); (F.P.); (C.B.); (U.M.); (G.T.)
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (B.F.M.); (A.P.); (B.B.)
| |
Collapse
|
17
|
Rao A, Moka N, Hamstra DA, Ryan CJ. Co-Inhibition of Androgen Receptor and PARP as a Novel Treatment Paradigm in Prostate Cancer-Where Are We Now? Cancers (Basel) 2022; 14:801. [PMID: 35159068 PMCID: PMC8834038 DOI: 10.3390/cancers14030801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Metastatic prostate cancer remains lethal with a 5-year survival rate of about 30%, indicating the need for better treatment options. Novel antiandrogens (NAA)-enzalutamide and abiraterone-have been the mainstay of treatment for advanced disease since 2011. In patients who progress on the first NAA, responses to the second NAA are infrequent (25-30%) and short-lasting (median PFS ~3 months). With the growing adoption of NAA therapy in pre-metastatic castration-resistant settings, finding better treatment options for first-line mCRPC has become an urgent clinical need. The regulatory approval of two PARP inhibitors in 2020-rucaparib and olaparib-has provided the first targeted therapy option for patients harboring defects in selected DNA damage response and repair (DDR) pathway genes. However, a growing body of preclinical and clinical data shows that co-inhibition of AR and PARP induces synthetic lethality and could be a promising therapy for patients without any DDR alterations. In this review article, we will investigate the limitations of NAA monotherapy, the mechanistic rationale for synthetic lethality induced by co-inhibition of AR and PARP, the clinical data that have led to the global development of a number of these AR and PARP combination therapies, and how this may impact patient care in the next 2-10 years.
Collapse
Affiliation(s)
- Arpit Rao
- Division of Hematology and Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagaishwarya Moka
- Division of Hematology and Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Daniel A. Hamstra
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Charles J. Ryan
- Division of Hematology, Oncology and Transplantation, Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
18
|
Systemic Effects Reflected in Specific Biomarker Patterns Are Instrumental for the Paradigm Change in Prostate Cancer Management: A Strategic Paper. Cancers (Basel) 2022; 14:cancers14030675. [PMID: 35158943 PMCID: PMC8833369 DOI: 10.3390/cancers14030675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is reported as the most common malignancy and second leading cause of death in America. In Europe, PCa is considered the leading type of tumour in 28 European countries. The costs of treating PCa are currently increasing more rapidly than those of any other cancer. Corresponding economic burden is enormous, due to an overtreatment of slowly developing disease on one hand and underestimation/therapy resistance of particularly aggressive PCa subtypes on the other hand. The incidence of metastatic PCa is rapidly increasing that is particularly characteristic for young adults. PCa is a systemic multi-factorial disease resulting from an imbalanced interplay between risks and protective factors. Sub-optimal behavioural patterns, abnormal stress reactions, imbalanced antioxidant defence, systemic ischemia and inflammation, mitochondriopathies, aberrant metabolic pathways, gene methylation and damage to DNA, amongst others, are synergistically involved in pathomechanisms of PCa development and progression. To this end, PCa-relevant systemic effects are reflected in liquid biopsies such as blood patterns which are instrumental for predictive diagnostics, targeted prevention and personalisation of medical services (PPPM/3P medicine) as a new paradigm in the overall PCa management. This strategic review article highlights systemic effects in prostate cancer development and progression, demonstrates evident challenges in PCa management and provides expert recommendations in the framework of 3P medicine.
Collapse
|
19
|
Puhka M, Thierens L, Nicorici D, Forsman T, Mirtti T, af Hällström T, Serkkola E, Rannikko A. Exploration of Extracellular Vesicle miRNAs, Targeted mRNAs and Pathways in Prostate Cancer: Relation to Disease Status and Progression. Cancers (Basel) 2022; 14:cancers14030532. [PMID: 35158801 PMCID: PMC8833493 DOI: 10.3390/cancers14030532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Prostate cancer lacks non-invasive specific biomarkers for aggressive disease. Urinary extracellular vesicles (uEV) could provide such markers; however, due to technical challenges, little is known regarding the pathogenesis pathways reflected in uEV. We performed a miRNA, target mRNA and pathway study focused on uEV, exploring the differences between cancer (1) status groups (Gleason score) and (2) progression groups. The uEV provided a surprisingly comprehensive presentation of differentially expressed miRNAs, target mRNAs and pathogenesis pathways. The miRNAs associated with prostate cancer status or progression were mostly unique, but still targeted overlapping sets of signalling, resistance, hormonal and immune pathways. Interestingly, mRNA targets of the key miRNAs (miR-892a, miR-223-3p, miR-146a-5p) were widely expressed in both uEV and plasma EV from PCa patients. The study thus suggests that uEV carry a vast presentation of PCa status and progression-linked RNAs that are worth further exploration in large personalized medicine trials. Abstract Background: Prostate cancer (PCa) lacks non-invasive specific biomarkers for aggressive disease. We studied the potential of urinary extracellular vesicles (uEV) as a liquid PCa biopsy by focusing on the micro RNA (miRNA) cargo, target messenger RNA (mRNA) and pathway analysis. Methods: We subjected uEV samples from 31 PCa patients (pre-prostatectomy) to miRNA sequencing and matched uEV and plasma EV (pEV) from three PCa patients to mRNA sequencing. EV quality control was performed by electron microscopy, Western blotting and particle and RNA analysis. We compared miRNA expression based on PCa status (Gleason Score) and progression (post-prostatectomy follow-up) and confirmed selected miRNAs by quantitative PCR. Expression of target mRNAs was mapped in matched EV. Results: Quality control showed typical small uEV, pEV, RNA and EV-protein marker enriched samples. Comparisons between PCa groups revealed mostly unique differentially expressed miRNAs. However, they targeted comprehensive and largely overlapping sets of cancer and progression-associated signalling, resistance, hormonal and immune pathways. Quantitative PCR confirmed changes in miR-892a (Gleason Score 7 vs. ≥8), miR-223-3p (progression vs. no progression) and miR-146a-5p (both comparisons). Their target mRNAs were expressed widely in PCa EV. Conclusions: PCa status and progression-linked RNAs in uEV are worth exploration in large personalized medicine trials.
Collapse
Affiliation(s)
- Maija Puhka
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
- Correspondence: (M.P.); (A.R.)
| | - Lisse Thierens
- HiPrep and EV Core, Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland;
| | - Daniel Nicorici
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tarja Forsman
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Tuomas Mirtti
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, 00290 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Elina Serkkola
- Orion Pharma, Orion Corporation, 02200 Espoo, Finland; (D.N.); (T.F.); (E.S.)
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Correspondence: (M.P.); (A.R.)
| |
Collapse
|
20
|
Lieb V, Abdulrahman A, Weigelt K, Hauch S, Gombert M, Guzman J, Bellut L, Goebell PJ, Stöhr R, Hartmann A, Wullich B, Taubert H, Wach S. Cell-Free DNA Variant Sequencing Using Plasma and AR-V7 Testing of Circulating Tumor Cells in Prostate Cancer Patients. Cells 2021; 10:cells10113223. [PMID: 34831445 PMCID: PMC8620951 DOI: 10.3390/cells10113223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignant cancer and is a major cause of morbidity and mortality among men worldwide. There is still an urgent need for biomarkers applicable for diagnosis, prognosis, therapy prediction, or therapy monitoring in PCa. Liquid biopsies, including cell-free DNA (cfDNA) and circulating tumor cells (CTCs), are a valuable source for studying such biomarkers and are minimally invasive. In our study, we investigated the cfDNA of 34 progressive PCa patients, via targeted sequencing, for sequence variants and for the occurrence of CTCs, with a focus on androgen receptor splice variant 7 (AR-V7)-positive CTCs. The cfDNA content was associated with overall survival (OS; p = 0.014), disease-specific survival (DSS; p = 0.004), and time to treatment change (TTC; p = 0.001). Moreover, when considering all sequence variants grouped by their functional impact and allele frequency, a significant association with TTC (p = 0.017) was observed. When investigating only pathogenic or likely pathogenic gene variants, variants of the BRCA1 gene (p = 0.029) and the AR ligand-binding domain (p = 0.050) were associated with a shorter TTC. Likewise, the presence of CTCs was associated with a shorter TTC (p = 0.031). The presence of AR-V7-positive CTCs was associated with TTC (p < 0.001) in Kaplan–Meier analysis. Interestingly, all patients with AR-V7-positive CTCs also carried TP53 point mutations. Altogether, analysis of cfDNA and CTCs can provide complementary information that may support temporal and targeted treatment decisions and may elucidate the optimal choice within the variety of therapy options for advanced PCa patients.
Collapse
Affiliation(s)
- Verena Lieb
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| | - Amer Abdulrahman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| | - Katrin Weigelt
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| | | | | | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| | - Laura Bellut
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| | - Peter J. Goebell
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| | - Robert Stöhr
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
- Correspondence: ; Tel.: +49-93138523373
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (V.L.); (A.A.); (K.W.); (J.G.); (L.B.); (P.J.G.); (B.W.); (S.W.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany; (R.S.); (A.H.)
| |
Collapse
|
21
|
Izadmehr S, Lundon DJ, Mohamed N, Katims A, Patel V, Eilender B, Mehrazin R, Badani KK, Sfakianos JP, Tsao CK, Wiklund P, Oh WK, Cordon-Cardo C, Tewari AK, Galsky MD, Kyprianou N. The Evolving Clinical Management of Genitourinary Cancers Amid the COVID-19 Pandemic. Front Oncol 2021; 11:734963. [PMID: 34646777 PMCID: PMC8504458 DOI: 10.3389/fonc.2021.734963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19), a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has become an unprecedented global health emergency, with fatal outcomes among adults of all ages throughout the world. There is a high incidence of infection and mortality among cancer patients with evidence to support that patients diagnosed with cancer and SARS-CoV-2 have an increased likelihood of a poor outcome. Clinically relevant changes imposed as a result of the pandemic, are either primary, due to changes in timing or therapeutic modality; or secondary, due to altered cooperative effects on disease progression or therapeutic outcomes. However, studies on the clinical management of patients with genitourinary cancers during the COVID-19 pandemic are limited and do little to differentiate primary or secondary impacts of COVID-19. Here, we provide a review of the epidemiology and biological consequences of SARS-CoV-2 infection in GU cancer patients as well as the impact of COVID-19 on the diagnosis and management of these patients, and the use and development of novel and innovative diagnostic tests, therapies, and technology. This article also discusses the biomedical advances to control the virus and evolving challenges in the management of prostate, bladder, kidney, testicular, and penile cancers at all stages of the patient journey during the first year of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sudeh Izadmehr
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dara J. Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nihal Mohamed
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew Katims
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vaibhav Patel
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Eilender
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reza Mehrazin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ketan K. Badani
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John P. Sfakianos
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Che-Kai Tsao
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - William K. Oh
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashutosh K. Tewari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew D. Galsky
- Department of Medicine, Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
22
|
Fettke H, Kwan EM, Bukczynska P, Steen JA, Docanto M, Ng N, Parente P, Mant A, Foroughi S, Pezaro C, Hauser C, Nguyen-Dumont T, Southey MC, Azad AA. Independent prognostic impact of plasma NCOA2 alterations in metastatic castration-resistant prostate cancer. Prostate 2021; 81:992-1001. [PMID: 34254334 DOI: 10.1002/pros.24194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The androgen receptor (AR) pathway-associated gene nuclear receptor coactivator 2 (NCOA2) has an established oncogenic role in early prostate cancer and likewise is a driver of metastatic disease and castration-resistant prostate cancer. However, its significance as a biomarker in metastatic castration-resistant prostate cancer (mCRPC), both alone and in conjunction with co-occurring AR alterations using a liquid biopsy approach has not been investigated. METHODS Ninety-one patients were included in this study, (n = 68 receiving an androgen receptor pathway inhibitor and n = 23 receiving taxane chemotherapy). Up to 30 ml of peripheral blood was collected before commencing treatment from each patient. Plasma cell-free DNA, along with a matched germline sample, underwent targeted next-generation sequencing using a validated, highly sensitive in-house prostate cancer panel. Variants in AR and NCOA2 were identified and correlated with clinical outcomes. RESULTS Plasma AR and NCOA2 aberrations were identified in 35% and 13% of the cohort, respectively, whilst 8% had concurrent AR and NCOA2 alterations. NCOA2 copy number gain and any NCOA2 aberration predicted for lower prostate-specific antigen (PSA) response rates. Likewise, median overall survival was shorter for NCOA2 gain (10.1 vs. 18.3 months; p = .004), remaining significant after adjusting for covariates including circulating tumor DNA fraction and tumor suppressor gene alterations. Importantly, dual AR and NCOA2 aberrations were also associated with inferior outcomes, including no PSA responses in patients treated with AR pathway inhibitors (0% vs. 64%; p = .02). CONCLUSIONS These data highlight the importance of identifying multiple markers of AR pathway modulation in mCRPC and represent the first instance of the assessment of plasma NCOA2 status as a prognostic biomarker for standard-of-care therapies. Further assessment is warranted to determine if NCOA2 aberrations are a marker of primary resistance to AR pathway inhibitors.
Collapse
Affiliation(s)
- Heidi Fettke
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | | | - Jason A Steen
- Precision Medicine, School of Clinical Sciences, Monash Health, Melbourne, Australia
| | - Maria Docanto
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Nicole Ng
- Division of Personalised Oncology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Parente
- Medical Oncology Unit, Eastern Health, Melbourne, Australia
- Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Andrew Mant
- Medical Oncology Unit, Eastern Health, Melbourne, Australia
- Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Siavash Foroughi
- Personalised Oncology Division, The Water and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Carmel Pezaro
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Christine Hauser
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences, Monash Health, Melbourne, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
| | - Melissa C Southey
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences, Monash Health, Melbourne, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Arun A Azad
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
23
|
Boerrigter E, Benoist GE, van Oort IM, Verhaegh GW, van Hooij O, Groen L, Smit F, Oving IM, de Mol P, Smilde TJ, Somford DM, Mehra N, Schalken JA, van Erp NP. Liquid biopsy reveals KLK3 mRNA as a prognostic marker for progression free survival in patients with metastatic castration-resistant prostate cancer undergoing first-line abiraterone acetate and prednisone treatment. Mol Oncol 2021; 15:2453-2465. [PMID: 33650292 PMCID: PMC8410566 DOI: 10.1002/1878-0261.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Circulating RNAs extracted from liquid biopsies represent a promising source of cancer- and therapy-related biomarkers. We screened whole blood from patients with metastatic castration-resistant prostate cancer (mCRPC) following their first-line treatment with abiraterone acetate and prednisone (AA-P) to identify circulating RNAs that may correlate with progression-free survival (PFS). In a prospective multicenter observational study, 53 patients with mCRPC were included after they started first-line AA-P treatment. Blood was drawn at baseline, 1, 3, and 6 months after treatment initiation. The levels of predefined circulating RNAs earlier identified as being upregulated in patients with mCRPC (e.g., microRNAs, long noncoding RNAs, and mRNAs), were analyzed. Uni- and multivariable Cox regression and Kaplan-Meier analyses were used to analyze the prognostic value of the various circulating RNAs for PFS along treatment. Detectable levels of kallikrein-related peptidase 3 (KLK3) mRNA at baseline were demonstrated to be an independent prognostic marker for PFS (201 vs 501 days, P = 0.00054). Three months after AA-P treatment initiation, KLK3 could not be detected in the blood of responding patients, but was still detectable in 56% of the patients with early progression. Our study confirmed that KLK3 mRNA detection in whole blood is an independent prognostic marker in mCRPC patients receiving AA-P treatment. Furthermore, the levels of circulating KLK3 mRNA in patients receiving AA-P treatment might reflect treatment response or early signs of progression.
Collapse
Affiliation(s)
- Emmy Boerrigter
- Department of PharmacyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| | - Guillemette E. Benoist
- Department of PharmacyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| | - Inge M. van Oort
- Department of UrologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenthe Netherlands
| | - Gerald W. Verhaegh
- Department of UrologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenthe Netherlands
| | - Onno van Hooij
- Department of UrologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenthe Netherlands
| | - Levi Groen
- Department of UrologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenthe Netherlands
| | | | - Irma M. Oving
- Department of Medical OncologyZiekenhuisgroep TwenteAlmelothe Netherlands
| | - Pieter de Mol
- Department of Medical OncologyGelderse Vallei HospitalEdethe Netherlands
| | - Tineke J. Smilde
- Department of Medical OncologyJeroen Bosch Hospital‘s Hertogenboschthe Netherlands
| | | | - Niven Mehra
- Deparment of Medical OncologyRadboud University Medical CenterNijmegenthe Netherlands
| | - Jack A. Schalken
- Department of UrologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenthe Netherlands
| | - Nielka P. van Erp
- Department of PharmacyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| |
Collapse
|
24
|
Porzycki P. Potential clinical use of miRNA molecules in the diagnosis
of prostate cancer. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0015.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the most common type of cancer among men in Europe and this applies
to almost the whole world. Current recommendations for screening and diagnosis are
based on prostate specific antigen (PSA) measurements and the digital rectal examination
(DRE). Both of them trigger the prostate biopsy. Limited specificity of the PSA test brings, however,
a need to develop new and better diagnostic tools. In the last few years, new approaches
for providing significantly better biomarkers, an alternative to PSA, have been introduced.
Modern biomarkers show improvement not only as a diagnostic procedure, but also for staging,
evaluating aggressiveness and managing the therapeutic process. The most promising
group are molecular markers; among them microRNAs (miRNAs, miRs) are most frequent.
miRNAs represent a class of about 22 nucleotides long, small non-coding RNAs, which are
involved in gene expression regulation at the post-transcriptional level. This article reports
a revision about the role of miRNAs in PCa including data of Adreno Receptor (AR) signaling,
cell cycle, epithelial mesenchymal transition (EMT) process, cancer stem cells (CSCs)
regulation and even the role of miRNAs as PCa therapeutic tool. Finding better PCa biomarkers,
replacing the current PSA measurement, is firmly needed in modern oncology practice.
Collapse
|
25
|
The use of aptamers in prostate cancer: A systematic review of theranostic applications. Clin Biochem 2021; 93:9-25. [PMID: 33794195 DOI: 10.1016/j.clinbiochem.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Since prostate cancer (PCa) relies on limited diagnosis and therapies, more effective alternatives are needed. Aptamers are versatile tools that may be applied for better clinical management of PCa patients. This review shows the trends on aptamer-based applications for PCa to understand their future development. We searched articles reporting aptamers applied in PCa on the Pubmed, Scopus and Web of Science databases over the last decade. Almost 80% of the articles used previously selected aptamers in novel approaches. However, cell-SELEX was the most applied technique for the selection of new aptamers allowing their binding to targets in their native configuration. ssDNA aptamers were 24% more common than RNA aptamers. The most studied PCa-specific aptamers were the DNA PSA-specific aptamer PSap4#5 and the PSMA-specific RNA aptamers A10 and A9, being PSA and PSMA the most reported targets. Thus, researchers still prefer the ease of use of DNA aptamers. Blood-based liquid biopsies represented 24% of all samples, being the most promising clinical samples. Especially noteworthy, electro-analytical methods accounted for more than 40% of the diagnostic techniques and treatment approaches with drug delivery systems or transcriptional modifiers were reported in 70% of the articles. Although all these articles showed clinically relevant aptamers for PCa and there are good prospects for their use, the development of all these strategies was in its early stages. Thus, the aptamers are not completely validated and we foresee that the completion of clinical studies will allow the implementation of these aptamer-based technologies in the clinical practice of PCa.
Collapse
|
26
|
Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030466. [PMID: 33800141 PMCID: PMC7998238 DOI: 10.3390/diagnostics11030466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.
Collapse
|
27
|
Pereira-Veiga T, González-Conde M, León-Mateos L, Piñeiro-Cid R, Abuín C, Muinelo-Romay L, Martínez-Fernández M, Brea Iglesias J, García González J, Anido U, Aguín-Losada S, Cebey V, Costa C, López-López R. Longitudinal CTCs gene expression analysis on metastatic castration-resistant prostate cancer patients treated with docetaxel reveals new potential prognosis markers. Clin Exp Metastasis 2021; 38:239-251. [PMID: 33635497 PMCID: PMC7987626 DOI: 10.1007/s10585-021-10075-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
CTCs have extensively been used for the monitoring and characterization of metastatic prostate cancer, but their application in the clinic is still very scarce. Besides, the resistance mechanisms linked to prostate cancer treatment remain unclear. Liquid biopsies represent the most promising alternative due to the complexity of biopsying bone metastasis and the duration of the disease. We performed a prospective longitudinal study in CTCs from 20 castration-resistant prostate cancer patients treated with docetaxel. For that, we used CellSearch® technology and a custom gene expression panel with qRT-PCR using a CTCs negative enrichment approach. We found that CTCs showed a hybrid phenotype during the disease, where epithelial features were associated with the presence of ≥ 5 CTCs/7.5 mL of blood, while high relative expression of the gene MYCL was observed preferentially in the set of samples with < 5 CTCs/7.5 mL of blood. At baseline, patients whose CTCs had stem or hybrid features showed a later progression. After 1 cycle of docetaxel, high relative expression of ZEB1 indicated worse outcome, while KRT19 and KLK3 high expression could predisposed the patients to a worse prognosis at clinical progression. In the present work we describe biomarkers with clinical relevance for the prediction of early response or resistance in castration-resistant prostate cancer patients. Besides, we question the utility of targeted isolated CTCs and the use of a limited number of markers to define the CTCs population.
Collapse
Affiliation(s)
- Thais Pereira-Veiga
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Miriam González-Conde
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Luis León-Mateos
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Roberto Piñeiro-Cid
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain
| | - Mónica Martínez-Fernández
- Genomes and Disease Lab. CIMUS, Universidade de Santiago de Compostela (USC), Avda. Barcelona 31, 15706, Santiago de Compostela, Spain
| | - Jenifer Brea Iglesias
- Genomes and Disease Lab. CIMUS, Universidade de Santiago de Compostela (USC), Avda. Barcelona 31, 15706, Santiago de Compostela, Spain
| | - Jorge García González
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Urbano Anido
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Santiago Aguín-Losada
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Víctor Cebey
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.,Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, 15706, Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, 28029, Madrid, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Antunes‐Ferreira M, Koppers‐Lalic D, Würdinger T. Circulating platelets as liquid biopsy sources for cancer detection. Mol Oncol 2020; 15:1727-1743. [PMID: 33219615 PMCID: PMC8169446 DOI: 10.1002/1878-0261.12859] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Nucleic acids and proteins are shed into the bloodstream by tumor cells and can be exploited as biomarkers for the detection of cancer. In addition, cancer detection biomarkers can also be nontumor‐derived, having their origin in other organs and cell types. Hence, liquid biopsies provide a source of direct tumor cell‐derived biomolecules and indirect nontumor‐derived surrogate markers that circulate in body fluids or are taken up by circulating peripheral blood cells. The capacity of platelets to take up proteins and nucleic acids and alter their megakaryocyte‐derived transcripts and proteins in response to external signals makes them one of the richest liquid biopsy biosources. Platelets are the second most abundant cell type in peripheral blood and are routinely isolated through well‐established and fast methods in clinical diagnostics but their value as a source of cancer biomarkers is relatively recent. Platelets do not have a nucleus but have a functional spliceosome and protein translation machinery, to process RNA transcripts. Platelets emerge as important repositories of potential cancer biomarkers, including several types of RNAs (mRNA, miRNA, circRNA, lncRNA, and mitochondrial RNA) and proteins, and several preclinical studies have highlighted their potential as a liquid biopsy source for detecting various types and stages of cancer. Here, we address the usability of platelets as a liquid biopsy for the detection of cancer. We describe several studies that support the use of platelet biomarkers in cancer diagnostics and discuss what is still lacking for their implementation into the clinic.
Collapse
Affiliation(s)
- Mafalda Antunes‐Ferreira
- Department of NeurosurgeryCancer Center AmsterdamAmsterdam University Medical CentersVU University Medical CenterAmsterdamThe Netherlands
| | - Danijela Koppers‐Lalic
- Department of NeurosurgeryCancer Center AmsterdamAmsterdam University Medical CentersVU University Medical CenterAmsterdamThe Netherlands
| | - Thomas Würdinger
- Department of NeurosurgeryCancer Center AmsterdamAmsterdam University Medical CentersVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
29
|
Davey M, Benzina S, Savoie M, Breault G, Ghosh A, Ouellette RJ. Affinity Captured Urinary Extracellular Vesicles Provide mRNA and miRNA Biomarkers for Improved Accuracy of Prostate Cancer Detection: A Pilot Study. Int J Mol Sci 2020; 21:ijms21218330. [PMID: 33172003 PMCID: PMC7664192 DOI: 10.3390/ijms21218330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Serum prostate-specific antigen (sPSA) testing has helped to increase early detection of and decrease mortality from prostate cancer. However, since sPSA lacks specificity, an invasive prostate tissue biopsy is required to confirm cancer diagnosis. Using urinary extracellular vesicles (EVs) as a minimally invasive biomarker source, our goal was to develop a biomarker panel able to distinguish prostate cancer from benign conditions with high accuracy. We enrolled 56 patients in our study, 28 negative and 28 positive for cancer based on tissue biopsy results. Using our Vn96 peptide affinity method, we isolated EVs from post-digital rectal exam urines and used quantitative polymerase chain reaction to measure several mRNA and miRNA targets. We identified a panel of seven mRNA biomarkers whose expression ratio discriminated non-cancer from cancer with an area under the curve (AUC) of 0.825, sensitivity of 75% and specificity of 84%. We also identified two miRNAs whose combined score yielded an AUC of 0.744. A model pairing the seven mRNA and two miRNA panels yielded an AUC of 0.843, sensitivity of 79% and specificity of 89%. Addition of EV-derived PCA3 levels and clinical characteristics to the biomarker model further improved test accuracy. An AUC of 0.955, sensitivity of 86% and specificity of 93% were obtained. Hence, Vn96-isolated urinary EVs are a clinically applicable and minimally invasive source of mRNA and miRNA biomarkers with potential to improve on the accuracy of prostate cancer screening and diagnosis.
Collapse
Affiliation(s)
- Michelle Davey
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Sami Benzina
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Marc Savoie
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
| | - Guy Breault
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Rodney J. Ouellette
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
- Correspondence:
| |
Collapse
|
30
|
Carson JJK, Di Lena MA, Berman DM, Siemens DR, Mueller CR. Development and initial clinical correlation of a DNA methylation-based blood test for prostate cancer. Prostate 2020; 80:1038-1042. [PMID: 32506642 DOI: 10.1002/pros.24025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND One of the principle limitations for more precise management of advanced prostate cancer is the lack of accurate biomarkers allowing estimation of tumor burden, ongoing assessment of progression, and response to treatment. Although prostate-specific antigen (PSA) performs modestly, nonsecreting cancers including those with early castrate-resistance warrant investigation of other predictive biomarkers. The objectives of these studies were to develop and perform initial validation of a circulating tumor DNA (ctDNA) methylation assay. METHODS Methylation DETection of Circulating Tumor DNA (mDETECT) is a highly multiplexed targeted sequencing DNA methylation-based ctDNA blood test that captures the vast majority of prostate cancer phenotypes due to a careful development process that ensures that each probe region is methylated in at least 50% of all methylation-based subtypes and is not methylated in normal tissues. Next-generation sequencing of targeted polymerase chain reaction (PCR) products whose amplification is biased towards methylated DNA ensures the specificity of the assay by identifying multiple tumor-specific methylated CpG residues in each read. RESULTS The final test is comprised of 46 PCR probes to 40 regions. It is relatively resistant to contaminating normal DNA and as a result functions in both serum and plasma samples. The assay was initially validated in a variety of prostate cancer cell lines to ensure specificity. Using a small number of longitudinal samples from prostate cancer patients initiating androgen deprivation therapy, the ability of mDETECT to track tumor burden was assessed compared with PSA. The mDETECT test signal generally paralleled that of PSA increasing and decreasing commensurate with tumor evolution in these patients. In two cases it appeared to anticipate clinical progression by a number of months compared to PSA and in a PSA nonproducing case, it was able to track tumor progression. CONCLUSIONS mDETECT offers a promising tool for the assessment of prostate cancer burden based on the sensitive detection of prostate-specific ctDNA and requires further validation.
Collapse
Affiliation(s)
- Jacob J K Carson
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael A Di Lena
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - D Robert Siemens
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - Christopher R Mueller
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Biological and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
31
|
Shukla N, Siva N, Malik B, Suravajhala P. Current Challenges and Implications of Proteogenomic Approaches in Prostate Cancer. Curr Top Med Chem 2020; 20:1968-1980. [PMID: 32703135 DOI: 10.2174/1568026620666200722112450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
In the recent past, next-generation sequencing (NGS) approaches have heralded the omics era. With NGS data burgeoning, there arose a need to disseminate the omic data better. Proteogenomics has been vividly used for characterising the functions of candidate genes and is applied in ascertaining various diseased phenotypes, including cancers. However, not much is known about the role and application of proteogenomics, especially Prostate Cancer (PCa). In this review, we outline the need for proteogenomic approaches, their applications and their role in PCa.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, RJ, India.,Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Narmadhaa Siva
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, RJ, India
| | - Babita Malik
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle, Jaipur 302001, RJ, India
| |
Collapse
|
32
|
Platelets Extracellular Vesicles as Regulators of Cancer Progression-An Updated Perspective. Int J Mol Sci 2020; 21:ijms21155195. [PMID: 32707975 PMCID: PMC7432409 DOI: 10.3390/ijms21155195] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are a diverse group of membrane-bound structures secreted in physiological and pathological conditions by prokaryotic and eukaryotic cells. Their role in cell-to-cell communications has been discussed for more than two decades. More attention is paid to assess the impact of EVs in cancer. Numerous papers showed EVs as tumorigenesis regulators, by transferring their cargo molecules (miRNA, DNA, protein, cytokines, receptors, etc.) among cancer cells and cells in the tumor microenvironment. During platelet activation or apoptosis, platelet extracellular vesicles (PEVs) are formed. PEVs present a highly heterogeneous EVs population and are the most abundant EVs group in the circulatory system. The reason for the PEVs heterogeneity are their maternal activators, which is reflected on PEVs size and cargo. As PLTs role in cancer development is well-known, and PEVs are the most numerous EVs in blood, their feasible impact on cancer growth is strongly discussed. PEVs crosstalk could promote proliferation, change tumor microenvironment, favor metastasis formation. In many cases these functions were linked to the transfer into recipient cells specific cargo molecules from PEVs. The article reviews the PEVs biogenesis, cargo molecules, and their impact on the cancer progression.
Collapse
|
33
|
Hamano I, Hatakeyama S, Hamaya T, Togashi K, Okamoto T, Yamamoto H, Yoneyama T, Yoneyama T, Hashimoto Y, Ohyama C. Utility of plasma cell-free DNA in metastatic castration-resistant prostate cancer. IJU Case Rep 2020; 3:141-144. [PMID: 33392474 PMCID: PMC7770589 DOI: 10.1002/iju5.12172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/09/2020] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Cell-free DNA is suggested as a prognostic biomarker in metastatic castration-resistant prostate cancer. However, it remains unknown which parameter of cell-free DNA is correlated with the progression and prognosis of metastatic castration-resistant prostate cancer. CASE PRESENTATION A 75-year-old man with newly diagnosed prostate cancer (serum prostate-specific antigen 4891 ng/mL, Gleason score 4 + 5 = 9, cT3bN1M1) was referred to our department. He first received sequential hormonal therapies and was consequently diagnosed metastatic castration-resistant prostate cancer 64 months after initial treatment. He underwent serial examinations of plasma cell-free DNA, including concentration, androgen receptor amplification, TP53 point mutation, and PTEN loss. Only the cell-free DNA concentration increased along with disease progression and declined after the administration of abiraterone and enzalutamide. CONCLUSION This case presented that cell-free DNA concentration was possibly correlated with response to castration-resistant prostate cancer treatment and disease progression. Cell-free DNA concentration was proposed as a potential prognostic biomarker of metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Itsuto Hamano
- Department ofUrologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Shingo Hatakeyama
- Department ofAdvanced Blood Purification TherapyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tomoko Hamaya
- Department ofUrologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kyo Togashi
- Department ofUrologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Teppei Okamoto
- Department ofUrologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hayato Yamamoto
- Department ofUrologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tohru Yoneyama
- Department ofAdvanced Transplant and Regenerative MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takahiro Yoneyama
- Department ofAdvanced Transplant and Regenerative MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yasuhiro Hashimoto
- Department ofUrologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Chikara Ohyama
- Department ofUrologyHirosaki University Graduate School of MedicineHirosakiJapan
- Department ofAdvanced Blood Purification TherapyHirosaki University Graduate School of MedicineHirosakiJapan
- Department ofAdvanced Transplant and Regenerative MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
34
|
Fredsøe J, Rasmussen AKI, Mouritzen P, Bjerre MT, Østergren P, Fode M, Borre M, Sørensen KD. Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics (Basel) 2020; 10:diagnostics10040188. [PMID: 32231021 PMCID: PMC7235761 DOI: 10.3390/diagnostics10040188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Early detection of prostate cancer (PC) is paramount as localized disease is generally curable, while metastatic PC is generally incurable. There is a need for improved, minimally invasive biomarkers as current diagnostic tools are inaccurate, leading to extensive overtreatment while still missing some clinically significant cancers. Consequently, we profiled the expression levels of 92 selected microRNAs by RT-qPCR in plasma samples from 753 patients, representing multiple stages of PC and non-cancer controls. First, we compared plasma miRNA levels in patients with benign prostatic hyperplasia (BPH) or localized prostate cancer (LPC), versus advanced prostate cancer (APC). We identified several dysregulated microRNAs with a large overlap of 59 up/down-regulated microRNAs between BPH versus APC and LPC versus APC. Besides identifying several novel PC-associated dysregulated microRNAs in plasma, we confirmed the previously reported upregulation of miR-375 and downregulation of miR-146a-5p. Next, by randomly splitting our dataset into a training and test set, we identified and successfully validated a novel four microRNA diagnostic ratio model, termed bCaP (miR-375*miR-33a-5p/miR-16-5p*miR-409-3p). Combined in a model with prostate specific antigen (PSA), digital rectal examination status, and age, bCaP predicted the outcomes of transrectal ultrasound (TRUS)-guided biopsies (negative vs. positive) with greater accuracy than PSA alone (Training: area under the curve (AUC), model = 0.84; AUC, PSA = 0.63. Test set: AUC, model = 0.67; AUC, PSA = 0.56). It may be possible in the future to use this simple and minimally invasive bCaP test in combination with existing clinical parameters for a more accurate selection of patients for prostate biopsy.
Collapse
Affiliation(s)
- Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Peter Mouritzen
- Exiqon A/S, Skelstedet 16, 2950 Vedbaek, Denmark; (A.K.I.R.); (P.M.)
| | - Marianne T. Bjerre
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Peter Østergren
- Department of Urology, Herlev and Gentofte Hospital, 2900 Hellerup, Denmark; (P.Ø.); (M.F.)
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, 2900 Hellerup, Denmark; (P.Ø.); (M.F.)
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karina D. Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-7845-5316; Fax: +45-8678-2108
| |
Collapse
|