1
|
Gherghel‐Pavăl N, Pavăl D, Stan AD, Orășan OH, Sitar‐Tăut AV, Cozma A. Neurocardiology Update: The Brain-Heart Connection in Multiple Sclerosis-A Narrative Review. Health Sci Rep 2025; 8:e70607. [PMID: 40135076 PMCID: PMC11933830 DOI: 10.1002/hsr2.70607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/03/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025] Open
Abstract
Background and Aims While multiple sclerosis (MS) is primarily considered a neurological disorder, mounting evidence suggests a strong association with cardiovascular diseases (CVDs), impacting both disease progression and patient outcomes. This paper aims to raise awareness of this disease association while promoting a clinical-oriented, multidisciplinary approach that can provide long-term benefits for these patients. Methods A comprehensive literature review was conducted to gather up-to-date evidence concerning the incidence and type of CVDs associated with MS, the mechanisms underlying this disease association, as well as the impact on MS progression. Based on this evidence, a neurocardiological approach to MS in clinical practice was proposed. Results Past and present research agree on the high rates of arterial hypertension, metabolic syndrome, stroke, and myocardial infarction in people with MS. However, other prevalent comorbidities, such as venous thromboembolism and autonomic dysfunction may be easily overlooked in clinical practice. A complex interplay between genetic predisposition, traditional risk factors, autonomic dysfunction, inflammation, and treatment-related factors likely plays a role in promoting CVDs in MS. The impact of cardiovascular dysfunction on MS progression ranges from subclinical impairments, such as impaired axonal repairing, to overt physical disability and cognitive dysfunction. This paper proposes a neurocardiological approach to the daily clinical practice of MS patients, comprising general lifestyle measures, comorbidity screening at MS diagnosis, extensive work-ups for progressive/active forms, and selected autonomic dysfunction screening. Conclusion MS is a lifelong disorder that can be associated with a multitude of comorbidities, particularly cardiovascular ones. Along with increased mortality, cardiovascular pathology can adversely affect clinical and radiological-derived MS outcomes. Thus, surveillance and preventative measures are required for this population.
Collapse
Affiliation(s)
- Nicoleta Gherghel‐Pavăl
- 4th Department of Internal Medicine“Iuliu Hațieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Denis Pavăl
- Department of Psychiatry“Iuliu Hațieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Adina D. Stan
- Department of Neurology“Iuliu Hațieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Olga H. Orășan
- 4th Department of Internal Medicine“Iuliu Hațieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Adela V. Sitar‐Tăut
- 4th Department of Internal Medicine“Iuliu Hațieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Angela Cozma
- 4th Department of Internal Medicine“Iuliu Hațieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| |
Collapse
|
2
|
Jakimovski D, Qureshi F, Ramanathan M, Keshavan A, Leyden K, Jalaleddini K, Ghoreyshi A, Dwyer MG, Bergsland N, Marr K, Weinstock-Guttman B, Zivadinov R. Lower arterial cerebral blood flow is associated with worse neuroinflammation and immunomodulation composite proteomic scores. Mult Scler Relat Disord 2024; 87:105687. [PMID: 38776599 DOI: 10.1016/j.msard.2024.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Brain hypoperfusion is linked with worse physical, cognitive and MRI outcomes in multiple sclerosis (MS). Understanding the proteomic signatures related to hypoperfusion could provide insights into the pathophysiological mechanism. METHODS 140 people with MS (pwMS; 86 clinically isolated syndrome (CIS)/relapsing-remitting (RRMS) and 54 progressive (PMS)) were included. Cerebral arterial blood flow (CABF) was determined using ultrasound Doppler measurement as the sum of blood flow in the bilateral common carotid arteries and vertebral arteries. Proteomic analysis was performed using the Multiple Sclerosis Disease Activity (MSDA) test assay panel performed on the Olink™ platform. The MSDA test measures the concentrations of 18 proteins that are age and sex-adjusted. It utilizes a stacked classifier logistic regression model to determine 4 disease pathway scores (immunomodulation, neuroinflammation, myelin biology, and neuroaxonal integrity) as well as an overall disease activity score (1 to 10). MRI measures of T2 lesion volume (LV) and whole brain volume (WBV) were derived. RESULTS The pwMS were on average 54 years old and had an average CABF of 951 mL/min. There were no differences in CABF between CIS/RRMS vs. PMS groups. Lower CABF levels were correlated with the overall disease activity score (r = -0.26, p = 0.003) and with the neuroinflammation (r = -0.29, p = 0.001), immunomodulation (r = -0.26, p = 0.003) and neuroaxonal integrity (r = -0.23, p = 0.007) pathway scores. After age and body mass index (BMI)-adjustment, lower CABF remained associated with the neuroinflammatory (r = -0.23, p = 0.011) and immunomodulation (r = -0.20, p = 0.024) pathway scores. The relationship between CABF and the neuroinflammation pathway score remained significant after adjusting for T2-LV and WBV (p = 0.038). Individual analyses identified neurofilament light chain, CCL-20 and TNFSF13B as contributors. When compared to the highest quartile (>1133.5 mL/min), the pwMS in the lowest CABF quartile (<764 mL/min) had greater overall disease activity score (p = 0.003), neuroinflammation (p = 0.001), immunomodulation (p = 0.004) and neuroaxonal integrity pathway scores (p = 0.007). CONCLUSION Lower cerebral arterial perfusion in MS is associated with changes in neuroinflammatory/immunomodulation pathways and their respective proteomic biomarkers. These findings may suggest a relationship between the hypoperfusion and pro-inflammatory MS changes rather than being merely an epiphenomenon subsequent to lower energy demands.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | | | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | | | | | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Karen Marr
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Marsool MDM, Prajjwal P, John J, Keluskar HS, Sivarajan VV, Kundiri KA, Lam JR, Chavda S, Atew HG, Marsool ADM, Hameed AAZ, Hussin OA. Association of multiple sclerosis with stroke: A comprehensive review. Health Sci Rep 2024; 7:e1837. [PMID: 38264155 PMCID: PMC10804671 DOI: 10.1002/hsr2.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Background Multiple sclerosis (MS) is a chronic immune-mediated disorder characterized by the degradation of the myelin sheath in the central nervous system. Research indicates that individuals with MS exhibit a higher susceptibility to stroke compared to the general population. This association is rooted in shared underlying mechanisms, specifically involving neuroinflammatory processes. Methodology We performed an extensive search on PubMed, MEDLINE, Embase, Scopus, and Google Scholar using specific terms. The search terms included variations of "multiple sclerosis," "stroke," "cerebrovascular disease," "vascular risk factors," "disease-modifying therapies," and "neuroinflammation." The search was limited to articles published from January 1, 2000, up to 31 May, 2023. Results and Discussion Stroke, a global health burden characterized by significant mortality and adult disability, underscores the critical importance of understanding the link between MS and stroke. Despite a growing body of research establishing an elevated risk of stroke in MS patients, notable information gaps persist. Limited prospective multicenter studies on stroke incidence in MS patients contribute to an incomplete understanding of the precise relationship between these two conditions. Conclusion In conclusion, this review underscores the critical need for a thorough understanding of the complex relationship between MS and stroke. The identified risk factors and the influence of MS DMTs on stroke risk necessitate further investigation to inform evidence-based preventive and therapeutic strategies. Bridging the existing information gaps through prospective multicenter studies is imperative for a comprehensive understanding of this association. The development of targeted diagnostic and therapeutic approaches for acute stroke risk in MS patients is paramount to mitigate the impact of these debilitating conditions. Ultimately, this review serves as a foundation for future efforts to enhance preventative measures and therapeutic interventions, thereby improving the overall quality of life for individuals with MS susceptible to strokes.
Collapse
Affiliation(s)
| | | | - Jobby John
- Internal MedicineDr. Somervell Memorial CSI Medical College and HospitalNeyyāttinkaraIndia
| | | | | | | | - Justin R. Lam
- Internal MedicineCebu Institute of MedicineCebuPhilippines
| | - Sachi Chavda
- Internal MedicineGMERS Medical College SolaAhmedabadIndia
| | - Hundaol G. Atew
- Internal MedicineSt Paul's Millennium Medical CollegeAddis AbabaEthiopia
| | | | | | | |
Collapse
|
4
|
Doskas T, Dardiotis E, Vavougios GD, Ntoskas KT, Sionidou P, Vadikolias K. Stroke risk in multiple sclerosis: a critical appraisal of the literature. Int J Neurosci 2023; 133:1132-1152. [PMID: 35369835 DOI: 10.1080/00207454.2022.2056459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Observational studies suggest that the occurrence of stroke on multiple sclerosis (MS) patients is higher compared to the general population. MS is a heterogeneous disease that involves an interplay of genetic, environmental and immune factors. The occurrence of stroke is subject to a wide range of both modifiable and non-modifiable, short- and long-term risk factors. Both MS and stroke share common risk factors. The immune mechanisms that underlie stroke are similar to neurodegenerative diseases and are attributed to neuroinflammation. The inflammation in autoimmune diseases may, therefore, predispose to an increased risk for stroke or potentiate the effect of conventional stroke risk factors. There are, however, additional determinants that contribute to a higher risk and incidence of stroke in MS. Due to the challenges that are associated with their differential diagnosis, the objective is to present an overview of the factors that may contribute to increased susceptibility or occurrence of stroke in MSpatients by performing a review of the available to date literature. As both MS and stroke can individually detrimentally affect the quality of life of afflicted patients, the identification of factors that contribute to an increased risk for stroke in MS is crucial for the prompt implementation of preventative therapeutic measures to limit the additive burden that stroke imposes.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | |
Collapse
|
5
|
Young N, Zivadinov R, Dwyer MG, Bergsland N, Weinstock-Guttman B, Jakimovski D. Retinal Blood Vessel Analysis Using Optical Coherence Tomography (OCT) in Multiple Sclerosis. Diagnostics (Basel) 2023; 13:diagnostics13040596. [PMID: 36832084 PMCID: PMC9955793 DOI: 10.3390/diagnostics13040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Background: Both greater retinal neurodegenerative pathology and greater cardiovascular burden are seen in people with multiple sclerosis (pwMS). Studies also describe multiple extracranial and intracranial vascular changes in pwMS. However, there have been few studies examining the neuroretinal vasculature in MS. Our aim is to determine differences in retinal vasculature between pwMS and healthy controls (HCs) and to determine the relationship between retinal nerve fiber layer (RNFL) thickness and retinal vasculature characteristics. Methods: A total of 167 pwMS and 48 HCs were scanned using optical coherence tomography (OCT). Earlier OCT scans were available for 101 pwMS and 35 HCs for an additional longitudinal analysis. Segmentation of retinal vasculature was performed in a blinded manner in MATLAB's optical coherence tomography segmentation and evaluation GUI (OCTSEG) software. Results: PwMS has fewer retinal blood vessels when compared to HCs (35.1 vs. 36.8, p = 0.017). Over the 5.4 year follow up, and when compared to HCs, pwMS has a significant decrease in number of retinal vessels (average loss of -3.7 p = 0.007). Moreover, the total vessel diameter in pwMS does not change when compared to the increase in vessel diameter in the HCs (0.06 vs. 0.3, p = 0.017). Only in pwMS is there an association between lower RNFL thickness and fewer retinal vessel number and smaller diameter (r = 0.191, p = 0.018 and r = 0.216, p = 0.007). Conclusions: Over 5 years, pwMS exhibit significant retinal vascular changes that are related to greater atrophy of the retinal layers.
Collapse
Affiliation(s)
- Nicholas Young
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Center for Biomedical Imaging and Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- RCCS, Fondazione Don Carlo Gnocchi ONLUS, 20121 Milan, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14202, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- Correspondence: ; Tel.: +1-716-859-7040
| |
Collapse
|
6
|
Cholesterol pathway biomarkers are associated with neuropsychological measures in multiple sclerosis. Mult Scler Relat Disord 2023; 69:104374. [PMID: 36403378 DOI: 10.1016/j.msard.2022.104374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cognitive impairment (CI) is frequent in persons with multiple sclerosis (PwMS) and is linked to neurodegeneration. Cholesterol pathway biomarkers (CPB) are associated with blood-brain barrier breakdown, lesions, and neurodegeneration in multiple sclerosis (MS). CPB could influence CI. METHODS This cross-sectional study (n = 163) included 74 relapsing-remitting MS (RR-MS), 48 progressive MS (P-MS) and 41 healthy control (HC) subjects. The assessed physical disability and cognitive measures were: Nine-hole Peg Test (NHPT), Timed 25-Foot Walk, Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test-3, and Beck Depression Inventory-Fast Screen. CPB panel included plasma total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and the apolipoproteins (Apo), ApoA-I, ApoA-II, ApoB, ApoC-II and ApoE. Disability and cognitive measures were assessed as dependent variables in regression analyzes with age, sex, body mass index, years of education, HC vs. RR-MS vs. P-MS status, CPB, and a HC vs. RR-MS vs. P-MS status × CPB interaction term as predictors. RESULTS SDMT was associated with the interaction terms for HDL-C (p = 0.045), ApoA-I (p = 0.032), ApoB (p = 0.032), TC/HDL-C (p = 0.013), and ApoB/ApoA-I (p = 0.008) ratios. CPB associations of SDMT were not abrogated upon adjusting for brain parenchymal volume. NHPT performance was associated with the interaction terms for TC (p = 0.047), LDL-C (p = 0.017), ApoB (p = 0.001), HDL-C (p = 0.035), ApoA-I (p = 0.032), ApoC-II (p = 0.049) and ApoE (p = 0.037), TC/HDL-C (p < 0.001), and ApoB/ApoA-I ratios (p < 0.001). CONCLUSIONS The LDL to HDL proportion is associated with SDMT and NHPT in MS. The findings are consistent with a potential role for CPB in CI.
Collapse
|
7
|
Jakimovski D, Bergsland N, Dwyer MG, Choedun K, Marr K, Weinstock-Guttman B, Zivadinov R. Cerebral blood flow dependency on systemic arterial circulation in progressive multiple sclerosis. Eur Radiol 2022; 32:6468-6479. [PMID: 35359167 DOI: 10.1007/s00330-022-08731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To determine the relationship between systemic arterial blood flow (SABF) and cerebral perfusion measures in multiple sclerosis (MS) patients. METHODS Cerebral perfusion and SABF were assessed in 118 patients (75 clinically isolated syndrome (CIS)/relapsing-remitting MS and 43 progressive MS) through MRI examination with dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) and Doppler ultrasound, respectively. Measures of mean transit time (MTT) and time-to-peak (TTP), measured in seconds, of the normal-appearing whole brain (NAWB) and gray matter (GM) were calculated. Blood flow through the bilateral common carotid and vertebral arteries (in mL/min) represents the SABF. Whole brain volume (WBV) and body mass index (BMI) were used as additional covariates. RESULTS Higher systolic blood pressure was associated with lower SABF (-0.256, p = 0.006). In the total MS sample, higher SABF was associated with shorter MTT and TTP of the NAWB (r = -0.256, p = 0.007 and r = -0.307, p = 0.001) and GM (r = -0.239, p = 0.012 and r = -0.3, p = 0.001). The SABF and TTP associations were driven by the PMS patients (r = -0.451, p = 0.004 and r = -0.451, p = 0.011). Only in PMS, SABF remained a significant predictor of NAWB (standardized β = -0.394, p = 0.022) and GM TTP (standardized β = -0.351, p = 0.037). MTT and TTP were significantly lower in patients within lower SABF quartiles when compared to the higher quartiles (age-, sex-, BMI-, and WBV-adjusted ANCOVA p < 0.025). CONCLUSIONS The direct relationship between systemic and cerebral blood flow seen in PMS patients may suggest failure in cerebrovascular reactivity mechanisms and insufficient perfusion control. Cerebral blood flow in PMS may be increasingly dependent on the SABF. KEY POINTS • In progressive multiple sclerosis (MS) patients, the systemic arterial blood flow (SABF) is associated with perfusion-based measure of time-to-peak (TTP) of the normal-appearing whole brain (r = -0.451, p = 0.004) and gray matter (r = -0.451, p = 0.004). • Cerebral blood flow in progressive MS is directly dependent on systemic arterial blood flow and may be influenced by blood pressure changes. • Neurovascular unit impairment may play an important role in MS pathophysiology and contribute towards greater clinical disability.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Kunsang Choedun
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Karen Marr
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
8
|
Laganà MM, Pirastru A, Ferrari F, Di Tella S, Cazzoli M, Pelizzari L, Jin N, Zacà D, Alperin N, Baselli G, Baglio F. Cardiac and Respiratory Influences on Intracranial and Neck Venous Flow, Estimated Using Real-Time Phase-Contrast MRI. BIOSENSORS 2022; 12:612. [PMID: 36005008 PMCID: PMC9405895 DOI: 10.3390/bios12080612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
The study of brain venous drainage has gained attention due to its hypothesized link with various neurological conditions. Intracranial and neck venous flow rate may be estimated using cardiac-gated cine phase-contrast (PC)-MRI. Although previous studies showed that breathing influences the neck's venous flow, this aspect could not be studied using the conventional segmented PC-MRI since it reconstructs a single cardiac cycle. The advent of real-time PC-MRI has overcome these limitations. Using this technique, we measured the internal jugular veins and superior sagittal sinus flow rates in a group of 16 healthy subjects (12 females, median age of 23 years). Comparing forced-breathing and free-breathing, the average flow rate decreased and the respiratory modulation increased. The flow rate decrement may be due to a vasoreactive response to deep breathing. The respiratory modulation increment is due to the thoracic pump's greater effect during forced breathing compared to free breathing. These results showed that the breathing mode influences the average blood flow and its pulsations. Since effective drainage is fundamental for brain health, rehabilitative studies might use the current setup to investigate if respiratory exercises positively affect clinical variables and venous drainage.
Collapse
Affiliation(s)
| | - Alice Pirastru
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Ferrari
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Sonia Di Tella
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123 Milan, Italy
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Laura Pelizzari
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ning Jin
- MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Cleveland, OH 44106, USA
| | | | - Noam Alperin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Giuseppe Baselli
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | | |
Collapse
|
9
|
Association of age and disease duration with comorbidities and disability: a study of the Swiss Multiple Sclerosis Registry. Mult Scler Relat Disord 2022; 67:104084. [DOI: 10.1016/j.msard.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
|
10
|
Jakimovski D, Gibney BL, Marr K, Ramasamy DP, Dwyer MG, Bergsland N, Weinstock-Guttman B, Ramanathan M, Zivadinov R. Lower cerebral arterial blood flow is associated with greater serum neurofilament light chain levels in multiple sclerosis patients. Eur J Neurol 2022; 29:2299-2308. [PMID: 35474598 DOI: 10.1111/ene.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypoperfusion, vascular pathology, and cardiovascular risk factors are associated with disease severity in multiple sclerosis (MS). We aimed to assess relationships between cerebral arterial blood flow (CABF) and serum neurofilament light chain (sNfL), as neuronal damage biomarker. METHODS AND MATERIALS Total CABF was measured in 137 patients (86 clinically isolated syndrome (CIS)/relapsing-remitting (RR) and 51 progressive MS (PMS)) and 48 healthy controls (HCs) using Doppler ultrasound. sNfL was quantitated using single molecule assay (Simoa). 3.0T MRI examination allowed quantification of T2 lesion and whole-brain volume (WBV). Multiple linear regression models determined the sNfL associated with CABF after correction for demographic and MRI-derived variables. RESULTS After adjustment for age, sex and BMI, total CABF remained statistically significant and model comparisons showed that CABF explained additional 2.6% of the sNfL variance (β=-0.167, p=0.044). CABF also remained significant in a step-wise regression model (β=0.18, p=0.034) upon the inclusion of T2 lesion burden and WBV effects. Patients in the lowest CABF quartile (CABF≤761mL/min) had significantly higher sNfL (34.6pg/mL versus 23.9pg/mL, adjusted-p=0.042) when compared to the highest quartile (CABF≥1130mL/min). CONCLUSION Lower CABF is associated with increased sNfL in MS patients, highlighting the relationship between cerebral hypoperfusion and axonal pathology.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Brianna L Gibney
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Karen Marr
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Arji G, Rezaeizadeh H, Moghadasi AN, Sahraian MA, Karimi M, Alizadeh M. Complementary and alternative therapies in multiple sclerosis: a systematic literature classification and analysis. Acta Neurol Belg 2022; 122:281-303. [PMID: 35060096 DOI: 10.1007/s13760-021-01847-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION AND AIM Multiple Sclerosis (MS) is a disease determined by inflammatory demyelination and neurodegeneration in the Central Nervous System (CNS). Despite the extensive utilization of Complementary and Alternative Medicine (CAM) in MS, there is a need to have comprehensive evidence regarding their application in the management of MS symptoms. This manuscript is a Systematic Literature Review and classification (SLR) of CAM therapies for the management of MS symptoms based on the International Classification of Functioning Disability and Health (ICF) model. METHOD Studies published between 1990 and 2020 IN PubMed, Science Direct, Scopus, Pro-Quest, and Google Scholar using CAM therapies for the management of MS symptoms were analyzed. RESULTS Thirty-one papers on the subject were analyzed and classified. The findings of this review clearly show that mindfulness, yoga, and reflexology were frequently used for managing MS symptoms. Moreover, most of the papers used mindfulness and yoga as a CAM therapy for the management of MS symptoms, which mostly devoted to mental functions such as fatigue, depression, cognition, neuromuscular functions such as gait, muscle strength, and spasticity, and sensory function such as balance, in addition to, reflexology is vastly used to management of mental functions of MS patients. CONCLUSION Evidence suggested that CAM therapies in patients with MS have the potential to target and enhancement numerous elements outlined in the ICF model. Although the use of CAM therapies in MS symptom management is promising, there is a need for strict clinical trials. Future research direction should concentrate on methodologically powerful studies to find out the potential efficacy of CAM intervention.
Collapse
Affiliation(s)
- Goli Arji
- School of Nursing and Midwifery, Health Information Technology Department, Saveh University of Medical Sciences, Saveh, Iran
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Abdolrreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Persian Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mojtaba Alizadeh
- Department of Computer Engineering, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
12
|
Yang F, Hu T, He K, Ying J, Cui H. Multiple Sclerosis and the Risk of Cardiovascular Diseases: A Mendelian Randomization Study. Front Immunol 2022; 13:861885. [PMID: 35371017 PMCID: PMC8964627 DOI: 10.3389/fimmu.2022.861885] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Observational studies suggested that multiple sclerosis (MS) is associated with cardiovascular diseases (CVDs). However, the causal association has not been fully elucidated. Thus, we aim to assess the causality of the associations of MS with risk of CVDs. METHODS A two-sample Mendelian randomization (MR) study was performed to explore the causality. Genetic instruments were identified for MS from a genome-wide association study (GWAS) involving 115,803 individuals. Summary-level data for CVDs were obtained from different GWAS meta-analysis studies. MR analysis was conducted mainly using the inverse-variance weighted (IVW) method. Sensitivity analyses were further performed to ensure the robustness of the results. RESULTS This MR study found suggestive evidence that genetic liability to MS was associated with an increased risk of coronary artery disease (CAD) [odds ratio (OR), 1.02; 95% confidence interval (CI), 1.00-1.04; p = 0.03], myocardial infarction (MI) (OR, 1.03; 95% CI, 1.00-1.06; p = 0.01), heart failure (HF) (OR, 1.02; 95% CI, 1.00-1.04; p = 0.02), all-cause stroke (AS) (OR, 1.02; 95% CI, 1.00-1.05; p = 0.02), and any ischemic stroke (AIS) (OR, 1.02; 95% CI, 1.00-1.05; p = 0.04). The null-association was observed between MS and the other CVDs. Further analyses found little evidence of pleiotropy. CONCLUSIONS We provided suggestive genetic evidence for the causal associations of MS with increased risk of CAD, MI, HF, AS, and AIS, which highlighted the significance of active monitoring and prevention of cardiovascular risk to combat cardiovascular comorbidities in MS patients.
Collapse
Affiliation(s)
- Fangkun Yang
- Department of Cardiology, Ningbo Hospital of Zhejiang University (Ningbo First Hospital), School of Medicine, Zhejiang University, Ningbo, China,Department of Cardiology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China,Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Teng Hu
- School of Medicine, Ningbo University, Ningbo First Hospital, Ningbo, China
| | - Kewan He
- School of Medicine, Ningbo University, Ningbo First Hospital, Ningbo, China
| | - Jiajun Ying
- Department of Cardiology, Ningbo Hospital of Zhejiang University (Ningbo First Hospital), School of Medicine, Zhejiang University, Ningbo, China
| | - Hanbin Cui
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, China,*Correspondence: Hanbin Cui,
| |
Collapse
|
13
|
Baselli G, Laganà MM. The intracranial Windkessel implies arteriovenous pulsatile coupling increased by venous resistances. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Katraki-Pavlou S, Kastana P, Bousis D, Ntenekou D, Varela A, Davos CH, Nikou S, Papadaki E, Tsigkas G, Athanasiadis E, Herradon G, Mikelis CM, Beis D, Papadimitriou E. Protein tyrosine phosphatase receptor zeta 1 deletion triggers defective heart morphogenesis in mice and zebrafish. Am J Physiol Heart Circ Physiol 2021; 322:H8-H24. [PMID: 34767486 PMCID: PMC8754060 DOI: 10.1152/ajpheart.00400.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein tyrosine phosphatase receptor-ζ1 (PTPRZ1) is a transmembrane
tyrosine phosphatase receptor highly expressed in embryonic stem cells. In the
present work, gene expression analyses of Ptprz1−/− and Ptprz1+/+ mice endothelial cells and hearts pointed to
an unidentified role of PTPRZ1 in heart development through the regulation of
heart-specific transcription factor genes. Echocardiography analysis in mice
identified that both systolic and diastolic functions are affected in Ptprz1−/− compared with Ptprz1+/+ hearts, based on a dilated left
ventricular (LV) cavity, decreased ejection fraction and fraction shortening,
and increased angiogenesis in Ptprz1−/−
hearts, with no signs of cardiac hypertrophy. A zebrafish ptprz1−/− knockout was also generated and exhibited
misregulated expression of developmental cardiac markers, bradycardia, and
defective heart morphogenesis characterized by enlarged ventricles and defected
contractility. A selective PTPRZ1 tyrosine phosphatase inhibitor affected
zebrafish heart development and function in a way like what is observed in the
ptprz1−/− zebrafish. The same
inhibitor had no effect in the function of the adult zebrafish heart, suggesting
that PTPRZ1 is not important for the adult heart function, in line with data
from the human cell atlas showing very low to negligible PTPRZ1 expression in
the adult human heart. However, in line with the animal models, Ptprz1 was expressed in many different cell types in
the human fetal heart, such as valvar, fibroblast-like, cardiomyocytes, and
endothelial cells. Collectively, these data suggest that PTPRZ1 regulates
cardiac morphogenesis in a way that subsequently affects heart function and
warrant further studies for the involvement of PTPRZ1 in idiopathic congenital
cardiac pathologies. NEW & NOTEWORTHY Protein tyrosine phosphatase receptor
ζ1 (PTPRZ1) is expressed in fetal but not adult heart and seems
to affect heart development. In both mouse and zebrafish animal models, loss of
PTPRZ1 results in dilated left ventricle cavity, decreased ejection fraction,
and fraction shortening, with no signs of cardiac hypertrophy. PTPRZ1 also seems
to be involved in atrioventricular canal specification, outflow tract
morphogenesis, and heart angiogenesis. These results suggest that PTPRZ1 plays a
role in heart development and support the hypothesis that it may be involved in
congenital cardiac pathologies.
Collapse
Affiliation(s)
- Stamatiki Katraki-Pavlou
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece.,Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Pinelopi Kastana
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Dimitris Bousis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Despoina Ntenekou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Greece
| | - Sophia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Greece
| | - Eleni Papadaki
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, Patras University Hospital, Rio, Patras, Greece
| | | | - Gonzalo Herradon
- Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Dimitris Beis
- Zebrafish Disease Models Lab, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, Greece
| |
Collapse
|
15
|
Hoang PD, Lord S, Gandevia S, Menant J. Exercise and Sports Science Australia (ESSA) position statement on exercise for people with mild to moderate multiple sclerosis. J Sci Med Sport 2021; 25:146-154. [PMID: 34538565 DOI: 10.1016/j.jsams.2021.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS), the most common chronic and progressive neurological condition of the central nervous system, affects 26,000 Australian adults. Exercise training has beneficial effects on MS-related impairments including reduced muscular strength, poor aerobic capacity and impaired mobility, and in consequence can improve quality of life. This Position Statement provides evidence-based recommendations for exercise prescription and delivery of exercise training for people with MS with mild to moderate disability. DESIGN AND METHODS Synthesis of published works within the field of exercise training in MS. RESULTS Exercise provides many benefits to people with MS. There is strong evidence that resistance and aerobic training, performed 2 to 3 times per week at a moderate intensity, are safe and can improve muscle strength, cardiorespiratory fitness, balance, fatigue, functional capacity, mobility and quality of life in people with MS with mild to moderate disability (Expanded Disease Severity Scale (EDSS) ≤ 6.5). However, the evidence for those with severe disability (EDSS >6.5) is less clear. The effects of exercise on MS pathogenesis, central nervous structures and other outcomes such as depression and cognitive impairment, have not been adequately investigated. Effective exercise interventions to improve balance, joint contractures and reduce falls in people with MS are also urgently needed as well as investigations of long-term (≥1 year) effects of exercise training. CONCLUSIONS Resistance and aerobic training exercises are effective to alleviate some characteristic signs and symptoms in MS and should be supplemented by balance exercise to prevent falls. Exercise training programs should be prescribed and delivered by qualified exercise professionals. It is important to recognise and accommodate exercise-associated complications such as fatigue and heat sensitivity.
Collapse
Affiliation(s)
- Phu D Hoang
- Neuroscience Research Australia (NeuRA), Australia; Australian Catholic University, Australia; Multiple Sclerosis Limited, Australia; School of Population Health, University of New South Wales, Australia.
| | - Stephen Lord
- Neuroscience Research Australia (NeuRA), Australia; School of Population Health, University of New South Wales, Australia
| | | | - Jasmine Menant
- Neuroscience Research Australia (NeuRA), Australia; School of Population Health, University of New South Wales, Australia
| |
Collapse
|
16
|
Granziera C, Wuerfel J, Barkhof F, Calabrese M, De Stefano N, Enzinger C, Evangelou N, Filippi M, Geurts JJG, Reich DS, Rocca MA, Ropele S, Rovira À, Sati P, Toosy AT, Vrenken H, Gandini Wheeler-Kingshott CAM, Kappos L. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 2021; 144:1296-1311. [PMID: 33970206 PMCID: PMC8219362 DOI: 10.1093/brain/awab029] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response.
Collapse
Affiliation(s)
- Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center, Basel, Switzerland
- Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
- UCL Institutes of Healthcare Engineering and Neurology, London, UK
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola De Stefano
- Neurology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Christian Enzinger
- Department of Neurology and Division of Neuroradiology, Medical University of Graz, Graz, Austria
| | - Nikos Evangelou
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, multiple sclerosis Center Amsterdam, Neuroscience Amsterdam, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Ropele
- Neuroimaging Research Unit, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Àlex Rovira
- Section of Neuroradiology (Department of Radiology), Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ahmed T Toosy
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Geraldes R, Esiri MM, Perera R, Yee SA, Jenkins D, Palace J, DeLuca GC. Vascular disease and multiple sclerosis: a post-mortem study exploring their relationships. Brain 2021; 143:2998-3012. [PMID: 32875311 DOI: 10.1093/brain/awaa255] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/17/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular comorbidities have a deleterious impact on multiple sclerosis clinical outcomes but it is unclear whether this is mediated by an excess of extracranial vascular disease (i.e. atherosclerosis) and/or of cerebral small vessel disease or worse multiple sclerosis pathology. To address these questions, a study using a unique post-mortem cohort wherein whole body autopsy reports and brain tissue were available for interrogation was established. Whole body autopsy reports were used to develop a global score of systemic vascular disease that included aorta and coronary artery atheroma, cardiac hypertensive disease, myocardial infarction and ischaemic stroke. The score was applied to 85 multiple sclerosis cases (46 females, age range 39 to 84 years, median 62.0 years) and 68 control cases. Post-mortem brain material from a subset of the multiple sclerosis (n = 42; age range 39-84 years, median 61.5 years) and control (n = 39) cases was selected for detailed neuropathological study. For each case, formalin-fixed paraffin-embedded tissue from the frontal and occipital white matter, basal ganglia and pons was used to obtain a global cerebral small vessel disease score that captured the presence and/or severity of arteriolosclerosis, periarteriolar space dilatation, haemosiderin leakage, microinfarcts, and microbleeds. The extent of multiple sclerosis-related pathology (focal demyelination and inflammation) was characterized in the multiple sclerosis cases. Regression models were used to investigate the influence of disease status on systemic vascular disease and cerebral small vessel disease scores and, in the multiple sclerosis group, the relationship between multiple sclerosis-related pathology and both vascular scores. We show that: (i) systemic cardiovascular burden, and specifically atherosclerosis, is lower and cerebral small vessel disease is higher in multiple sclerosis cases that die at younger ages compared with control subjects; (ii) the association between systemic vascular disease and cerebral small vessel disease is stronger in patients with multiple sclerosis compared with control subjects; and (iii) periarteriolar changes, including periarteriolar space dilatation, haemosiderin deposition and inflammation, are key features of multiple sclerosis pathology outside the classic demyelinating lesion. Our data argue against a common primary trigger for atherosclerosis and multiple sclerosis but suggest that an excess burden of cerebral small vessel disease in multiple sclerosis may explain the link between vascular comorbidity and accelerated irreversibility disability.
Collapse
Affiliation(s)
- Ruth Geraldes
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Rafael Perera
- Nuffield Department of Primary Care Health Sciences, Oxford, UK
| | - Sydney A Yee
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Damian Jenkins
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Jakimovski D, Zivadinov R, Dwyer MG, Bergsland N, Ramasamy DP, Browne RW, Weinstock-Guttman B, Ramanathan M. High density lipoprotein cholesterol and apolipoprotein A-I are associated with greater cerebral perfusion in multiple sclerosis. J Neurol Sci 2020; 418:117120. [PMID: 32947088 DOI: 10.1016/j.jns.2020.117120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The pathophysiological mechanisms underlying the associations of multiple sclerosis (MS) neurodegeneration serum cholesterol profiles is currently unknown. OBJECTIVE To determine associations between lipid profile measures and cerebral perfusion-based indices in MS patients. METHODS Seventy-seven MS patients underwent 3 T MRI. Cerebral blood volume (CBV), time-to-peak (TTP) and mean transit time (MTT) measures were computed from dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) for normal-appearing brain tissue (NABT), GM, cortex, deep gray matter (DGM) and thalamus. Total cholesterol, low and high-density lipoprotein cholesterol (LDL-C and HDL-C) and the apolipoproteins (Apo), ApoA-I, ApoA-II, ApoB, ApoC-II and ApoE levels were measured in plasma. Age and body mass index (BMI)-adjusted correlations were used to assess the associations between PWI and lipid profile measures. RESULTS Higher HDL-C levels were associated with shorter MTT, which are indicative of greater perfusion, in NABT (p = 0.012), NAWM (p = 0.021), GM (p = 0.009), cortex (p = 0.014), DGM p = 0.015; and thalamus p = 0.015). The HDL-C-associated apolipoproteins, ApoA-I and ApoA-II, were associated with shorter MTT of the same brain regions (all p < 0.028). HDL-C and ApoA-I levels were also associated with shorter TTP, indicative of faster cerebral blood delivery. ApoC-II was associated with lower nCBV of the GM and cortex (p = 0.035 and p = 0.014, respectively). CONCLUSION The HDL pathway is associated with better global brain perfusion and faster cerebral blood delivery as measured by shorter MTT and TTP, respectively. ApoC-II may be associated with lower cortical and DGM perfusion.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
19
|
Serum Neurofilament Light Chain Levels are Associated with Lower Thalamic Perfusion in Multiple Sclerosis. Diagnostics (Basel) 2020; 10:diagnostics10090685. [PMID: 32932824 PMCID: PMC7554722 DOI: 10.3390/diagnostics10090685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Both perfusion-weighted imaging (PWI) measures and serum neurofilament light (sNfL) chain levels have been independently associated with disability in multiple sclerosis (MS) patients. This study aimed to determine whether these measures are correlated to each other or independently describe different MS processes. For this purpose, 3T MRI dynamic susceptibility contrast (DSC)–PWI and single-molecule assay (Simoa)-based sNfL methods were utilized when investigating 86 MS patients. The perfusion measures of mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF) were derived for the normal-appearing whole brain (NAWB), the normal-appearing white matter (NAWM), the gray matter (GM), the deep GM (DGM), and the thalamus. The normalized CBV and CBF (nCBV and nCBV) were calculated by dividing by the corresponding NAWM measure. Age- and sex-adjusted linear regression models were used to determine associations between the DSC–PWI and sNfL results. False discovery rate (FDR)-adjusted p-values < 0.05 were considered statistically significant. A greater age and thalamic MTT were independently associated with higher sNfL levels (p < 0.001 and p = 0.011) and explained 36.9% of sNfL level variance. NAWM MTT association with sNfL levels did not survive the FDR correction. In similar models, a lower thalamic nCBF and nCBV were both associated with greater sNfL levels (p < 0.001 and p = 0.022), explaining 37.8% and 44.7% of the variance, respectively. In conclusion, higher sNfL levels were associated with lower thalamic perfusion.
Collapse
|
20
|
Jakimovski D, Bergsland N, Dwyer MG, Traversone J, Hagemeier J, Fuchs TA, Ramasamy DP, Weinstock-Guttman B, Benedict RHB, Zivadinov R. Cortical and Deep Gray Matter Perfusion Associations With Physical and Cognitive Performance in Multiple Sclerosis Patients. Front Neurol 2020; 11:700. [PMID: 32765407 PMCID: PMC7380109 DOI: 10.3389/fneur.2020.00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Reports suggest presence of cerebral hypoperfusion in multiple sclerosis (MS). Currently there are no studies that examine if the cerebral MS perfusion is affected by presence of cardiovascular comorbidities. Objective: To investigate associations between cerebral perfusion and disease outcomes in MS patients with and without comorbid cardiovascular diseases (CVD). Materials: One hundred three MS patients (75.7% female) with average age of 54.4 years and 21.1 years of disease duration underwent 3T MRI dynamic susceptibility contrast (DSC) imaging and were tested with Expanded Disability Status Scale, Multiple Sclerosis Severity Score (MSSS), Timed 25-Foot Walk (T25FW), 9-Hole Peg Test (9HPT) and Symbol Digit Modalities Test (SDMT). Structural and perfusion-based normalized measures of cerebral blood flow (nCBF), cerebral blood volume (nCBV) and mean transit time (MTT) of global, tissue-specific and deep gray matter (DGM) areas were derived. CBV and CBF were normalized by the normal-appearing white matter counterpart. Results: In linear step-wise regression analysis, age- and sex-adjusted, MSSS (R 2 = 0.186) was associated with whole brain volume (WBV) (β = -0.244, p = 0.046) and gray matter (GM) nCBF (β = -0.22, p = 0.035). T25FW (R 2 = 0.278) was associated with WBV (β = -0.289, p = 0.012) and hippocampus nCBV (β = -0.225, p = 0.03). 9HPT (R 2 = 0.401) was associated with WBV (β = 0.195, p = 0.049) and thalamus MTT (β = -0.198, p=0.032). After adjustment for years of education, SDMT (R 2 = 0.412) was explained by T2-lesion volume (β = -0.305, p = 0.001), and GM nCBV (β = 0.236, p = 0.013). No differences in MTT, nCBF nor nCBV measures between patients with (n = 42) and without CVD (n = 61) were found. Perfusion-measures were also not able to distinguish CVD status in a logistic regression model. Conclusion: Decreased GM and deep GM perfusion is associated with poorer MS outcomes, but not with presence of CVD.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.,IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - John Traversone
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Tom A Fuchs
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Neurology, Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
21
|
Habek M, Pucić D, Mutak T, Crnošija L, Lovrić M, Krbot Skorić M. The association between the adrenergic hyperactivity and blood pressure values in people with multiple sclerosis. Neurol Sci 2020; 41:3157-3164. [PMID: 32350673 DOI: 10.1007/s10072-020-04432-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/16/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To evaluate the evolution of adrenergic baroreflex sensitivity (BRSa) over 2-year follow-up and to investigate the effect of baseline BRSa indices on blood pressure values after 2 years in people with multiple sclerosis (pwMS). METHODS The following data were analysed at baseline and after 2 years: BRSa measured with BRSa1, α-BRSa and β-BRSa, supine and tilted levels of epinephrine and norepinephrine, supine and tilted systolic and diastolic blood pressure levels. RESULTS Compared to baseline values, there was no change in α-BRSa (6.96 ± 2.56 vs. 6.64 ± 2.24, p = 0.379) at month 24. α-BRSa at month 24 positively correlated with tilted levels of norepinephrine at month 24 (rp = 0.357, p = 0.005). Univariable linear regression analysis revealed that α-BRSa at baseline predicts the value of tilted systolic and diastolic blood pressure at month 24 (B = 2.724, 95% CI 1.357-4.091, p < 0.001 and B = 1.489, 95% CI 0.459-2.519, p = 0.005). CONCLUSION This study provides further evidence for possible role of α-BRSa as a marker of adrenergic hyperactivity in pwMS. These results may explain increased risk for cardiovascular diseases in pwMS.
Collapse
Affiliation(s)
- Mario Habek
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Kišpatićeva 12, HR-10000, Zagreb, Croatia. .,School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Dunja Pucić
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Mutak
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Crnošija
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Kišpatićeva 12, HR-10000, Zagreb, Croatia
| | - Mila Lovrić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Magdalena Krbot Skorić
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Center Zagreb, Kišpatićeva 12, HR-10000, Zagreb, Croatia.,Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
22
|
Jakimovski D, Zivadinov R, Weinstock-Guttman B, Bergsland N, Dwyer MG, Lagana MM. Longitudinal analysis of cerebral aqueduct flow measures: multiple sclerosis flow changes driven by brain atrophy. Fluids Barriers CNS 2020; 17:9. [PMID: 32000809 PMCID: PMC6993504 DOI: 10.1186/s12987-020-0172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Background Several small cross-sectional studies have investigated cerebrospinal fluid (CSF) flow dynamics in multiple sclerosis (MS) patients and have reported mixed results. Currently, there are no longitudinal studies that investigate CSF dynamics in MS patients. Objective To determine longitudinal changes in CSF dynamics measured at the level of aqueduct of Sylvius (AoS) in MS patients and matched healthy controls (HCs). Materials and methods Forty (40) MS patients and 20 HCs underwent 3T MRI cine phase contrast imaging with velocity-encoded pulse-gated sequence at baseline and 5-year follow-up. For atrophy determination, MS patients underwent additional high-resolution 3D T1-weighted imaging. Measures of AoS cross-sectional area (CSA), average systolic and diastolic velocity peaks, maximal systolic and diastolic velocity peaks and average CSF flow rates were determined. Brain atrophy and ventricular CSF (vCSF) expansion rates were determined. Cross-sectional and longitudinal changes were derived by analysis of covariance (ANCOVA) and paired repeated tests. Confirmatory general linear models were also performed. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant. Results The MS population demonstrated significant increase in maximal diastolic peak (from 7.23 to 7.86 cm/s, non-adjusted p = 0.037), diastolic peak flow rate (7.76 ml/min to 9.33 ml/min, non-adjusted p = 0.023) and AoS CSA (from 3.12 to 3.69 mm2, adjusted p = 0.001). The only differentiator between MS patients and HCs was the greater AoS CSA (3.58 mm2 vs. 2.57 mm2, age- and sex-adjusted ANCOVA, p = 0.045). The AoS CSA change was associated with vCSF expansion rate (age- and sex-adjusted Spearman’s correlation r = 0.496, p = 0.019) and not with baseline nor change in maximal velocity. The expansion rate of the vCSF space explained an additional 23.8% of variance in change of AoS CSA variance when compared to age and sex alone (R2 = 0.273, t = 2.557, standardized β = 0.51, and p = 0.019). Conclusion MS patients present with significant longitudinal AoS enlargement, potentially due to regional atrophy changes and ex-vacuo expansion of the aqueduct.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,MRI Laboratory, CADiTeR, IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Marcella Maria Lagana
- MRI Laboratory, CADiTeR, IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Via Alfonso Capecelatro 66, 20148, Milan, Italy.
| |
Collapse
|
23
|
Lagana MM, Pelizzari L, Baglio F. Relationship between MRI perfusion and clinical severity in multiple sclerosis. Neural Regen Res 2020; 15:646-652. [PMID: 31638086 PMCID: PMC6975150 DOI: 10.4103/1673-5374.266906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Perfusion alterations within several brain regions have been shown in multiple sclerosis patients using different magnetic resonance imaging (MRI) techniques. Furthermore, MRI-derived brain perfusion metrics have been investigated in association with multiple sclerosis phenotypes, physical disability, and cognitive impairment. However, a review focused on these aspects is still missing. Our aim was to review all the studies investigating the relationship between perfusion MRI and clinical severity during the last fifteen years to understand the clinical relevance of these findings. Perfusion differences among phenotypes were observed both with 1.5T and 3T scanners, with progressive multiple sclerosis presenting with lower perfusion values than relapsing-remitting multiple sclerosis patients. However, only 3T scanners showed a statistically significant distinction. Controversial results about the association between MRI-derived perfusion metrics and physical disability scores were found. However, the majority of the studies showed that lower brain perfusion and longer transit time are associated with more severe physical disability and worse cognitive performances.
Collapse
|
24
|
Jakimovski D, Zivadinov R, Pelizzari L, Browne R, Weinstock-Guttman B, Ramanathan M. Lipoprotein(a) Levels Are Associated with the Size of Extracranial Arteries in Multiple Sclerosis. J Vasc Res 2019; 57:16-23. [DOI: 10.1159/000502115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022] Open
|