1
|
Shah S, Nag A, Lucke-Wold B. Autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma patients: a systematic review of literature. Clin Transl Oncol 2024:10.1007/s12094-024-03830-9. [PMID: 39714754 DOI: 10.1007/s12094-024-03830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Glioblastoma (GBM) is one of the most common primary malignant brain tumors. Annually, there are about six instances recorded per 100,000 inhabitants. Treatment for GB has not advanced all that much. Novel medications have been investigated recently for the management of newly diagnosed and recurring instances of GBM. For GBM, surgery, radiation therapy, and alkylating chemotherapy are often used therapies. Immunotherapies, which use the patient's immune reaction against tumors, have long been seen as a potential cancer treatment. One such treatment is the dendritic cell (DC) vaccine. This cell-based vaccination works by stimulating the patient's own dendritic cells' antigenic repertoire, therefore inducing a polyclonal T-cell response. Systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used to search, and the articles published in peer-reviewed scientific journals were associated with brain GBM, cancer, and Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination. Selected 90 articles were used in this manuscript, of which 30 articles were clinical trials. Compared to shared tumor antigen peptide vaccines, autologous cancer DCs have a greater ability to stimulate the immune system, which is why dendritic cell fusion vaccines have shown early promise in several clinical studies. Survival rates for vaccinated patients were notably better compared to matched or historical controls. For newly diagnosed patients, the median overall survival (mOS) ranged from 15 to 41.4 months, while the progression-free survival (PFS) ranged from 6 to 25.3 months. We discovered through this analysis that autologous multiomics analysis of DC vaccines showed enhanced antitumor immunity with a focus on using activated, antigen-loaded donor DCs to trigger T-cell responses against cancer, particularly in glioblastoma. It also showed improved patient survival, especially when combined with standard chemoradiotherapy. DC vaccines show promise in treating GBM by enhancing survival and reducing tumor recurrence. However, challenges in vaccine production, antigen selection, and tumor heterogeneity highlight the need for continued research and optimization to improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA.
| | - Aiswarya Nag
- Sri Ramachandra University Medical College: Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
2
|
Khot S, Krishnaveni A, Gharat S, Momin M, Bhavsar C, Omri A. Innovative drug delivery strategies for targeting glioblastoma: overcoming the challenges of the tumor microenvironment. Expert Opin Drug Deliv 2024; 21:1837-1857. [PMID: 39545622 DOI: 10.1080/17425247.2024.2429702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Glioblastoma multiforme(GBM) presents a challenging endeavor in therapeutic management because of its highly aggressive tumor microenvironment(TME). This complex TME, characterized by hypoxia, nutrient deprivation, immunosuppression, stromal barriers, increased interstitial fluid pressure and the presence of the blood-brain barrier(BBB), frequently compromises the efficacy of promising therapeutic strategies. Consequently, a deeper understanding of the TME and the development of innovative methods to overcome its associated challenges are essential for improving treatment outcomes in GBM. AREAS COVERED This review critically evaluates the major obstacles within the GBM TME, focusing on the biological and structural barriers that limit therapeutic delivery and efficacy. Novel approaches designed to address these barriers, including advanced formulation strategies and precise targeting mechanisms, are explored in detail. Additionally, the review highlights the potential of emerging technologies such as 3D-printed models, scaffolds, Robotics and artificial intelligence(AI) techniques and machine learning, in tackling TME- associated hurdles. EXPERT OPINION The integration of these innovative methods presents a promising path for enhancing the specificity and efficacy of GBM therapies. By combining these advanced strategies, the potential for improving patient outcomes in GBM treatment can be significantly enhanced, offering hope for overcoming the limitations posed by the TME.
Collapse
Affiliation(s)
- Sidra Khot
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Anandha Krishnaveni
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Director, SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Science, Mumbai, India
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery System Facility, Department of Chemistry and Biochemistry, Laurentian University, Sandbury, Ontario, Canada
| |
Collapse
|
3
|
Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon 2024; 10:e27087. [PMID: 38439834 PMCID: PMC10909773 DOI: 10.1016/j.heliyon.2024.e27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancers with a poor prognosis. Over the past century since its initial discovery and medical description, the development of effective treatments for this condition has seen limited progress. Despite numerous efforts, only a handful of drugs have gained approval for its treatment. However, these treatments have not yielded substantial improvements in both overall survival and progression-free survival rates. One reason for this is its unique features such as heterogeneity and difficulty of drug delivery because of two formidable barriers, namely the blood-brain barrier and the tumor-blood barrier. Over the past few years, significant developments in therapeutic approaches have given rise to promising novel and advanced therapies. Target-specific therapies, such as monoclonal antibodies (mAbs) and small molecules, stand as two important examples; however, they have not yielded a significant improvement in survival among GBM patients. Gene therapy, a relatively nascent advanced approach, holds promise as a potential treatment for cancer, particularly GBM. It possesses the potential to address the limitations of previous treatments and even newer advanced therapies like mAbs, owing to its distinct properties. This review aims to elucidate the current status and advancements in gene therapy for GBM treatment, while also presenting its future prospects.
Collapse
Affiliation(s)
- Mohammad Rayati
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med 2022; 12:7207-7221. [PMID: 36464889 PMCID: PMC10067114 DOI: 10.1002/cam4.5511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Gliomas, especially the glioblastomas, are one of the most aggressive intracranial tumors with poor prognosis. This might be explained by the heterogeneity of tumor cells and the inhibitory immunological microenvironment. Dendritic cells (DCs), as the most potent in vivo functional antigen-presenting cells, link innate immunity with adaptive immunity. However, their function is suppressed in gliomas. Therefore, overcoming the dysfunction of DCs in the TME might be critical to treat gliomas. METHOD In this paper we proposed the specificity of the glioma microenvironment, analyzed the pathways leading to the dysfunction of DCs in tumor microenvironment of patients with glioma, summarized influence of DC-based immunotherapy on the tumor microenvironment and proposed new development directions and possible challenges of DC vaccines. RESULT DC vaccines can improve the immunosuppressive microenvironment of glioma patients. It will bring good treatment prospects to patients. We also proposed new development directions and possible challenges of DC vaccines, thus providing an integrated understanding of efficacy on DC vaccines for glioma treatment.
Collapse
Affiliation(s)
- Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Minqi Jia
- Department of Radiation Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| | - Guiping Peng
- Xiangya School of Medicine Central South University Changsha China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine Central South University Changsha Hunan China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
- Cancer Research Institute, Basic School of Medicine Central South University Changsha Hunan China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
5
|
Hsieh HT, Huang HC, Chung CW, Chiang CC, Hsia T, Wu HF, Huang RL, Chiang CS, Wang J, Lu TT, Chen Y. CXCR4-targeted nitric oxide nanoparticles deliver PD-L1 siRNA for immunotherapy against glioblastoma. J Control Release 2022; 352:920-930. [PMID: 36334859 DOI: 10.1016/j.jconrel.2022.10.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/26/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
While immunotherapy has emerged as a promising strategy to treat glioblastoma multiforme (GBM), the limited availability of immunotherapeutic agents in tumors due to the presence of the blood-brain barrier (BBB) and immunosuppressive tumor microenvironment dampens efficacy. Nitric oxide (NO) plays a role in modulating both the BBB and tumor vessels and could thus be delivered to disrupt the BBB and improve the delivery of immunotherapeutics into GBM tumors. Herein, we report an immunotherapeutic approach that utilizes CXCR4-targeted lipid‑calcium-phosphate nanoparticles with NO donors (LCP-NO NPs). The delivery of NO resulted in enhanced BBB permeability and thus improved gene delivery across the BBB. CXCR4-targeted LCP-NO NPs delivered siRNA against the immune checkpoint ligand PD-L1 to GBM tumors, silenced PD-L1 expression, increased cytotoxic T cell infiltration and activation in GBM tumors, and suppressed GBM progression. Thus, the codelivery of NO and PD-L1 siRNA by these CXCR4-targeted NPs may serve as a potential immunotherapy for GBM.
Collapse
Affiliation(s)
- Hsin-Tzu Hsieh
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Chin Chiang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Fang Wu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Rui-Lin Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
6
|
Daneshimehr F, Barabadi Z, Abdolahi S, Soleimani M, Verdi J, Ebrahimi-Barough S, Ai J. Angiogenesis and Its Targeting in Glioblastoma with Focus on Clinical Approaches. CELL JOURNAL 2022; 24:555-568. [PMID: 36259473 PMCID: PMC9617020 DOI: 10.22074/cellj.2022.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 01/25/2023]
Abstract
Angiogenesis is a characteristic of glioblastoma (GBM), the most fatal and therapeutic-resistant brain tumor. Highly expressed angiogenic cytokines and proliferated microvascular system made anti-angiogenesis treatments a thoroughly plausible approach for GBM treatment. Many trials have proved to be not only as a safe but also as an effective approach in GBM retardation in a certain time window as seen in radiographic response rates; however, they have failed to implement significant improvements in clinical manifestation whether alone or in combination with radio/chemotherapy. Bevasizumab, an anti-vascular endothelial growth factor-A (VEGF-A) antibody, is the only agent that exerts meaningful clinical influence by improving progression-free survival (PFS) and partially alleviate clinical symptoms, nevertheless, it could not prolong the overall survival (OS) in patients with GBM. The data generated from phase II trials clearly revealed a correlation between elevated reperfusion, subsequent to vascular normalization induction, and improved clinical outcomes which explicitly indicates anti-angiogenesis treatments are beneficial. In order to prolong these initial benefits observed in a certain period of time after anti-angiogenesis targeting, some aspects of the therapy should be tackled: recognition of other bypass angiogenesis pathways activated following antiangiogenesis therapy, identification of probable pathways that induce insensitivity to shortage of blood supply, and classifying the patients by mapping their GBM-related gene profile as biomarkers to predict their responsiveness to therapy. Herein, the molecular basis of brain vasculature development in normal and tumoral conditions is briefly discussed and it is explained how "vascular normalization" concept opened a window to a better comprehension of some adverse effects observed in anti-angiogenesis therapy in clinical condition. Then, the most targeted angiogenesis pathways focused on ligand/receptor interactions in GBM clinical trials are reviewed. Lastly, different targeting strategies applied in anti-angiogenesis treatment are discussed.
Collapse
Affiliation(s)
- Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Zahra Barabadi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of
Medical Sciences, Hamadan, Iran
| | - Shahrokh Abdolahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran,P.O.Box: 14177-55469Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies
in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Shalabi H, Nellan A, Shah NN, Gust J. Immunotherapy Associated Neurotoxicity in Pediatric Oncology. Front Oncol 2022; 12:836452. [PMID: 35265526 PMCID: PMC8899040 DOI: 10.3389/fonc.2022.836452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Novel immunotherapies are increasingly being employed in pediatric oncology, both in the upfront and relapsed/refractory settings. Through various mechanisms of action, engagement and activation of the immune system can cause both generalized and disease site-specific inflammation, leading to immune-related adverse events (irAEs). One of the most worrisome irAEs is that of neurotoxicity. This can present as a large spectrum of neurological toxicities, including confusion, aphasia, neuropathies, seizures, and/or death, with variable onset and severity. Earlier identification and treatment, generally with corticosteroids, remains the mainstay of neurotoxicity management to optimize patient outcomes. The pathophysiology of neurotoxicity varies across the different therapeutic strategies and remains to be elucidated in most cases. Furthermore, little is known about long-term neurologic sequelae. This review will focus on neurotoxicity seen with the most common immunotherapies used in pediatric oncology, including CAR T cell therapy, alternative forms of adoptive cell therapy, antibody therapies, immune checkpoint inhibitors, and tumor vaccines. Herein we will discuss the incidence, pathophysiology, symptomatology, diagnosis, and management strategies currently being utilized for immunotherapy-associated neurotoxicity with a focus on pediatric specific considerations.
Collapse
Affiliation(s)
- Haneen Shalabi
- National Cancer Institute, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, United States
| | - Anandani Nellan
- National Cancer Institute, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, United States
| | - Nirali N. Shah
- National Cancer Institute, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, United States
| | - Juliane Gust
- Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Patel V, Shah J. The current and future aspects of glioblastoma: Immunotherapy a new hope? Eur J Neurosci 2021; 54:5120-5142. [PMID: 34107127 DOI: 10.1111/ejn.15343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most perilous and highly malignant in all the types of brain tumor. Regardless of the treatment, the diagnosis of the patients in GBM is very poor. The average survival rate is only 21 months after multimodal combinational therapies, which include chemotherapy, radiation, and surgery. Due to the intrusive and infiltrative nature of GBM, it requires elective therapy for specific targeting of tumor cells. Tumor vaccine in a form of immunotherapy has potential to address this need. Nanomedicine-based immunotherapies have clutch the trigger of systemic and specific immune response against tumor cells, which might be the approach to eliminating the unrelieved cancer. In this mechanism, combination of immunomodulators with specific target and appropriate strategic vaccines can stifle tumor anti-immune defense system and/or increase the capabilities of the body to move up immunity against the tumor. Here, we explore the different types of immunotherapies and vaccines for brain tumor treatment and their clinical trials, which bring the feasibility of the future of personalized vaccine of nanomedicine-based immunotherapies for the brain tumor. We believe that immunotherapy could result in a significantly more stable reaction in GBM patients.
Collapse
Affiliation(s)
- Vimal Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
9
|
Lara-Velazquez M, Shireman JM, Lehrer EJ, Bowman KM, Ruiz-Garcia H, Paukner MJ, Chappell RJ, Dey M. A Comparison Between Chemo-Radiotherapy Combined With Immunotherapy and Chemo-Radiotherapy Alone for the Treatment of Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:662302. [PMID: 34046356 PMCID: PMC8144702 DOI: 10.3389/fonc.2021.662302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background Immunotherapy for GBM is an emerging field which is increasingly being investigated in combination with standard of care treatment options with variable reported success rates. Objective To perform a systematic review of the available data to evaluate the safety and efficacy of combining immunotherapy with standard of care chemo-radiotherapy following surgical resection for the treatment of newly diagnosed GBM. Methods A literature search was performed for published clinical trials evaluating immunotherapy for GBM from January 1, 2000, to October 1, 2020, in PubMed and Cochrane using PICOS/PRISMA/MOOSE guidelines. Only clinical trials with two arms (combined therapy vs. control therapy) were included. Outcomes were then pooled using weighted random effects model for meta-analysis and compared using the Wald-type test. Primary outcomes included 1-year overall survival (OS) and progression-free survival (PFS), secondary outcomes included severe adverse events (SAE) grade 3 or higher. Results Nine randomized phase II and/or III clinical trials were included in the analysis, totaling 1,239 patients. The meta-analysis revealed no statistically significant differences in group’s 1-year OS [80.6% (95% CI: 68.6%–90.2%) vs. 72.6% (95% CI: 65.7%–78.9%), p = 0.15] or in 1-year PFS [37% (95% CI: 26.4%–48.2%) vs. 30.4% (95% CI: 25.4%–35.6%) p = 0.17] when the immunotherapy in combination with the standard of care group (combined therapy) was compared to the standard of care group alone (control). Severe adverse events grade 3 to 5 were more common in the immunotherapy and standard of care group than in the standard of care group (47.3%, 95% CI: 20.8–74.6%, vs 43.8%, 95% CI: 8.7–83.1, p = 0.81), but this effect also failed to reach statistical significance. Conclusion Our results suggests that immunotherapy can be safely combined with standard of care chemo-radiotherapy without significant increase in grade 3 to 5 SAE; however, there is no statistically significant increase in overall survival or progression free survival with the combination therapy.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Jack M Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kelsey M Bowman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Henry Ruiz-Garcia
- Department of Neurosurgery and Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mitchell J Paukner
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Richard J Chappell
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
10
|
Monie DD, Bhandarkar AR, Parney IF, Correia C, Sarkaria JN, Vile RG, Li H. Synthetic and systems biology principles in the design of programmable oncolytic virus immunotherapies for glioblastoma. Neurosurg Focus 2021; 50:E10. [PMID: 33524942 DOI: 10.3171/2020.12.focus20855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Oncolytic viruses (OVs) are a class of immunotherapeutic agents with promising preclinical results for the treatment of glioblastoma (GBM) but have shown limited success in recent clinical trials. Advanced bioengineering principles from disciplines such as synthetic and systems biology are needed to overcome the current challenges faced in developing effective OV-based immunotherapies for GBMs, including off-target effects and poor clinical responses. Synthetic biology is an emerging field that focuses on the development of synthetic DNA constructs that encode networks of genes and proteins (synthetic genetic circuits) to perform novel functions, whereas systems biology is an analytical framework that enables the study of complex interactions between host pathways and these synthetic genetic circuits. In this review, the authors summarize synthetic and systems biology concepts for developing programmable, logic-based OVs to treat GBMs. Programmable OVs can increase selectivity for tumor cells and enhance the local immunological response using synthetic genetic circuits. The authors discuss key principles for developing programmable OV-based immunotherapies, including how to 1) select an appropriate chassis, a vector that carries a synthetic genetic circuit, and 2) design a synthetic genetic circuit that can be programmed to sense key signals in the GBM microenvironment and trigger release of a therapeutic payload. To illustrate these principles, some original laboratory data are included, highlighting the need for systems biology studies, as well as some preliminary network analyses in preparation for synthetic biology applications. Examples from the literature of state-of-the-art synthetic genetic circuits that can be packaged into leading candidate OV chassis are also surveyed and discussed.
Collapse
Affiliation(s)
- Dileep D Monie
- Departments of1Immunology.,6Mayo Clinic Alix School of Medicine.,7Mayo Clinic Graduate School of Biomedical Sciences; and Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Cristina Correia
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | | | - Hu Li
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| |
Collapse
|
11
|
Kang X, Zheng Y, Hong W, Chen X, Li H, Huang B, Huang Z, Tang H, Geng W. Recent Advances in Immune Cell Therapy for Glioblastoma. Front Immunol 2020; 11:544563. [PMID: 33193310 PMCID: PMC7609403 DOI: 10.3389/fimmu.2020.544563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of astrocytoma with short survival and a high recurrence rate and remains a global problem. Currently, surgery, chemotherapy, radiotherapy, and other comprehensive treatments are the main treatment modalities, but patients still have a poor prognosis mainly due to the infiltrative growth of GBM and the protective effect of the blood–brain barrier on tumor cells. Therefore, immunotherapy is expected to be a good option for GBM. In the immune system, different cells play varying roles in the treatment of GBM, so understanding the roles played by various immune cells in treating GBM and considering how to combine these effects to maximize the efficacy of these cells is important for the selection of comprehensive and optimal treatment plans and improving GBM prognosis. Therefore, this study reviews the latest research progress on the role of various types of immune cells in the treatment of GBM.
Collapse
Affiliation(s)
- Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yiyang Zheng
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xixi Chen
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huiting Li
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Baojun Huang
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhenyang Huang
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules 2020; 10:biom10101370. [PMID: 32993063 PMCID: PMC7599606 DOI: 10.3390/biom10101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.
Collapse
|
13
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
14
|
Yang T, Kong Z, Ma W. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential. Hum Vaccin Immunother 2020; 17:546-553. [PMID: 32643507 DOI: 10.1080/21645515.2020.1782692] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint inhibitors (CIs) have changed the landscape of tumor immunotherapy. Glioblastoma (GBM) remains the most common primary malignant brain tumor in adults and has a very poor prognosis. Due to the high invasiveness and aggressiveness of GBM, there is considerable interest in programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) treatment. However, the immunosuppressive and immune-privileged characteristics of GBM limit the efficacy of CIs. While clinical studies of CI monotherapies have shown unsatisfactory survival benefits, new treatment strategies have received attention. Multiple clinical studies have focused on combination of standard therapy (temozolomide, radiotherapy), targeted therapy and other immunotherapies, and some have reported results. Here, we reviewed recent clinical trials of anti-PD-1/PD-L1 monotherapy, studies with neoadjuvant strategies, and preclinical and clinical studies of combination immunotherapies for GBM. The preliminary clinical reports in certain subsets of patients with hypermutated or mismatch repair system deficiency GBM are also discussed.
Collapse
Affiliation(s)
- Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| |
Collapse
|
15
|
Non-Invasive Delivery of Therapeutics into the Brain: The Potential of Aptamers for Targeted Delivery. Biomedicines 2020; 8:biomedicines8050120. [PMID: 32422973 PMCID: PMC7277349 DOI: 10.3390/biomedicines8050120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly specialised network of blood vessels that effectively separates the brain environment from the circulatory system. While there are benefits, in terms of keeping pathogens from entering the brain, the BBB also complicates treatments of brain pathologies by preventing efficient delivery of macromolecular drugs to diseased brain tissue. Although current non-invasive strategies of therapeutics delivery into the brain, such as focused ultrasound and nanoparticle-mediated delivery have shown various levels of successes, they still come with risks and limitations. This review discusses the current approaches of therapeutic delivery into the brain, with a specific focus on non-invasive methods. It also discusses the potential for aptamers as alternative delivery systems and several reported aptamers with promising preliminary results.
Collapse
|
16
|
|
17
|
Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol 2018; 9:879. [PMID: 30271342 PMCID: PMC6147115 DOI: 10.3389/fphar.2018.00879] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Abstract
The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of blood brain barrier are discussed. Finally societal and economic aspects are described with a presentation of the orphan drug status that can accelerate the development of GBM therapies, patents protecting various GBM treatments, the different actors tackling GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis of the different companies involved in the development of GBM therapies.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France.,Nanobacterie SARL, Paris, France
| |
Collapse
|