1
|
Li Z, Ngu R, Naik AA, Trinh K, Paharkova V, Liao H, Liu Y, Zhuang C, Le D, Pei H, Asante I, Mittelman SD, Louie S. Adipocyte maturation impacts daunorubicin disposition and metabolism. Eur J Clin Invest 2024; 54:e14307. [PMID: 39254480 DOI: 10.1111/eci.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Acute lymphoblastic leukaemia (ALL) is the most common type of childhood leukaemia with effective chemotherapeutic treatment. However, obesity has been associated with higher ALL chemoresistance rates and lower event-free survival rates. The molecular mechanism of how obesity promotes chemotherapy resistance is not well delineated. OBJECTIVES This study evaluated the effect of adipocyte maturation on sequestration and metabolism of chemotherapeutic drug daunorubicin (DNR). METHODS Using targeted LC-MS/MS multi-analyte assay, DNR sequestration and metabolism were studied in human preadipocyte and adipocyte cell lines, where expressions of DNR-metabolizing enzymes aldo-keto reductases (AKR) and carbonyl reductases (CBR) were also evaluated. In addition, to identify the most DNR-metabolizing AKR/CBR isoforms, recombinant human AKR and CBR enzymes were subject to DNR metabolism. The results were further validated by AKR-, CBR-specific inhibitors. RESULTS This report shows that adipocyte maturation upregulates expressions of AKR and CBR enzymes (by 4- to 60- folds, p < .05), which is positively associated with enhanced sequestration and metabolism of DNR in adipocytes compared to preadipocytes (by ~30%, p < .05). In particular, adipocyte maturation upregulates AKR1C3 and CBR1, which are the predominate metabolic enzyme isoforms responsible for DNR biotransformation to its metabolites. CONCLUSION Fat is an expandable tissue that can sequester and detoxify DNR when stimulated by obesity, likely through the upregulation of DNR-metabolizing enzymes AKR1C3 and CBR1. Our data partially explains why obese ALL patients may be more likely to become chemoresistant towards DNR, and provides evidence for potential clinical investigation targeting obesity to reduce DNR chemoresistance.
Collapse
Affiliation(s)
- Zeyang Li
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Rachael Ngu
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Aditya Anil Naik
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Kaitlyn Trinh
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Vladislava Paharkova
- Division of Pediatric Endocrinology, University of California Los Angeles (UCLA) Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, California, USA
| | - Hanyue Liao
- College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Yulu Liu
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Cindy Zhuang
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Danh Le
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Hua Pei
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Isaac Asante
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven D Mittelman
- Division of Pediatric Endocrinology, University of California Los Angeles (UCLA) Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, Los Angeles, California, USA
| | - Stan Louie
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Hembruff SL, Laberge ML, Villeneuve DJ, Guo B, Veitch Z, Cecchetto M, Parissenti AM. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer 2008; 8:318. [PMID: 18980695 PMCID: PMC2596802 DOI: 10.1186/1471-2407-8-318] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 11/03/2008] [Indexed: 01/01/2023] Open
Abstract
Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2), epirubicin (MCF-7EPI), paclitaxel (MCF-7TAX-2), or docetaxel (MCF-7TXT). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of resistance cannot be attributed solely to changes in drug accumulation or the activity of drug transporters. The identities of these additional drug-transporter-independent mechanisms are discussed, including their likely clinical relevance.
Collapse
Affiliation(s)
- Stacey L Hembruff
- Regional Cancer Program, Sudbury Regional Hospital, and Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON Canada.
| | | | | | | | | | | | | |
Collapse
|
3
|
Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. Pharmacogenet Genomics 2008; 18:621-31. [PMID: 18551042 DOI: 10.1097/fpc.0b013e328301a869] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Doxorubicin is a cytotoxic drug with potential for severe myelosuppression that is highly variable and poorly predictable. METHODS We correlated CBR1 and CBR3 genotypes with the pharmacokinetics and pharmacodynamics of doxorubicin in 101 Southeast Asian breast cancer patients receiving first-line doxorubicin. RESULTS A common CBR3 11G>A variant was associated with lower doxorubicinol area under the concentration-time curve (AUC)/doxorubicin AUC metabolite ratio (P=0.009, GG vs. AA; trend test, P=0.004), lower CBR3 expression in breast tumor tissue (P=0.001, GG vs. AA), greater tumor reduction (P=0.015, GG vs. AA), and greater percentage reduction of leukocyte and platelet counts at nadir (trend test, P < or = 0.03). Chinese and Malays had higher frequency of the CBR3 11G>A variant than Indians (P < or = 0.002). Another variant CBR3 730G>A was associated with higher doxorubicinol AUC (P=0.009, GG vs. AA) and CBR3 expression in breast tumor tissue (P=0.001, GG vs AA). CONCLUSION Polymorphisms in CBR3 may explain interindividual and interethnic variability of doxorubicin pharmacokinetics and pharmacodynamics.
Collapse
|
4
|
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008; 40:553-624. [PMID: 18949601 PMCID: PMC2663408 DOI: 10.1080/03602530802431439] [Citation(s) in RCA: 381] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises enzymes that catalyze redox transformations involved in biosynthesis, intermediary metabolism, and detoxification. Substrates of AKRs include glucose, steroids, glycosylation end-products, lipid peroxidation products, and environmental pollutants. These proteins adopt a (beta/alpha)(8) barrel structural motif interrupted by a number of extraneous loops and helixes that vary between proteins and bring structural identity to individual families. The human AKR family differs from the rodent families. Due to their broad substrate specificity, AKRs play an important role in the phase II detoxification of a large number of pharmaceuticals, drugs, and xenobiotics.
Collapse
Affiliation(s)
- Oleg A Barski
- Division of Cardiology, Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | |
Collapse
|
5
|
Kaiserová H, Simůnek T, van der Vijgh WJF, Bast A, Kvasnicková E. Flavonoids as protectors against doxorubicin cardiotoxicity: Role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1065-74. [PMID: 17572073 DOI: 10.1016/j.bbadis.2007.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/14/2007] [Accepted: 05/14/2007] [Indexed: 11/27/2022]
Abstract
Anthracycline antibiotics (e.g. doxorubicin and daunorubicin) are among the most effective and widely used anticancer drugs. Unfortunately, their clinical use is limited by the dose-dependent cardiotoxicity. Flavonoids represent a potentially attractive class of compounds to mitigate the anthracycline cardiotoxicity due to their iron-chelating, antioxidant and carbonyl reductase-inhibitory effects. The relative contribution of various characteristics of the flavonoids to their cardioprotective activity is, however, not known. A series of ten flavonoids including quercetin, quercitrin, 7-monohydroxyethylrutoside (monoHER) and seven original synthetic compounds were employed to examine the relationships between their inhibitory effects on carbonyl reduction, iron-chelation and antioxidant properties with respect to their protective potential against doxorubicin-induced cardiotoxicity. Cardioprotection was investigated in the neonatal rat ventricular cardiomyocytes whereas the H9c2 cardiomyoblast cells were used for cytotoxicity testing. Iron chelation was examined via the calcein assay and antioxidant effects and site-specific scavenging were quantified by means of inhibition of lipid peroxidation and hydroxyl radical scavenging activity, respectively. Inhibition of carbonyl reductases was assessed in cytosol from human liver. None of the flavonoids tested had better cardioprotective action than the reference cardioprotector, monoHER. However, a newly synthesized quaternary ammonium analog with comparable cardioprotective effects has been identified. No direct correlation between the iron-chelating and/or antioxidant effect and cardioprotective potential has been found. A major role of carbonyl reductase inhibition seems unlikely, as the best two cardioprotectors of the series are only weak reductase inhibitors.
Collapse
Affiliation(s)
- Helena Kaiserová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
Saad SY, Najjar TA, Arafah MM. Cardioprotective Effects of Subcutaneous Ebselen against Daunorubicin-Induced Cardiomyopathy in Rats. Basic Clin Pharmacol Toxicol 2006; 99:412-7. [PMID: 17169121 DOI: 10.1111/j.1742-7843.2006.pto_523.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Daunorubicin is an anthracycline antitumour agent that can cause severe cardiomyopathy leading to a frequently fatal congestive heart failure. Although the exact molecular mechanisms of cardiotoxicity are not well established, oxidative mechanisms involving daunorubicin-induced superoxide anion production have been proposed. In the present study, we showed that ebselen a seleno-organic compound exhibiting glutathione peroxidase-like and antioxidant activities, significantly ameliorated daunorubicin-induced cardiomyopathy. Subcutaneous administration of ebselen to daunorubicin-treated rats showed significant improvement in serum cardiac indices including creatine kinase isoenzyme and lactate dehydrogenase as well as serum glutathione (GSH) peroxidase. Moreover, myocardium of daunorubicin/ebselen-treated rats showed significant improvement in daunorubicin-induced depletion of GSH peroxidase activity and reduced glutathione content, in addition to attenuation of daunorubicin-induced increase in cardiac malondialdehyde production and total nitrate/nitrite concentration levels. These results were confirmed by histopathological examination of ventricles of daunorubicin/ebselen-treated rats that revealed significant improvement of the characteristic cardiomyopathic changes induced by daunorubicin treatment. Interestingly, control rats treated with ebselen showed significant elevation in serum lactate dehydrogenase activity, cardiac malondialdehyde production and total nitrate/nitrite concentration levels compared with the untreated control animals. In conclusion, ebselen treatment significantly alleviates daunorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sherif Y Saad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|