1
|
Al-Ali MA, Younis NS, Aldhubiab B, Alatawi AS, Mohamed ME, Abd El Dayem MS. Anethole alleviates Doxorubicin-induced cardiac and renal toxicities: Insights from network pharmacology and animal studies. Chem Biol Interact 2024; 401:111155. [PMID: 39029857 DOI: 10.1016/j.cbi.2024.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Doxorubicin (Dox) is widely used as a chemotherapy drug, while anethole (AN) is primarily known as the main aromatic component in various plant species. This research focused on the impact of AN on the cardiac and renal toxicity induced by Dox and to understand the underlying mechanisms. For cardiac toxicity, Wistar rats were categorized into four groups: a Control group; a Dox group, where rats received 2.5 mg/kg of Dox intraperitoneally every other day; and two Dox + AN groups, where animals were administered Dox (2.5 mg/kg/every other day, IP) along with 125 mg/kg or 250 mg/kg of AN, respectively. The renal toxicity study included similar groups, with the Dox group receiving a single dose of 20 mg/kg of Dox intraperitoneally on the tenth day, and the Dox + AN groups receiving 125 mg/kg and 250 mg/kg of AN for two weeks, alongside the same dose of Dox (20 mg/kg, IP, once on the 10th day). Parameters assessed included ECG, cardiac injury markers (CK, CK-MB, and LDH), and kidney function tests (Cr, BUN, uric acid, LDL, Kim-1, NGAL, and CysC). Antioxidant activity, lipid peroxidation, inflammation, and apoptotic markers were also monitored in heart and renal tissues. Gene expression levels of the TLR4/MyD88/NFκB pathway, along with Bax and Bcl-2, were evaluated. Dox significantly altered ECG, elevated cardiac injury markers, and renal function markers. It also augmented gene expressions of TLR4/MyD88/NFκB, amplified oxidative stress, inflammatory cytokines and apoptotic markers. Conversely, AN reduced cardiac injury markers and kidney function tests, improved ECG, diminished TLR4/MyD88/NFκB gene expression, and alleviated oxidative stress by increasing antioxidant enzyme activities and reducing inflammatory cytokines. AN also enhanced Bcl-2 levels and inhibited Bax and the cleavage of caspase-3 and 9. AN countered the lipid peroxidation, oxidative stress, inflammation, and apoptosis induced by Dox, marking it as a potential preventive strategy against Dox-induced nephrotoxic and cardiotoxic injuries.
Collapse
Affiliation(s)
- Maryam Ali Al-Ali
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Nancy Safwat Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Zagazig University Hospitals, Zagazig University, Zagazig, 44519, Egypt.
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Abdulaziz Suwailem Alatawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; King Fahad Specialist Hospital, Tabuk, Saudi Arabia.
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | | |
Collapse
|
2
|
Singab ANB, Elhawary EA, Elkhawas YA, Fawzy IM, Moussa AY, Mostafa NM. Role of Nutraceuticals in Obesity Management: A Mechanism and Prospective Supported by Molecular Docking Studies. J Med Food 2024; 27:176-197. [PMID: 38324003 DOI: 10.1089/jmf.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Obesity and its comorbidities represent a major health problem worldwide. Treatment by reducing food intake and physical activity interventions has limited success especially with elderly people with chronic diseases. Nutraceuticals are naturally originated and successfully used for their physiological and nutritional benefit in health care. They might be alternative means to help lose weight and reduce obesity-associated metabolic disorders with the improvement of health, delay the aging process, prevention of chronic diseases, increase of life expectancy, or support to the structure or function of the body. The current study enumerates the inherent role of nutraceuticals in the management of obesity and its related comorbidities. The study is supported with the molecular docking studies discussing the mechanism of action. An attempt to optimize the role of nutraceuticals is made in this article in addition to widen the scope of its use in this chronic worldwide disease.
Collapse
Affiliation(s)
- Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo, Egypt
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yasmin A Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Rabie O, El-Nashar HAS, Majrashi TA, Al-Warhi T, El Hassab MA, Eldehna WM, Mostafa NM. Chemical composition, seasonal variation and antiaging activities of essential oil from Callistemon subulatus leaves growing in Egypt. J Enzyme Inhib Med Chem 2023; 38:2224944. [PMID: 37369580 DOI: 10.1080/14756366.2023.2224944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Callistemon is an aromatic genus of flowering plants belonging to family Myrtaceae. The essential oils of C. subulatus leaves were collected in four seasons and analyzed using GC/MS. The oils demonstrated monoterpenes as the predominant class. Eucalyptol was the main component in all seasons; summer (66.87%), autumn (58.33%), winter (46.74%) and spring (44.63%), followed by α-pinene; spring (31.41%), winter (28.69%), summer (26.34%) and autumn (24.68%). Winter oil, the highest yield (0.53 mL/100g), was further investigated for its inhibitory activity against enzymes associated with ageing; elastase and acetylcholinesterase. It remarkably inhibited elastase and acetylcholinesterase with IC50 values of 1.05 and 0.20 µg/ml, respectively. A molecular docking study was conducted for the major oil components on the active sites of target enzymes. Eucalyptol revealed the best binding affinity for both enzymes. C. subualtus oil could be used as supplement for management of ageing disorders like skin wrinkles and dementia.
Collapse
Affiliation(s)
- Omyma Rabie
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
4
|
Rabie O, El-Nashar HAS, George MY, Majrashi TA, Al-Warhi T, Hassan FE, Eldehna WM, Mostafa NM. Phytochemical profiling and neuroprotective activity of Callistemon subulatus leaves against cyclophosphamide-induced chemobrain. Biomed Pharmacother 2023; 167:115596. [PMID: 37797461 DOI: 10.1016/j.biopha.2023.115596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Cyclophosphamide (CPA) is a chemotherapeutic drug used for various types of cancers. However, patients receiving CPA for long periods suffer cognitive impairment associated with difficulties in learning, decreased concentration, and impaired memory. Chemotherapy-induced cognitive impairment, known as chemobrain, has been attributed to enhanced oxidative stress and inflammatory response. The current study aimed to identify the phytoconstituents of Callistemon subulatus extract (CSE) using HPLC-ESI/MS-MS analysis and evaluate its neuroprotective activity against CPA-induced chemobrain in rats. Fourteen compounds were identified following HPLC analysis including, five phlorglucinols, four flavonol glycosides, a triterpene, and a phenolic acid. Forty rats were divided into five groups treated for ten days as follows; group I (control group), group II received CPA (200 mg/kg, i.p.) on the 7th day, groups III and IV received CSE (200 and 400 mg/kg respectively, orally) for ten days and CPA (200 mg/kg, i.p.) on the 7th day, and group V received only CSE (400 mg/kg, orally) for ten days. The administration of CSE effectively ameliorated the deleterious effects of CPA on spatial and short-term memories, as evidenced by behavioral tests, Y-maze and passive avoidance. Such findings were further confirmed by histological examination. In addition, CSE counteracted the effect of CPA on hippocampal acetylcholinesterase (AChE) activity enhancing the level of acetylcholine. Owing to the CSE antioxidant properties, it hindered the CPA-induced redox imbalance, which is represented by decreased catalase and reduced glutathione levels, as well as enhanced lipid peroxidation. Therefore, CSE may be a promising natural candidate for protection against CPA-induced chemobrain in cancer patients.
Collapse
Affiliation(s)
- Omyma Rabie
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fatma E Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt.
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
5
|
Fahmy NM, Fayez S, Uba AI, Shariati MA, Aljohani ASM, El-Ashmawy IM, Batiha GES, Eldahshan OA, Singab AN, Zengin G. Comparative GC-MS Analysis of Fresh and Dried Curcuma Essential Oils with Insights into Their Antioxidant and Enzyme Inhibitory Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091785. [PMID: 37176843 PMCID: PMC10180709 DOI: 10.3390/plants12091785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/15/2023]
Abstract
Species belonging to the Zingiberaceae family are of high nutritional, industrial, and medicinal values. In this study, we investigated the effect of processing steps (fresh vs. dried milled rhizomes) and extraction methodologies (hydrodistillation vs. hexane extraction) of curcuma essential oil on its chemical content (using GC-MS analysis), its antioxidant behavior (using in vitro assays such as DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelation), and its enzyme inhibitory activities (on tyrosinase, acetylcholinesterase, butylcholinesterase, α-amylase, and α-glucosidase) supported by multivariate analysis, in silico studies, and molecular dynamics. The GC-MS investigations revealed a high degree of similarity in the chemical profile of fresh hydrodistilled and hexane-extracted essential oils with tumerone and curlone being the major metabolites. The extraction techniques affected the concentrations of other minor constituents such as terpinolene, caryophylla-4(12), 8(13)-dien-5α-ol, and neo-intermedeol, which were almost exclusively detected in the hydrodistilled fresh essential oil; however, zingiberene and β-sesquiphellandrene were predominant in the hexane-extracted fresh essential oil. In the dried curcuma rhizomes, tumerone and curlone contents were significantly reduced, with the former being detected only in the hydrodistilled essential oil while the latter was doubly concentrated in the hexane-derived oil. Constituents such as D-limonene and caryophyllene oxide represented ca. 29% of the dried hydrodistilled essential oil, while ar-turmerone was detected only in the dried hydrodistilled and hexane-extracted essential oils, representing ca. 16% and 26% of the essential oil composition, respectively. These variations in the essential oil chemical content have subsequently affected its antioxidant properties and enzyme inhibitory activities. In silico investigations showed that hydrophobic interactions and hydrogen bonding were the characteristic binding modes of the bioactive metabolites to their respective targets. Molecular dynamics revealed the stability of the ligand-target complex over time. From the current study we conclude that fresh hexane-extracted essential oil showed the best radical scavenging properties, and fresh rhizomes in general display better enzyme inhibitory activity regardless of the extraction technique.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Türkiye
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave., Almaty 050060, Kazakhstan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ibrahim M El-Ashmawy
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Türkiye
| |
Collapse
|
6
|
AlBalawi AN, Elmetwalli A, Baraka DM, Alnagar HA, Alamri ES, Hassan MG. Chemical Constituents, Antioxidant Potential, and Antimicrobial Efficacy of Pimpinella anisum Extracts against Multidrug-Resistant Bacteria. Microorganisms 2023; 11:1024. [PMID: 37110449 PMCID: PMC10144661 DOI: 10.3390/microorganisms11041024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Aniseeds (Pimpinella anisum) have gained increasing attention for their nutritional and health benefits. Aniseed extracts are known to contain a range of compounds, including flavonoids, terpenes, and essential oils. These compounds have antimicrobial properties, meaning they can help inhibit the growth of nasty bacteria and other microbes. The purpose of this study was to determine if aniseed extracts have potential antioxidant, phytochemical, and antimicrobial properties against multidrug-resistant (MDR) bacteria. A disc diffusion test was conducted in vitro to test the aniseed methanolic extract's antibacterial activity. The MIC, MBC, and inhibition zone diameters measure the minimum inhibitory concentration, minimum bactericidal concentration, and size of the zone developed when the extract is placed on a bacterial culture, respectively. HPLC and GC/MS are analytical techniques used for identifying the phenolics and chemical constituents in the extract. DPPH, ABTS, and iron-reducing power assays were performed to evaluate the total antioxidant capacity of the extract. Using HPLC, oxygenated monoterpenes represented the majority of the aniseed content, mainly estragole, cis-anethole, and trans-anethole at 4422.39, 3150.11, and 2312.11 (g/g), respectively. All of the examined bacteria are very sensitive to aniseed's antibacterial effects. It is thought that aniseed's antibacterial activity could be attributed to the presence of phenolic compounds which include catechins, methyl gallates, caffeic acid, and syringic acids. According to the GC analysis, several flavonoids were detected, including catechin, isochiapin, and trans-ferulic acid, as well as quercitin rhamnose, kaempferol-O-rutinoside, gibberellic acid, and hexadecadienoic acid. Upon quantification of the most abundant estragole, we found that estragole recovery was sufficient for proving its antimicrobial activity against MDR bacteria. Utilizing three methods, the extract demonstrated strong antioxidant activity. Aniseed extract clearly inhibited MDR bacterial isolates, indicating its potential use as an anti-virulence strategy. It is assumed that polyphenolic acids and flavonoids are responsible for this activity. Trans-anethole and estragole were aniseed chemotypes. Aniseed extracts showed higher antioxidant activity than vitamin C. Future investigations into the compatibility and synergism of aniseed phenolic compounds with commercial antibacterial treatments may also show them to be promising options.
Collapse
Affiliation(s)
- Aisha Nawaf AlBalawi
- Biology Department, University College of Haqel, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura 35818, Egypt
| | - Dina M. Baraka
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 33516, Egypt
| | - Hadeer A. Alnagar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 33516, Egypt
| | - Eman Saad Alamri
- Nutrition and Food Science Department, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mervat G. Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 33516, Egypt
| |
Collapse
|
7
|
Refaat Fahim J, Darwish AG, El Zawily A, Wells J, Abourehab MA, Yehia Desoukey S, Zekry Attia E. Exploring the volatile metabolites of three Chorisia species: Comparative headspace GC–MS, multivariate chemometrics, chemotaxonomic significance, and anti-SARS-CoV-2 potential. Saudi Pharm J 2023; 31:706-726. [PMID: 37181141 PMCID: PMC10172601 DOI: 10.1016/j.jsps.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chorisia (syn. Ceiba) species are important ornamental, economic, and medicinal plants that are endowed with a diversity of secondary metabolites; however, their volatile organic compounds (VOCs) have been scarcely studied. Therefore, this work explores and compares the headspace floral volatiles of three common Chorisia species, namely Chorisia chodatii Hassl., Chorisia speciosa A. St.-Hil, and Chorisia insignis H.B.K. for the first time. A total of 112 VOCs of varied biosynthetic origins were identified at different qualitative and quantitative ratios, encompassing isoprenoids, fatty acid derivatives, phenylpropanoids, and others. Flowers of the investigated species showed perceptibly differentiated volatile profiles, with those emitted by C. insignis being dominated by non-oxygenated compounds (56.69 %), whereas oxygenated derivatives prevailed among the volatiles of C. chodatii (66.04 %) and C. speciosa (71.53 %). The variable importance in the projection (VIP) in the partial least-squares-discriminant (PLS-DA) analysis described 25 key compounds among the studied species, of which linalool was verified as the most important aroma compound based on VIP values and significance analysis, and it could represent the most typical VOC among these Chorisia species. Furthermore, molecular docking and dynamics analyses of both the major and the key VOCs displayed their moderate to promising binding interactions with four main proteins of SARS-CoV-2, including Mpro, PLpro, RdRp, and spike S1 subunit RBD. The current results collectively cast new light on the chemical diversity of the VOCs of Chorisia plants as well as their chemotaxonomic and biological relevance.
Collapse
|
8
|
Kwiatkowski P, Kurzawski M, Kukula-Koch W, Pruss A, Sienkiewicz M, Płaziński W, Dołęgowska B, Wojciechowska-Koszko I. Staphyloxanthin inhibitory potential of trans-anethole: A preliminary study. Biomed Pharmacother 2023; 158:114153. [PMID: 36566523 DOI: 10.1016/j.biopha.2022.114153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The reduction of staphyloxanthin (STX) production in Staphylococcus aureus under trans-anethole (TA) influence was proven in former studies. However, no tests concerning the impact of TA on a biosynthetic pathway of this carotenoid pigment have been published so far. Thus, for the first time, the present preliminary study evaluated the influence of TA on the expression level of genes (crtOPQMN operon and aldH) encoding STX pathway enzymes. Additional attention was paid to the identification of STX and its intermediates. Gene expression and identification of extracted compounds were conducted using quantitative real-time PCR and HPLC-MS techniques, respectively. The analyzes showed no difference in crtM, crtN, crtO, crtP, crtQ, and aldH gene expression between bacterial samples isolated from the non-stimulated (control) medium and the stimulated one with TA. Compared to the control group that showed the presence of all metabolic intermediates and STX, the TA-treated bacteria were characterized by a lack or a significant reduction of the majority of compounds, except 4,4'-diaponeurosporenoate, the content of which was elevated in the TA-treated sample. Moreover, in silico molecular docking analysis revealed that TA is capable to create relatively strong interactions with both 4,4'-diapophytoene synthase and 4,4'-diapophytoene desaturase. The preliminary findings indicate that the previously observed TA effect reducing the number of S. aureus colonies pigmentation is probably not associated with the expression levels of genes encoding STX pathway enzymes. It has been proven that adding TA to the medium can interfere with the formation of STX at different levels of its biosynthetic pathway.
Collapse
Affiliation(s)
- Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Poland.
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland; Department of Biopharmacy, Medical University of Lublin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Poland
| | | |
Collapse
|