1
|
Citriniti EL, Rocca R, Costa G, Sciacca C, Cardullo N, Muccilli V, Karioti A, Carta F, Supuran CT, Alcaro S, Ortuso F. Discover the Power of Lithospermic Acid as Human Carbonic Anhydrase VA and Pancreatic Lipase Inhibitor Through In Silico and In Vitro Studies. Arch Pharm (Weinheim) 2025; 358:e3128. [PMID: 40257393 PMCID: PMC12010950 DOI: 10.1002/ardp.202500046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025]
Abstract
Obesity remains a significant global health concern, with limited pharmacological options that balance efficacy and safety. In this study, we identified lithospermic acid (LTS0059529) from Salvia miltiorrhiza as a potential dual inhibitor of pancreatic lipase (PL) and human carbonic anhydrase VA (hCA VA), two key enzymes in lipid metabolism. Using molecular docking and dynamics simulations, we observed that lithospermic acid interacts with Zn²⁺ in hCA VA via its benzofuran carboxylate moiety and forms stable complexes with PL through hydrogen bonding with ASP 205 and π-stacking interactions with PHE 77 and PHE 215. Experimental validation confirmed its inhibitory activity, with Ki values of 33.1 ± 1.6 μM for PL and 0.69 ± 0.01 μM for hCA VA. While its inhibition of hCA VA is not isoform-specific, lithospermic acid demonstrates significant potential as a dual inhibitor, targeting complementary pathways in obesity management. This study is the first to explore its dual action on PL and hCA VA, highlighting a promising strategy for future antiobesity therapies. Further research will focus on optimizing selectivity and potency to develop safer and more effective treatments.
Collapse
Affiliation(s)
| | - Roberta Rocca
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l'Innovazione RuraleLocalità Condoleo di BelcastroCatanzaroItaly
| | - Giosuè Costa
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
| | - Claudia Sciacca
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaCataniaItaly
| | - Nunzio Cardullo
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaCataniaItaly
| | - Vera Muccilli
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaCataniaItaly
| | - Anastasia Karioti
- Laboratory of Pharmacognosy, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze FarmaceuticheUniversity of FlorenceFlorenceItaly
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze FarmaceuticheUniversity of FlorenceFlorenceItaly
| | - Stefano Alcaro
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l'Innovazione RuraleLocalità Condoleo di BelcastroCatanzaroItaly
| | - Francesco Ortuso
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
| |
Collapse
|
2
|
Bonardi A, Supuran CT. Polypharmacology of carbonic anhydrase inhibitors and activators. Expert Opin Pharmacother 2025; 26:567-580. [PMID: 40021487 DOI: 10.1080/14656566.2025.2474574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/27/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Carbonic anhydrases (CAs) are enzymes involved in many physiologic and pathological processes connected with a diversity of conditions. Many of their inhibitors are used clinically for the management of glaucoma, epilepsy, obesity, and cancer. Some of these compounds also show significant polypharmacological effects. CA activators (CAAs) are not in clinical use. AREAS COVERED PubMed and ScienceDirect databases were searched for articles published over the past 20 years. Several antiepileptics (topiramate, zonisamide, lacosamide, and levetiracetam), some atypical antipsychotics (sulpiride, veralipride), celecoxib, polmacoxib, pazopanib, the antiulcer agent famotidine, and compounds in clinical trials (epacadostat and PCI-27483) as antitumor agents significantly inhibit several CA isoforms of the 15 human ones, apart their action on several other targets. The possible role of CA inhibition in the therapeutic effects of these drugs, their side effects, and the possibility to use this information for drug design are discussed. CAAs belonging to a variety of aminergic classes (histaminergic, dopaminergic, and serotoninergic) are also discussed. EXPERT OPINION Polypharmacology involving CA inhibitors/CAAs is understood from the chemical, structural, and pharmacological viewpoints. The many other drug targets with which these modulators of activity interact allow for de novo design of such agents for the management of multifactorial conditions in need of innovative drugs.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Citriniti EL, Rocca R, Costa G, Renzi G, Carta F, Supuran CT, Alcaro S, Ortuso F. Dual inhibition of carbonic anhydrases VA and VII by silychristin and isosilybin A from Silybum marianum: A potential antiobesity strategy. Arch Pharm (Weinheim) 2025; 358:e2400966. [PMID: 40123420 PMCID: PMC11931350 DOI: 10.1002/ardp.202400966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Obesity is a global health crisis linked to chronic diseases like cardiovascular disease and type 2 diabetes. Its prevalence, even in low-income countries, highlights the failure of traditional interventions. Safer pharmacological treatments are urgently needed, as many existing antiobesity drugs have been withdrawn due to severe side effects, leaving a critical therapeutic gap. A promising target in this context is human carbonic anhydrase V (hCA V), a mitochondrial enzyme that plays a key role in glucose homeostasis. Inhibiting hCA V has been shown to reduce lipogenesis and improve metabolic conditions. Natural plant extracts, such as silymarin from milk thistle, have demonstrated potential in managing obesity-related metabolic syndromes by lowering triglycerides, reducing cholesterol levels, and improving liver function. Our computational studies have identified active compounds in silymarin that effectively inhibit hCA V, shedding light on a potential mechanism for its antiobesity effects. Building on these findings, our research further reveals that these compounds also inhibit carbonic anhydrase VII (hCA VII), enhancing their therapeutic potential. This dual inhibitory action addresses both metabolic dysregulation and oxidative stress. Notably, the antioxidant properties of hCA VII provide additional protection against obesity-related complications by mitigating oxidative stress, a key contributor to the development of metabolic syndrome.
Collapse
Affiliation(s)
| | - Roberta Rocca
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l'Innovazione RuraleCatanzaroItaly
| | - Giosuè Costa
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
| | - Gioele Renzi
- NEUROFARBA Department, Sezione di Scienze FarmaceuticheUniversity of FlorenceFlorenceItaly
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze FarmaceuticheUniversity of FlorenceFlorenceItaly
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze FarmaceuticheUniversity of FlorenceFlorenceItaly
| | - Stefano Alcaro
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l'Innovazione RuraleCatanzaroItaly
| | - Francesco Ortuso
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
| |
Collapse
|
4
|
Saeed A, Ehsan S, Zia-ur-Rehman M, Marshall EM, Loesgen S, Saleem A, Giovannuzzi S, Supuran CT. Synthesis, characterization, antimicrobial, cytotoxic and carbonic anhydrase inhibition activities of multifunctional pyrazolo-1,2-benzothiazine acetamides. Beilstein J Org Chem 2025; 21:348-357. [PMID: 39968288 PMCID: PMC11833175 DOI: 10.3762/bjoc.21.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
The advent of antibiotic resistance in microorganisms requires the discovery and synthesis of novel antibiotics. At the same time, human pathogens are contributing to chronic and persistent inflammation. Motivated by these two concerning issues, new antibiotic drug candidates are synthesized by incorporation of benzothiazine, pyrazole, and amide moieties in a new scaffold to create multifunctional derivatives of pyrazolo-1,2-benzothiazine. The presented compounds have been synthesized and analyzed using spectroscopic and spectrometric techniques including FTIR, HRMS, 1H and 13C NMR spectroscopy. All compounds were tested against five human microbial strains including three different strains of Staphylococcus aureus (ATCC 25923, ATCC BAA-41, and ATCC BAA-44), Escherichia coli (ATCC 8739), and Candida albicans (ATCC 90027) to evaluate their antibiotic potential. The results showed that out of fourteen synthesized compounds, 7b (MIC90 = 16 μg/mL) and 7h (MIC90 = 8.0 μg/mL) exhibited potent antibiotic activity against different strains of S. aureus (susceptible, methicillin-resistant, and multidrug-resistant). Cytotoxic studies against the human colon cancer mammalian cell line HCT-116 (ATCC CCL-247) revealed that only compound 7l inhibited cell viability, while the rest of the compounds including 7b and 7h showed no significant decrease in mammalian cell viability. Results of human carbonic anhydrase (hCA) inhibition assays discovered that monoalkylated derivatives have low to negligible inhibition potential but dialkylated ones have no inhibition potential at all for directed CAs (I, II, IX, and XII). From the low inhibiting compounds, 7b showed the highest inhibition potential with a minimum K i value of 72.9 μM. In light of the above findings, these newly prepared scaffolds are valuable additions to the class of pyrazolo-1,2-benzothiazine antibiotics with selective antistaphylococcal activity.
Collapse
Affiliation(s)
- Ayesha Saeed
- Department of Chemistry, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Shahana Ehsan
- Department of Chemistry, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | | | - Erin M Marshall
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Sandra Loesgen
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, USA
| | - Abdus Saleem
- Govt. Shalimar Graduate College, Baghbanpura, Lahore 54920, Pakistan
| | - Simone Giovannuzzi
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| |
Collapse
|
5
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
6
|
Brishti A, Johnson SJ, Palmer DG, Raihan MO, Yan L, Casperson SL. Effects of defined voluntary running distances coupled with high-fat diet consumption on the skeletal muscle transcriptome of male mice. Physiol Rep 2025; 13:e70170. [PMID: 39821584 PMCID: PMC11738645 DOI: 10.14814/phy2.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
Exercise counters many adverse health effects of consuming a high-fat diet (HFD). However, complex molecular changes that occur in skeletal muscle in response to exercising while consuming a HFD are not yet known. We investigated the interplay between diverse exercise regimes and HFD consumption on the adaptation of skeletal muscle transcriptome. C57BL/6 male mice were randomized into five groups-one sedentary control group and four exercise groups. The exercise groups consisted of an unrestricted running group (8.3 km/day) and three groups that were restricted to 75%, 50%, or 25% of unrestricted running (6.3, 4.2, and 2.1 km/day, respectively). Total RNA was extracted from frozen gastrocnemius muscle for transcriptome analyses. DEG counts were 1347, 1823, 1103, and 1107 and there were 107, 169, 67, and 89 unique genes present in the HFD-25%, HFD-50%, HFD-75%, and HFD-U, respectively. Comparing exercise groups, we found that exercising at 50% resulted in the most differentially expressed transcripts with the MAPK and PPAR signaling pathways enriched in down- and up-regulated genes, respectively. These results demonstrate that running distance impacts the adaptation of the skeletal muscle transcriptome to exercise and suggest that middle-distance running may provide the greatest protection against high-fat diet-induced stress coupled with exercise.
Collapse
Affiliation(s)
- Afrina Brishti
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - Sarah J. Johnson
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
- Present address:
Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Daniel G. Palmer
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - Md Obayed Raihan
- Department of Pharmaceutical Sciences, College of Health Sciences and PharmacyChicago State UniversityChicagoIllinoisUSA
| | - Lin Yan
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - Shanon L. Casperson
- United States Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| |
Collapse
|
7
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
8
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
9
|
Lee HY, Elkamhawy A, Al-Karmalawy AA, Nada H, Giovannuzzi S, Supuran CT, Lee K. Chalcone-based benzenesulfonamides as potent and selective inhibitors for human carbonic anhydrase II: Design, synthesis, in vitro, and in silico studies. Arch Pharm (Weinheim) 2024; 357:e2400069. [PMID: 39240035 DOI: 10.1002/ardp.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
Sulfonamides are promising classical carbonic anhydrase (CA; EC 4.2.1.1) inhibitors, being used for several medical purposes such as diuretics, anticonvulsants, topically acting antiglaucoma agents, for antiobesity and anticancer therapies. Herein, a series of chalcone-based benzenesulfonamides (3a‒m) was synthesized and assessed for its inhibitory activity against a panel of four human carbonic anhydrases (hCA isoforms I, II, IX, and XII). Most compounds displayed single- to double-digit nanomolar inhibition constants (Kis), with some derivatives being more potent and/or selective than the standard drug acetazolamide (AAZ). Among the synthesized compounds, 3g compound demonstrated the highest inhibitory activity against the hCA II isoform (Ki = 2.5 nM) with 30-, 9-, and 11-fold selectivity for hCA II over the I, IX, and XII isoforms, respectively. Structure-activity relationships for different substitution patterns were analyzed. Additionally, a molecular docking study showed that compound 3g bound to hCA II by coordinating with the zinc ion through the deprotonated benzenesulfonamide moiety, in addition to a hydrogen bond formed between an oxygen of the sulfonamide moiety and Thr199. Moreover, the chalcone core participated in van der Waals interactions with some active site residues, such as Ile91, Val121, and Leu198. Consequently, this report introduces a successful approach toward identifying compound 3g as a highly potent and selective chalcone-based benzenesulfonamide inhibitor of hCA II worthy of further investigation.
Collapse
Affiliation(s)
- Hwa Young Lee
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Ahmed Elkamhawy
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Hossam Nada
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research, Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
10
|
Eldehna WM, Elsayed ZM, Ammara A, El Hassab MA, Almahli H, Fares M, Nocentini A, Supuran CT, Abou-Seri SM. Discovery of new sulfonamide-tethered 2-aryl-4-anilinoquinazolines as the first-in-class dual carbonic anhydrase and EGFR inhibitors. Int J Biol Macromol 2024; 279:135010. [PMID: 39197616 DOI: 10.1016/j.ijbiomac.2024.135010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In today's medical field, there is a growing trend of exploiting a single small molecule to target two different molecular targets concurrently. This approach is proving to be highly effective in fighting against cancer. The 4-anilinoquinazoline scaffold, known for its potential in cancer therapy and its effectiveness as a leading class of tyrosine kinase inhibitors, was employed to develop a novel series of anilinoquinazoline-sulfonamides (AQSs) (8a-d, 9a-f, and 10a-d) as dual inhibitors of the tumor-associated carbonic anhydrases (CA) IX/XII and EGFR. 2-(3-Methoxyphenyl)quinazoline bearing p-sulfanilamide 10b elicited superior hCA IX and XII inhibition in the low nanomolar range (KIs = 38.4 and 8.9 nM, respectively). Also, 10b shined as a potent and selective EGFR inhibitor, boasting an impressive IC50 value of 51.2 ± 0.97 nM, surpassing the reference EGFR inhibitor Erlotinib (IC50 = 80 ± 2.0 nM). Compound 10b exhibited broadest-spectrum antiproliferative activity against the NCI-tumor panel with a mean GI% value of 68 %. Of special interest, 10b demonstrated potent growth inhibition (GI% ≥ 80-97 %) toward cell lines reported to express high levels of EGFR belonging to renal, colon, breast, and lung cancers. Compound 10b's molecular docking in the CA IX/XII and EGFR active sites revealed binding modes that justify its potent enzyme inhibitory effects. Additionally, molecular dynamic simulations demonstrated strong and stable interactions of 10b with the binding sites of these targets.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Firenze, Italy
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, ERU, Badr City, Cairo 11829, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Firenze, Italy.
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| |
Collapse
|
11
|
Sharma V, Vats L, Giovannuzzi S, Mohan B, Supuran CT, Sharma PK. In-vitro and in-silico investigations of SLC-0111 hydrazinyl analogs as human carbonic anhydrase I, II, IX, and XII inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400157. [PMID: 38713910 DOI: 10.1002/ardp.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Central University of Haryana, Mahendragarh, India
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
12
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
13
|
Li X, Yang J, Zhou X, Dai C, Kong M, Xie L, Liu C, Liu Y, Li D, Ma X, Dai Y, Sun Y, Jian Z, Guo X, Lin X, Li Y, Sun L, Liu X, Jin L, Tang H, Zheng Y, Hong S. Ketogenic diet-induced bile acids protect against obesity through reduced calorie absorption. Nat Metab 2024; 6:1397-1414. [PMID: 38937659 DOI: 10.1038/s42255-024-01072-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
The low-carbohydrate ketogenic diet (KD) has long been practiced for weight loss, but the underlying mechanisms remain elusive. Gut microbiota and metabolites have been suggested to mediate the metabolic changes caused by KD consumption, although the particular gut microbes or metabolites involved are unclear. Here, we show that KD consumption enhances serum levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA) in mice to decrease body weight and fasting glucose levels. Mechanistically, KD feeding decreases the abundance of a bile salt hydrolase (BSH)-coding gut bacterium, Lactobacillus murinus ASF361. The reduction of L. murinus ASF361 or inhibition of BSH activity increases the circulating levels of TDCA and TUDCA, thereby reducing energy absorption by inhibiting intestinal carbonic anhydrase 1 expression, which leads to weight loss. TDCA and TUDCA treatments have been found to protect against obesity and its complications in multiple mouse models. Additionally, the associations among the abovementioned bile acids, microbial BSH and metabolic traits were consistently observed both in an observational study of healthy human participants (n = 416) and in a low-carbohydrate KD interventional study of participants who were either overweight or with obesity (n = 25). In summary, we uncover a unique host-gut microbiota metabolic interaction mechanism for KD consumption to decrease body weight and fasting glucose levels. Our findings support TDCA and TUDCA as two promising drug candidates for obesity and its complications in addition to a KD.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Chen Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Mengmeng Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Linshan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Chenglin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Yilian Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Dandan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Xiaonan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, P.R. China
| | - Yan Sun
- Masonic Medical Research Institute, Utica, NY, USA
| | - Zhijie Jian
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, P.R. China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, P.R. China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, P.R. China
| | - Xin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Disease, Shanghai, P.R. China.
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, P.R. China.
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
14
|
Ilie EI, Popescu L, Luță EA, Biță A, Corbu AR, Mihai DP, Pogan AC, Balaci TD, Mincă A, Duțu LE, Olaru OT, Boscencu R, Gîrd CE. Phytochemical Characterization and Antioxidant Activity Evaluation for Some Plant Extracts in Conjunction with Pharmacological Mechanism Prediction: Insights into Potential Therapeutic Applications in Dyslipidemia and Obesity. Biomedicines 2024; 12:1431. [PMID: 39062004 PMCID: PMC11274650 DOI: 10.3390/biomedicines12071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid metabolism dysregulation can lead to dyslipidemia and obesity, which are major causes of cardiovascular disease and associated mortality worldwide. The purpose of the study was to obtain and characterize six plant extracts (ACE-Allii cepae extractum; RSE-Rosmarini extractum; CHE-Cichorii extractum; CE-Cynarae extractum; AGE-Apii graveolentis extractum; CGE-Crataegi extractum) as promising adjuvant therapies for the prevention and treatment of dyslipidemia and its related metabolic diseases. Phytochemical screening revealed that RSE was the richest extract in total polyphenols (39.62 ± 13.16 g tannic acid/100 g dry extract) and phenolcarboxylic acids (22.05 ± 1.31 g chlorogenic acid/100 g dry extract). Moreover, the spectrophotometric chemical profile highlighted a significant concentration of flavones for CGE (5.32 ± 0.26 g rutoside/100 g dry extract), in contrast to the other extracts. UHPLC-MS quantification detected considerable amounts of phenolic constituents, especially chlorogenic acid in CGE (187.435 ± 1.96 mg/g extract) and rosmarinic acid in RSE (317.100 ± 2.70 mg/g extract). Rosemary and hawthorn extracts showed significantly stronger free radical scavenging activity compared to the other plant extracts (p < 0.05). Pearson correlation analysis and the heatmap correlation matrix indicated significant correlations between phytochemical contents and in vitro antioxidant activities. Computational studies were performed to investigate the potential anti-obesity mechanism of the studied extracts using target prediction, homology modeling, molecular docking, and molecular dynamics approaches. Our study revealed that rosmarinic acid (RA) and chlorogenic acid (CGA) can form stable complexes with the active site of carbonic anhydrase 5A by either interacting with the zinc-bound catalytic water molecule or by directly binding Zn2+. Further studies are warranted to experimentally validate the predicted CA5A inhibitory activities of RA and CGA and to investigate the hypolipidemic and antioxidant activities of the proposed plant extracts in animal models of dyslipidemia and obesity.
Collapse
Affiliation(s)
- Elena Iuliana Ilie
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Liliana Popescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Emanuela-Alice Luță
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Andrei Biță
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, AI Cuza 13, 200585 Craiova, Romania;
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Ana Corina Pogan
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Teodora Dalila Balaci
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Alexandru Mincă
- Department of Medical Semiology, Discipline of Internal Medicine I and Nephrology, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Eroii Sanitari 8, 050474 Bucharest, Romania;
| | - Ligia Elena Duțu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Rica Boscencu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (E.I.I.); (E.-A.L.); (A.C.P.); (T.D.B.); (L.E.D.); (O.T.O.); (R.B.); (C.E.G.)
| |
Collapse
|
15
|
Denner TC, Heise NV, Al-Harrasi A, Csuk R. Synthesis and Enzymatic Evaluation of a Small Library of Substituted Phenylsulfonamido-Alkyl Sulfamates towards Carbonic Anhydrase II. Molecules 2024; 29:3015. [PMID: 38998967 PMCID: PMC11243685 DOI: 10.3390/molecules29133015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
A small library of 79 substituted phenylsulfonamidoalkyl sulfamates, 1b-79b, was synthesized starting from arylsulfonyl chlorides and amino alcohols with different numbers of methylene groups between the hydroxyl and amino moieties yielding intermediates 1a-79a, followed by the reaction of the latter with sulfamoyl chloride. All compounds were screened for their inhibitory activity on bovine carbonic anhydrase II. Compounds 1a-79a showed no inhibition of the enzyme, in contrast to sulfamates 1b-79b. Thus, the inhibitory potential of compounds 1b-79b towards this enzyme depends on the substituent and the substitution pattern of the phenyl group as well as the length of the spacer. Bulkier substituents in the para position proved to be better for inhibiting CAII than compounds with the same substituent in the meta or ortho position. For many substitution patterns, compounds with shorter spacer lengths were superior to those with long chain spacers. Compounds with shorter spacer lengths performed better than those with longer chain spacers for a variety of substitution patterns. The most active compound held inhibition constant as low as Ki = 0.67 μM (for 49b) and a tert-butyl substituent in para position and acted as a competitive inhibitor of the enzyme.
Collapse
Affiliation(s)
- Toni C. Denner
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Niels V. Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany (N.V.H.)
| |
Collapse
|
16
|
Mu Y, Meng Q, Fan X, Xi S, Xiong Z, Wang Y, Huang Y, Liu Z. Identification of the inhibition mechanism of carbonic anhydrase II by fructooligosaccharides. Front Mol Biosci 2024; 11:1398603. [PMID: 38863966 PMCID: PMC11165268 DOI: 10.3389/fmolb.2024.1398603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Polygonatum sibiricum (P. sibiricum), recognized as a precious nourishing Chinese traditional medicine, exhibits the pharmacological effect of anti-aging. In this work, we proposed a novel mechanism underlying this effect related to the less studied bioactive compounds fructooligosaccharides in P. sibiricum (PFOS) to identify the inhibition effect of the small glycosyl molecules on the age-related zinc metalloprotease carbonic anhydrase II (CA II). Molecular docking and molecular dynamics simulation were used to investigate the structural and energetic properties of the complex systems consisting of the CA II enzyme and two possible structures of PFOS molecules (PFOS-A and PFOS-B). The binding affinity of PFOS-A (-7.27 ± 1.02 kcal/mol) and PFOS-B (-8.09 ± 1.75 kcal/mol) shows the spontaneity of the binding process and the stability of the combination in the solvent. Based on the residue energy decomposition and nonbonded interactions analysis, the C-, D- and G-sheet fragments of the CA II were found to be crucial in binding process. Van der Waals interactions form on the hydrophobic surface of CAII mainly with 131PHE and 135VAL, while hydrogen bonds form on the hydrophilic surface mainly with 67ASN and 92GLN. The binding of PFOS results in the blocking of the zinc ions pocket and then inhibiting its catalytic activity, the stability of which has been further demonstrated by free energy landscape. These findings provide evidence of the effective inhibition of PFOS to CA II enzyme, which leads to a novel direction for exploring the mechanism of traditional Chinese medicine focused on small molecule fructooligosaccharides.
Collapse
Affiliation(s)
- Yue Mu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Xinyi Fan
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Shuyun Xi
- Shanghai Pechoin Biotechnology Co., Ltd., Shanghai, China
| | - Zhongli Xiong
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yihua Wang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Yanling Huang
- Shanghai Zhengxin Biotechnology Co., Ltd., Shanghai, China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Denner TC, Heise NV, Serbian I, Angeli A, Supuran CT, Csuk R. An asiatic acid derived trisulfamate acts as a nanomolar inhibitor of human carbonic anhydrase VA. Steroids 2024; 205:109381. [PMID: 38325751 DOI: 10.1016/j.steroids.2024.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
This investigation delves into the inhibitory capabilities of a specific set of triterpenoic acids on diverse isoforms of human carbonic anhydrase (hCA). Oleanolic acid (1), maslinic acid (2), betulinic acid (3), platanic acid (4), and asiatic acid (5) were chosen as representative triterpenoids for evaluation. The synthesis involved acetylation of parent triterpenoic acids 1-5, followed by sequential reactions with oxalyl chloride and benzylamine, de-acetylation of the amides, and subsequent treatment with sodium hydride and sulfamoyl chloride, leading to the formation of final compounds 21-25. Inhibition assays against hCAs I, II, VA, and IX demonstrated noteworthy outcomes. A derivative of betulinic acid, compound 23, exhibited a Ki value of 88.1 nM for hCA VA, and a derivative of asiatic acid, compound 25, displayed an even lower Ki value of 36.2 nM for the same isoform. Notably, the latter compound displayed enhanced inhibitory activity against hCA VA when compared to the benchmark compound acetazolamide (AAZ), which had a Ki value of 63.0 nM. Thus, this compound surpasses the inhibitory potency and isoform selectivity of the standard compound acetazolamide (AAZ). In conclusion, the research offers insights into the inhibitory potential of selected triterpenoic acids across diverse hCA isoforms, emphasizing the pivotal role of structural attributes in determining isoform-specific inhibitory activity. The identification of compound 25 as a robust and selective hCA VA inhibitor prompts further exploration of its therapeutic applications.
Collapse
Affiliation(s)
- Toni C Denner
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Niels V Heise
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Immo Serbian
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50010 Sesto Florentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50010 Sesto Florentino, Florence, Italy
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Dtr. 2 D-06120 Halle (Saale), Germany.
| |
Collapse
|
18
|
Fuentes-Aguilar A, González-Bakker A, Jovanović M, Stojanov SJ, Puerta A, Gargano A, Dinić J, Vega-Báez JL, Merino-Montiel P, Montiel-Smith S, Alcaro S, Nocentini A, Pešić M, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. Bioorg Chem 2024; 145:107168. [PMID: 38354500 DOI: 10.1016/j.bioorg.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Mirna Jovanović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Adriana Gargano
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - José L Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, 88055 Belcastro (CZ), Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| |
Collapse
|
19
|
Poyraz S, Döndaş HA, Yamali C, Belveren S, Demir Y, Aydınoglu S, Döndaş NY, Taskin-Tok T, Taş S, Ülger M, Sansano JM. Design, synthesis, biological evaluation and docking analysis of pyrrolidine-benzenesulfonamides as carbonic anhydrase or acetylcholinesterase inhibitors and antimicrobial agents. J Biomol Struct Dyn 2024; 42:3441-3458. [PMID: 37232497 DOI: 10.1080/07391102.2023.2214224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
The synthesis and biological assessment of novel multi-functionalized pyrrolidine-containing benzenesulfonamides were reported along with their antimicrobial, antifungal, CAs inhibition, and AChE inhibition as well as DNA-binding effects. The chemical structure of the compounds was elucidated by using FTIR, NMR, and HRMS. Compound 3b, which had Ki values of 17.61 ± 3.58 nM (hCA I) and 5.14 ± 0.61 nM (hCA II), was found the be the most potent CAs inhibitor. Compounds 6a and 6b showed remarkable AChE inhibition effects with Ki values 22.34 ± 4.53 nM and 27.21 ± 3.96 nM in comparison to tacrine. Compounds 6a-6c had moderate antituberculosis effect on M. tuberculosis with a MIC value of 15.62 μg/ml. Compounds had weaker antifungal and antibacterial activity in the range of MIC 500-62.5 μg/ml against standard bacterial and fungal strains. Besides these above, molecular docking studies were performed to examine and evaluate the interaction of the remarkable compounds (3b, 6a and 6b) against the current enzymes (CAs and AChE). Novel compounds gained interest in terms of enzyme inhibitory potencies. Therefore, the most potent enzyme inhibitors may be considered lead compounds to be modified for further research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - H Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Cem Yamali
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Samet Belveren
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye
| | - Sabriye Aydınoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Çukurova University, Balcalı, Adana, Türkiye
| | - Naciye Yaktubay Döndaş
- Department of Pharmacology, Faculty of Medicine, Çukurova University, Balcalı, Adana, Türkiye
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Türkiye
- gDepartment of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Türkiye
| | - Senanur Taş
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı, Adana, Türkiye
| | - Mahmut Ülger
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye
| | - Jose M Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, and Instituto de Síntesis Orgánica (ISO), Alicante, Spain
| |
Collapse
|
20
|
Supuran CT. Drug interactions of carbonic anhydrase inhibitors and activators. Expert Opin Drug Metab Toxicol 2024; 20:143-155. [PMID: 38450431 DOI: 10.1080/17425255.2024.2328152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Carbonic anhydrases (CAs, EC 4.2.1.1) have been established drug targets for decades, with their inhibitors and activators possessing relevant pharmacological activity and applications in various fields. At least 11 sulfonamides/sulfamates are clinically used as diuretics, antiglaucoma, antiepileptic, or antiobesity agents and one derivative, SLC-0111, is in clinical trials as antitumor/antimetastatic agent. The activators were less investigated with no clinically used agent. AREAS COVERED Drug interactions between CA inhibitors/activators and various other agents are reviewed in publications from the period March 2020 - January 2024. EXPERT OPINION Drug interactions involving these agents revealed several interesting findings. Acetazolamide plus loop diuretics is highy effective in acute decompensated heart failure, whereas ocular diseases such as X-linked retinoschisis and macular edema were treated by acetazolamide plus bevacizumab or topical NSAIDs. Potent anti-infective effects of acetazolamide and other CAIs, alone or in combination with other agents were demonstrated for the management of Neisseria gonorrhoea, vancomycin resistant enterococci, Acanthamoeba castellanii, Trichinella spiralis, and Cryptococcus neoformans infections. Topiramate, in combination with phentermine is incresingly used for the management of obesity, whereas zonisamide plus levodopa is highly effective for Parkinson's disease. Acetazolamide, methazolamide, ethoxzolamide, and SLC-0111 showed synergistic antitumor/antimetastatic action in combination with many other antitumor drugs.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, FI, Italy
| |
Collapse
|
21
|
Giovannuzzi S, De Luca V, Capasso C, Supuran CT. Inhibition studies with simple and complex (in)organic anions of the γ-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri, MscCAγ. J Enzyme Inhib Med Chem 2023; 38:2173748. [PMID: 36719031 PMCID: PMC9891171 DOI: 10.1080/14756366.2023.2173748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
The γ-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium, Mammaliicoccus (Staphylococcus) sciuri (MscCAγ) was recently cloned and purified by our groups. Here we investigated inhibition of this enzyme with (in)organic simple and complex anions, in the search of inhibitors with potential applications. The most effective inhibitors (KIs in the micromolar range) were peroxydisulfate and trithiocarbonate, whereas submillimolar inhibition was observed with N,N-diethyldithiocarbamate and phenylboronic acid (KIs of 0.5-0.9 mM). Thiocyanate, hydrogensulfide, bisulphite, stannate, divanadate, tetraborate, perrhenate, perruthenate, hexafluorophosphate, triflate and iminodisulfonate showed KIs of 1.0-13.7 mM. Cyanate, cyanide, azide, carbonate, nitrate, tellurate, selenocyanide, tetrafluoroborate, sulfamide, sulphamic acid and phenylarsonic acid were weaker inhibitors, with KIs in the range of 25.2-95.5 mM, whereas halides, bicarbonate, nitrite, sulphate, perchlorate and fluorosulfonate did not show inhibitory action up until 100 mM concentrations in the assay system. Finding more effective MscCAγ inhibitors may be helpful to fight drug resistance to antibiotics.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
22
|
Abdoli M, Bonardi A, Supuran CT, Žalubovskis R. Investigation of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2023; 38:2152811. [PMID: 36629134 PMCID: PMC9848269 DOI: 10.1080/14756366.2022.2152811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A library of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates was synthesised by selective S-alkylation of the easily accessible 4-thioureidobenzenesulphonamide. The compounds were assayed as inhibitors of four human (h) carbonic anhydrase isoforms hCA I, II, VII, and XIII, as well as three bacterial enzymes belonging to the β-CA class, MscCA from Mammaliicoccus (Staphylococcus) sciuri and StCA1 and StCA2, from Salmonella enterica (serovar Typhimurium). Most compounds investigated here exhibited moderate to low nanomolar inhibition constants against hCA I, II, and VII. The cytosolic hCA XIII was also inhibited by these compounds, but not as effective as hCA I, II, and VII. Several compounds were very effective against MscCA and StCA1. StCA2 was less inhibited compared to MscCA and StCA1. Some compounds showed considerable selectivity for inhibiting some CA isoforms. They may thus be considered as interesting starting points for the discovery and development of novel therapeutic agents belonging to this class of enzyme inhibitors.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy,Claudiu T. Supuran Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia,Latvian Institute of Organic Synthesis, Riga, Latvia,CONTACT Raivis Žalubovskis Latvian Institute of Organic Synthesis, 21 Aizkraukles Str, Riga, LV-1006, Latvia
| |
Collapse
|
23
|
Türkeş C. Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico. J Mol Recognit 2023; 36:e3063. [PMID: 37807620 DOI: 10.1002/jmr.3063] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KI s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KI s in the range of 0.64 ± 0.08-5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug-drug interactions unexpectedly when used in combination with other agents.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
24
|
Aspatwar A, Bonardi A, Aisala H, Zueva K, Primmer CR, Lumme J, Parkkila S, Supuran CT. Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite Gyrodactylus salaris. J Enzyme Inhib Med Chem 2023; 38:2167988. [PMID: 36647786 PMCID: PMC9848252 DOI: 10.1080/14756366.2023.2167988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A β-class carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Monogenean platyhelminth Gyrodactylus salaris, a fish parasite, GsaCAβ, has been investigated for its inhibitory effects with a panel of sulphonamides and sulfamates, some of which in clinical use. Several effective GsaCAβ inhibitors were identified, belonging to simple heterocyclic sulphonamides, the deacetylated precursors of acetazolamide and methazolamide (KIsof 81.9-139.7 nM). Many other simple benezene sulphonamides and clinically used agents, such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, benzolamide, sulthiame and hydrochlorothiazide showed inhibition constants <1 µM. The least effective GsaCAβ inhibitors were 4,6-disubstituted-1,3-benzene disulfonamides, with KIs in the range of 16.9-24.8 µM. Although no potent GsaCAβ-selective inhibitors were detected so far, this preliminary investigation may be helpful for better understanding the inhibition profile of this parasite enzyme and for the potential development of more effective and eventually parasite-selective inhibitors.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Ashok Aspatwar Faculty of Medicine and Health Technology, Tampere University, Via Ugo Schiff 6, Tampere, 50019, Finland
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Heidi Aisala
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ksenia Zueva
- Department of Biology, University of Turku, Turku, Finland
| | - Craig R Primmer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jaakko Lumme
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy,Claudiu T. Supuran Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Supuran CT. Carbonic anhydrase versatility: from pH regulation to CO 2 sensing and metabolism. Front Mol Biosci 2023; 10:1326633. [PMID: 38028557 PMCID: PMC10676200 DOI: 10.3389/fmolb.2023.1326633] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
While the carbonic anhydrase (CA, EC 4.2.1.1) superfamily of enzymes has been described primarily as involved only in pH regulation for decades, it also has many other important functions. CO2, bicarbonate, and protons, the physiological substrates of CA, are indeed the main buffering system in organisms belonging to all life kingdoms; however, in the last period, relevant progress has been made in the direction of elucidating the involvement of the eight genetically distinct CA families in chemical sensing, metabolism, and several other crucial physiological processes. Interference with CA activity, both by inhibiting and activating these enzymes, has thus led to novel applications for CA inhibitors and activators in the field of innovative biomedicine and environment and health. In this perspective article, I will discuss the recent advances which have allowed for a deeper understanding of the biochemistry of these versatile enzymes and various applications of their modulators of activity.
Collapse
Affiliation(s)
- Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
26
|
El-Yazbi AF, Elrewiny MA, Habib HM, Eid AH, Elzahhar PA, Belal ASF. Thermogenic Modulation of Adipose Depots: A Perspective on Possible Therapeutic Intervention with Early Cardiorenal Complications of Metabolic Impairment. Mol Pharmacol 2023; 104:187-194. [PMID: 37567782 DOI: 10.1124/molpharm.123.000704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Mohamed A Elrewiny
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Hosam M Habib
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Perihan A Elzahhar
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed S F Belal
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
27
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
28
|
Zheng N, Jiang W, Zhang P, Ma L, Chen J, Zhang H. Repurposing of World-Approved Drugs for Potential Inhibition against Human Carbonic Anhydrase I: A Computational Study. Int J Mol Sci 2023; 24:12619. [PMID: 37628799 PMCID: PMC10454238 DOI: 10.3390/ijms241612619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Human carbonic anhydrases (hCAs) have enzymatic activities for reversible hydration of CO2 and are acknowledged as promising targets for the treatment of various diseases. Using molecular docking and molecular dynamics simulation approaches, we hit three compounds of methyl 4-chloranyl-2-(phenylsulfonyl)-5-sulfamoyl-benzoate (84Z for short), cyclothiazide, and 2,3,5,6-tetrafluoro-4-piperidin-1-ylbenzenesulfonamide (3UG for short) from the existing hCA I inhibitors and word-approved drugs. As a Zn2+-dependent metallo-enzyme, the influence of Zn2+ ion models on the stability of metal-binding sites during MD simulations was addressed as well. MM-PBSA analysis predicted a strong binding affinity of -18, -16, and -14 kcal/mol, respectively, for these compounds, and identified key protein residues for binding. The sulfonamide moiety bound to the Zn2+ ion appeared as an essential component of hCA I inhibitors. Vina software predicted a relatively large (unreasonable) Zn2+-sulfonamide distance, although the relative binding strength was reproduced with good accuracy. The selected compounds displayed potent inhibition against other hCA isoforms of II, XIII, and XIV. This work is valuable for molecular modeling of hCAs and further design of potent inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
29
|
Martínez-Montiel M, Romero-Hernández LL, Giovannuzzi S, Begines P, Puerta A, Ahuja-Casarín AI, Fernandes MX, Merino-Montiel P, Montiel-Smith S, Nocentini A, Padrón JM, Supuran CT, Fernández-Bolaños JG, López Ó. Conformationally Restricted Glycoconjugates Derived from Arylsulfonamides and Coumarins: New Families of Tumour-Associated Carbonic Anhydrase Inhibitors. Int J Mol Sci 2023; 24:ijms24119401. [PMID: 37298353 DOI: 10.3390/ijms24119401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 1-4 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor-enzyme interactions.
Collapse
Affiliation(s)
- Mónica Martínez-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Laura L Romero-Hernández
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Simone Giovannuzzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Paloma Begines
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Ana I Ahuja-Casarín
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Miguel X Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla 72570, PUE, Mexico
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| |
Collapse
|
30
|
Feng XC, Liu FC, Chen WY, Du J, Liu H. Lipid metabolism of hepatocellular carcinoma impacts targeted therapy and immunotherapy. World J Gastrointest Oncol 2023; 15:617-631. [PMID: 37123054 PMCID: PMC10134209 DOI: 10.4251/wjgo.v15.i4.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that affecting many people's lives globally. The common risk factors for HCC include being overweight and obese. The liver is the center of lipid metabolism, synthesizing most cholesterol and fatty acids. Abnormal lipid metabolism is a significant feature of metabolic reprogramming in HCC and affects the prognosis of HCC patients by regulating inflammatory responses and changing the immune microenvironment. Targeted therapy and immunotherapy are being explored as the primary treatment strategies for HCC patients with unresectable tumors. Here, we detail the specific changes of lipid metabolism in HCC and its impact on both these therapies for HCC. HCC treatment strategies aimed at targeting lipid metabolism and how to integrate them with targeted therapy or immunotherapy rationally are also presented.
Collapse
Affiliation(s)
- Xiao-Chen Feng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Wu-Yu Chen
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Jin Du
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| |
Collapse
|
31
|
Angeli A, Paoletti N, Supuran CT. Five-Membered Heterocyclic Sulfonamides as Carbonic Anhydrase Inhibitors. Molecules 2023; 28:molecules28073220. [PMID: 37049983 PMCID: PMC10096498 DOI: 10.3390/molecules28073220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
The development of heterocyclic derivatives has progressed considerably over the past decades, and many new carbonic anhydrase inhibitors (CAIs) fall into this field. In particular, five-membered heterocyclic sulfonamides have been generally shown to be more effective inhibitors compared to six-membered rings ones. Despite the importance of oxygen and nitrogen five-membered heterocyclic aromatic rings in medicinal chemistry, the installation of sulfonamide moiety on such heterocycles has not received much attention. On the other hand, 1,3,4-thiadiazole/thiadiazoline ring-bearing sulfonamides are the scaffolds which have been widely used in a variety of pharmaceutically important CAIs such as acetazolamide, metazolamide and their many derivatives obtained by using the tail approach. Here, we reviewed the field focusing on the diverse biological activities of these CAIs, such as antiglaucoma, antiepileptic, antitumor and antiinfective properties. This review highlights developments involving five-membered heterocyclic sulfonamides over the last years, with a focus on their pharmacological/clinical applications.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Niccolò Paoletti
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
32
|
Opposing effects of clozapine and brexpiprazole on β-aminoisobutyric acid: Pathophysiology of antipsychotics-induced weight gain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:8. [PMID: 36750570 PMCID: PMC9905547 DOI: 10.1038/s41537-023-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Clozapine is one of the most effective antipsychotics and has the highest risk of weight gain and metabolic complications; however, the detailed pathophysiology of its clinical action and adverse reactions remains to be clarified. Therefore, the present study determined the chronic effects of clozapine (high risk of weight gain) and brexpiprazole (relatively low risk of weight gain) on intracellular and extracellular levels of β-aminoisobutyric acid (BAIBA) enantiomers, which are endogenous activators of AMP-activated protein kinase (AMPK). L-BAIBA is the dominant BAIBA enantiomer in the rat hypothalamus and cultured astrocytes, whereas L-BAIBA accounts for only approximately 5% of the total plasma BAIBA enantiomers. L-BAIBA displayed GABAB receptor agonistic action in the extracellular space and was released through activated astroglial hemichannels, whereas in the intracellular space, L-BAIBA activated AMPK signalling. Chronic administration of the effective doses of clozapine increased intracellular and extracellular levels of L-BAIBA in the hypothalamus and cultured astrocytes, whereas that of brexpiprazole decreased them. These results suggest that enhancing hypothalamic AMPK signalling by increasing intracellular L-BAIBA levels is, at least partially, involved in the pathophysiology of clozapine-induced weight gain and metabolic complications.
Collapse
|
33
|
Small Structural Differences Govern the Carbonic Anhydrase II Inhibition Activity of Cytotoxic Triterpene Acetazolamide Conjugates. Molecules 2023; 28:molecules28031009. [PMID: 36770674 PMCID: PMC9919727 DOI: 10.3390/molecules28031009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Acetylated triterpenoids betulin, oleanolic acid, ursolic acid, and glycyrrhetinic acid were converted into their succinyl-spacered acetazolamide conjugates. These conjugates were screened for their inhibitory activity onto carbonic anhydrase II and their cytotoxicity employing several human tumor cell lines and non-malignant fibroblasts. As a result, the best inhibitors were derived from betulin and glycyrrhetinic acid while those derived from ursolic or oleanolic acid were significantly weaker inhibitors but also of diminished cytotoxicity. A betulin-derived conjugate held a Ki = 0.129 μM and an EC50 = 8.5 μM for human A375 melanoma cells.
Collapse
|
34
|
Aspatwar A, Supuran CT, Waheed A, Sly WS, Parkkila S. Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease. J Physiol 2023; 601:257-274. [PMID: 36464834 PMCID: PMC10107955 DOI: 10.1113/jp283579] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Carbonic anhydrase V (CA V), a mitochondrial enzyme, was first isolated from guinea-pig liver and subsequently identified in mice and humans. Later, studies revealed that the mouse genome contains two mitochondrial CA sequences, named Car5A and Car5B. The CA VA enzyme is most highly expressed in the liver, whereas CA VB shows a broad tissue distribution. Car5A knockout mice demonstrated a predominant role for CA VA in ammonia detoxification, whereas the roles of CA VB in ureagenesis and gluconeogenesis were evident only in the absence of CA VA. Previous studies have suggested that CA VA is mainly involved in the provision of HCO3 - for biosynthetic processes. In children, mutations in the CA5A gene led to reduced CA activity, and the enzyme was sensitive to increased temperature. The metabolic profiles of these children showed a reduced supply of HCO3 - to the enzymes that take part in intermediary metabolism: carbamoylphosphate synthetase, pyruvate carboxylase, propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. Although the role of CA VB is still poorly understood, a recent study reported that it plays an essential role in human Sertoli cells, which sustain spermatogenesis. Metabolic disease associated with CA VA appears to be more common than other inborn errors of metabolism and responds well to treatment with N-carbamyl-l-glutamate. Therefore, early identification of hyperammonaemia will allow specific treatment with N-carbamyl-l-glutamate and prevent neurological sequelae. Carbonic anhydrase VA deficiency should therefore be considered a treatable condition in the differential diagnosis of hyperammonaemia in neonates and young children.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
35
|
Supuran CT. Carbonic Anhydrase Inhibitors from Marine Natural Products. Mar Drugs 2022; 20:721. [PMID: 36422000 PMCID: PMC9696426 DOI: 10.3390/md20110721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 04/14/2024] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes in organisms in all life kingdoms, being involved in pH regulation, metabolic processes and many other physiological and pathological conditions. CA inhibitors and activators thus possess applications as pharmacological agents in the management of a range of diseases. Marine natural products have allowed the identification of some highly interesting CA inhibitors, among which are sulfonamides, phenols, polyamines, coumarins and several other miscellaneous inhibitors, which are reviewed here. Psammaplin C and some bromophenols were the most investigated classes of such marine-based inhibitors and have been used as lead molecules for developing interesting types of potent and, in some cases, isoform-selective inhibitors, with applications as antitumor agents by inhibiting human CA XII and P-glycoprotein activities. Some phenols have shown interesting bacterial and fungal β-CA inhibitory effects. Marine natural products thus constitute a gold mine for identifying novel CA inhibitors, some of which may lead to the development of novel types of pharmacological agents.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| |
Collapse
|
36
|
Benzenesulfonamides Incorporating Hydantoin Moieties Effectively Inhibit Eukaryoticand Human Carbonic Anhydrases. Int J Mol Sci 2022; 23:ijms232214115. [PMID: 36430592 PMCID: PMC9696710 DOI: 10.3390/ijms232214115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1-(4-benzenesulfonamide)-3-alkyl/benzyl-hydantoin derivatives were synthesized and evaluated for the inhibition of eukaryotic and human carbonic anhydrases (CAs, EC 4.2.1.1). The prepared compounds were screened for their hCA inhibitory activities against three cytosolic isoforms as well as two β-CAs from fungal pathogens. The best inhibition was observed against hCA II and VII as well as Candida glabrata enzyme CgNce103. hCA I and Malassezia globosa MgCA enzymes were, on the other hand, less effectively inhibited by these compounds. The inhibitory potency of these compounds against CAs was found to be dependent on the electronic and steric effects of substituent groups on the N3-position of the hydantoin ring, which included alkyl, alkenyl and substituted benzyl moieties. The interesting results against CgNce103 make the compounds of interest for investigations in vivo as potential antifungals.
Collapse
|
37
|
Selective and low-cost triterpene urea and amide derivatives of high cytotoxicity and selectivity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|