1
|
Song HK, Park SH, Kim HJ, Jang S, Choo BK, Kim HK, Kim T. Inhibitory effect of Sanguisorba hakusanensis Makino ethanol extract on atopic dermatitis-like responses in NC/Nga mice and human keratinocytes. Sci Rep 2023; 13:14594. [PMID: 37670127 PMCID: PMC10480230 DOI: 10.1038/s41598-023-41676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic, inflammatory skin disease caused by immune dysregulation. In this study, we investigated anti-atopic and anti-inflammatory activities of Sanguisorba hakusanensis ethanol extract (SHE) both in vivo using NC/Nga mice and in vitro using human HaCaT keratinocytes. Oral administration of SHE suppressed several atopic symptoms associated with house dust mites (induced with Dermatophagoides farinae extract) in NC/Nga mice and decreased serum levels of inflammatory mediators such as immunoglobulin E, histamine, and inflammatory chemokines. Additionally, SHE treatment reduced the infiltration of immune cells such as mast cells and macrophages in AD skin lesions. In vitro, interferon-γ- and tumor necrosis factor-α-stimulated HaCaT cells exhibited increased expression of T helper 1 and 2 chemokines; their expression was inhibited by SHE treatment. The anti-inflammatory effects of SHE treatment involved blocking of the mitogen-activated protein kinase and signal transducer and activator of transcription 1 signaling pathways. In conclusion, SHE exerts potent anti-atopic and anti-inflammatory effects and should be considered for the clinical treatment of AD.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Sun Haeng Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Byung-Kil Choo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ho Kyoung Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
2
|
Song J, Zeng J, Zheng S, Jiang N, Wu A, Guo S, Ye R, Hu L, Huang F, Wang L, Xiaogang Z, Liu B, Wu J, Chen Q. Sanguisorba officinalis L. promotes diabetic wound healing in rats through inflammation response mediated by macrophage. Phytother Res 2023; 37:4265-4281. [PMID: 37260161 DOI: 10.1002/ptr.7906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/16/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Sanguisorba officinalis L., a traditional Chinese medicine, is frequently used to treat burns and scalds. But even so, it is unknown whether S. officinalis L. can accelerate diabetic wounds (DW) healing. Here, to bridge the gap, we employed in vivo and in vitro evaluations to assess the positive effect of S. officinalis L. ethanol extract (ESO) on DW. Results demonstrated that ESO dramatically improved the DW healing rate. With ESO treatment, the inappropriately elevated levels of IL6, IL1β and TNFα in DW were reduced, while the expression of IL10 was increased, indicating that the abnormal inflammation in DW was also under control. Moreover, the abnormally elevated expression of CD86 was significantly inhibited and the expression of CD206 was significantly up-regulated following treatment with ESO. The global level of NF-κB protein was not affected by ESO treatment, but it suppressed the expression of phosphorylated NF-κB and prevented its nuclear entry. In addition, in RAW264.7 cells activated with lipopolysaccharide (LPS), the expression of NLRP3, Caspase1 and IL1β were significantly diminished following ESO treatment. In conclusion, ESO was proved to be a promising treatment for DW healing due to its potential to accelerate the healing process by suppressing the inflammatory response. This was achieved by increasing the ratio of M2 to M1 polarization through blocking the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Jianying Song
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Silin Zheng
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Nan Jiang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shengming Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rupei Ye
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lixin Hu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhou Xiaogang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bo Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Nursing, Southwest Medical University, Luzhou, China
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Department of Endocrinology and Metabolism, Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Department of Endocrinology and Metabolism, Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
3
|
Jiang X, Sun Y, Yang S, Wu Y, Wang L, Zou W, Jiang N, Chen J, Han Y, Huang C, Wu A, Zhang C, Wu J. Novel chemical-structure TPOR agonist, TMEA, promotes megakaryocytes differentiation and thrombopoiesis via mTOR and ERK signalings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154637. [PMID: 36610353 DOI: 10.1016/j.phymed.2022.154637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-peptide thrombopoietin receptor (TPOR) agonists are promising therapies for the mitigation and treatment of thrombocytopenia. However, only few agents are available as safe and effective for stimulating platelet production for thrombocytopenic patients in the clinic. PURPOSE This study aimed to develop a novel small molecule TPOR agonist and investigate its underlying regulation of function in megakaryocytes (MKs) differentiation and thrombopoiesis. METHODS A potential active compound that promotes MKs differentiation and thrombopoiesis was obtained by machine learning (ML). Meanwhile, the effect was verified in zebrafish model, HEL and Meg-01 cells. Next, the key regulatory target was identified by Drug Affinity Responsive Target Stabilization Assay (DARTS), Cellular Thermal Shift Assay (CETSA), and molecular simulation experiments. After that, RNA-sequencing (RNA-seq) was used to further confirm the associated pathways and evaluate the gene expression induced during MK differentiation. In vivo, irradiation (IR) mice, C57BL/6N-TPORem1cyagen (Tpor-/-) mice were constructed by CRISPR/Cas9 technology to examine the therapeutic effect of TMEA on thrombocytopenia. RESULTS A natural chemical-structure small molecule TMEA was predicted to be a potential active compound based on ML. Obvious phenotypes of MKs differentiation were observed by TMEA induction in zebrafish model and TMEA could increase co-expression of CD41/CD42b, DNA content, and promote polyploidization and maturation of MKs in HEL and Meg-01 cells. Mechanically, TMEA could bind with TPOR protein and further regulate the PI3K/AKT/mTOR/P70S6K and MEK/ERK signal pathways. In vivo, TMEA evidently promoted platelet regeneration in mice with radiation-induced thrombocytopenia but had no effect on Tpor-/- and C57BL/6 (WT) mice. CONCLUSION TMEA could serve as a novel TPOR agonist to promote MKs differentiation and thrombopoiesis via mTOR and ERK signaling and could potentially be created as a promising new drug to treat thrombocytopenia.
Collapse
Affiliation(s)
- Xueqin Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yueshan Sun
- The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Shuo Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Long Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Nan Jiang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yunwei Han
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunlan Huang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Anguo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jianming Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Tocai (Moţoc) AC, Ranga F, Teodorescu AG, Pallag A, Vlad AM, Bandici L, Vicas SI. Evaluation of Polyphenolic Composition and Antimicrobial Properties of Sanguisorba officinalis L. and Sanguisorba minor Scop. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243561. [PMID: 36559673 PMCID: PMC9785539 DOI: 10.3390/plants11243561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/12/2023]
Abstract
The most widespread Sanguisorba species are Sanguisorba officinalis L. and Sanguisorba minor Scop. which are also found in the Romanian flora and classified as medicinal plants because of hemostatic, antibacterial, antitumor, antioxidant and antiviral activities. This study aimed to characterize and compare Sanguisorba species in order to highlight which species is more valuable according to phenolic profile and antimicrobial activity. Based on high-performance liquid chromatography equipped with photodiode array detection and mass spectrometry (electrospray ionization) (HPLC-DAD-MS (ESI+)) analysis, it was evident that the ethanol extract obtained from the leaves of S. minor Scop. contains the highest content of phenolic compounds at 160.96 mg/g p.s., followed by the flower and root extract (131.56 mg/g dw and 121.36 mg/g dw, respectively). While in S. officinalis, the highest amount of phenols was recorded in the root extract (127.06 mg/g), followed by the flower and leaves extract (102.31 mg/g and 81.09 mg/g dw, respectively). Our results show that among the two species, S. minor Scop. is richer in phenolic compounds compared with the S. officinalis L. sample. In addition, the antimicrobial potential of each plant organ of Sanguisorba species was investigated. The ethanol extract of S. minor Scop. leaves exhibited better antibacterial activity against all of the bacteria tested, especially on Staphylococcus aureus, with an inhibition zone of 15.33 ± 0.83 mm. Due to the chemical composition and antimicrobial effect, the Sanguisorba species can be used as food supplements with beneficial effects on human health.
Collapse
Affiliation(s)
| | - Floricuta Ranga
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Andrei George Teodorescu
- Department of Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Annamaria Pallag
- Department of Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Andreea Margareta Vlad
- Department of Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Livia Bandici
- Department of Electrical Engineering, University of Oradea, 410087 Oradea, Romania
| | - Simona Ioana Vicas
- Department of Food Engineering, Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania
| |
Collapse
|
5
|
Wei F, Yang C, Wu L, Sun J, Wang Z, Wang Z. Simultaneous Determination and Pharmacokinetics Study of Three Triterpenes from Sanguisorba officinalis L. in Rats by UHPLC–MS/MS. Molecules 2022; 27:molecules27175412. [PMID: 36080179 PMCID: PMC9458004 DOI: 10.3390/molecules27175412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
A selective and rapid ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method was established and validated for the determination of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, and pomolic acid in rats after the oral administration of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, pomolic acid, and Sanguisorba officinalis L. extract. The separation was carried out on an ACQUITY UPLC®HSS T3 column (2.1 mm × 100 mm, 1.8 μm), using methanol and 5 mmol/L ammonium acetate water as the mobile phase. The three compounds were quantified using the multiple reaction monitoring mode with the electrospray ion source in both the positive and negative mode. Liquid-liquid extraction was applied to the plasma sample preparation. Bifendate was selected as the internal standard. The intra-day and inter-day precision and the accuracy of the method were all within receivable ranges. The lower limit of quantification of ziyuglycoside I, 3β,19α-dihydroxyurs-12-en-28-oic-acid 28-β-d-glucopyranosyl ester, and pomolic acid were 6.50, 5.75, and 2.63 ng/mL, respectively. The extraction recoveries of analytes in rat plasma ranged from 83 to 94%. The three components could be rapidly absorbed into the blood (Tmax, 1.4–1.6 h) both in the single-administration group or S. officinalis extract group, but the first peak of PA occurred at 0.5 h and the second peak at 4–5 h in the S. officinalis extract. Three compounds were eliminated relatively slowly (t1/2, 7.3–11 h). The research was to establish a rapid, sensible, and sensitive UHPLC–MS/MS method using the multi-ion mode for multi-channel simultaneous mensuration pharmacokinetics parameters of three compounds in rats after oral administration of S. officinalis extract. This study found, for the first time, differences in the pharmacokinetic parameters of the three compounds in the monomer compounds and S. officinalis extract administration, which preliminarily revealed the transformation and metabolism of the three compounds in vivo.
Collapse
Affiliation(s)
- Fanshu Wei
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Lihong Wu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhenyue Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Correspondence:
| |
Collapse
|
6
|
A Comprehensive Study of the Genus Sanguisorba (Rosaceae) Based on the Floral Micromorphology, Palynology, and Plastome Analysis. Genes (Basel) 2021; 12:genes12111764. [PMID: 34828370 PMCID: PMC8618895 DOI: 10.3390/genes12111764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Sanguisorba, commonly known as burnet, is a genus in the family Rosaceae native to the temperate regions of the Northern hemisphere. Five of its thirty species are distributed in Korea: Sanguisorba officinalis, S. stipulata, S. hakusanensis, S. longifolia, and S. tenuifolia. S. officinalis has been designated as a medicinal remedy in the Chinese and Korean Herbal Pharmacopeias. Despite being a valuable medicinal resource, the morphological and genomic information, as well as the genetic characteristics of Sanguisorba, are still elusive. Therefore, we carried out the first comprehensive study on the floral micromorphology, palynology, and complete chloroplast (cp) genome of the Sanguisorba species. The outer sepal waxes and hypanthium characters showed diagnostic value, despite a similar floral micromorphology across different species. All the studied Sanguisorba pollen were small to medium, oblate to prolate-spheroidal, and their exine ornamentation was microechinate. The orbicules, which are possibly synapomorphic, were consistently absent in this genus. Additionally, the cp genomes of S. officinalis, S. stipulata, and S. hakusanensis have been completely sequenced. The comparative analysis of the reported Sanguisorba cp genomes revealed local divergence regions. The nucleotide diversity of trnH-psbA and rps2-rpoC2, referred to as hotspot regions, revealed the highest pi values in six Sanguisorba. The ndhG indicated positive selection pressures as a species-specific variation in S. filiformis. The S. stipulata and S. tenuifolia species had psbK genes at the selected pressures. We developed new DNA barcodes that distinguish the typical S. officinalis and S. officinalis var. longifolia, important herbal medicinal plants, from other similar Sanguisorba species with species-specific distinctive markers. The phylogenetic trees showed the positions of the reported Sanguisorba species; S. officinalis, S. tenuifolia, and S. stipulata showed the nearest genetic distance. The results of our comprehensive study on micromorphology, pollen chemistry, cp genome analysis, and the development of species identification markers can provide valuable information for future studies on S. officinalis, including those highlighting it as an important medicinal resource.
Collapse
|
7
|
Zhou P, Li J, Chen Q, Wang L, Yang J, Wu A, Jiang N, Liu Y, Chen J, Zou W, Zeng J, Wu J. A Comprehensive Review of Genus Sanguisorba: Traditional Uses, Chemical Constituents and Medical Applications. Front Pharmacol 2021; 12:750165. [PMID: 34616302 PMCID: PMC8488092 DOI: 10.3389/fphar.2021.750165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Genus Sanguisorba (family: Rosaceae) comprises nearly 148 species, distributed widely across the temperate and subtropical regions of the Northern Hemisphere. Sanguisorba officinalis L. (S. officinalis) has been used as a hemostatic and scald treating medicine in China for a long time. Numerous studies have demonstrated that plant extracts or monomers from S. officinalis exhibit several pharmacological effects, such as anti-cancer, anti-virus, anti-inflammation, anti-bacteria, neuroprotective and hepatoprotective effects. The other species of genus Sanguisorba are also being studied by researchers worldwide. Sanguisorba minor Scop. (S. minor), as an edible wild plant, is a common ingredient of the Mediterranean diet, and its young shoots and leaves are often mixed with traditional vegetables and consumed as salad. Reports on genus Sanguisorba available in the current literature were collected from Google Scholar, Web of Science, Springer, and PubMed. The Plant List (http://www.theplantlist.org./tpl1.1/search?q=Sanguisorba), International Plant Name Index (https://www.ipni.org/?q=Sanguisorba) and Kew Botanical Garden (http://powo.science.kew.org/) were used for obtaining the scientific names and information on the subspecies and cultivars. In recent years, several in vivo and in vitro experiments have been conducted to reveal the active components and effective monomers of S. officinalis and S. minor. To date, more than 270 compounds have been isolated and identified so far from the species belonging to genus Sanguisorba. Numerous reports on the chemical constituents, pharmacologic effects, and toxicity of genus Sanguisorba are available in the literature. This review provides a comprehensive understanding of the current traditional applications of plants, which are supported by a large number of scientific experiments. Owing to these promising properties, this species is used in the treatment of various diseases, including influenza virus infection, inflammation, Alzheimer's disease, type 2 diabetes and leukopenia caused by bone marrow suppression. Moreover, the rich contents and biological effects of S. officinalis and S. minor facilitate these applications in dietary supplements and cosmetics. Therefore, the purpose of this review is to summarize the recent advances in the traditional uses, chemical constituents, pharmacological effects and clinical applications of genus Sanguisorba. The present comprehensive review may provide new insights for the future research on genus Sanguisorba.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyan Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yuanzhi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Wenjun Zou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Shen X, Zhang W, Peng C, Yan J, Chen P, Jiang C, Yuan Y, Chen D, Zhu W, Yao M. In vitro anti-bacterial activity and network pharmacology analysis of Sanguisorba officinalis L. against Helicobacter pylori infection. Chin Med 2021; 16:33. [PMID: 33865425 PMCID: PMC8052767 DOI: 10.1186/s13020-021-00442-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) infection has become an international public health problem, and antibiotic-based triple or quadruple therapy is currently the mainstay of treatment. However, the effectiveness of these therapies decreases due to resistance to multiple commonly used antibiotics. Sanguisorba officinalis L. (S. officinalis), a traditional Chinese medicine clinically used for hemostasis and treatment of diarrhea, has various pharmacological activities. In this study, in vitro antimicrobial activity was used for the preliminary evaluation of S. officinalis against H. pylori. And a pharmacology analysis approach was also utilized to elucidate its underlying mechanisms against H. pylori infection. Methods Micro-broth dilution method, agar dilution method, checkerboard assay, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used for the assessment of anti-bacterial activity. Active ingredients screening, GO analysis, KEGG analysis, construction of PPI network, molecular docking, and RT-qPCR were used to elucidate the underlying pharmacological mechanisms of S. officinalis against H. pylori infection. Results The minimum inhibitory concentration (MIC) values of S. officinalis against multiple H. pylori strains including clinically isolated multi-drug resistant (MDR) strains were ranging from 160 to 320 µg/ml. These results showed that S. officinalis had additive interaction with four commonly used antibiotics and could exert antibacterial effect by changing the morphology of bacteria without developing drug resistance. Through network pharmacology analysis, 8 active ingredients in S. officinalis were screened out for subsequent studies. Among 222 putative targets of S. officinalis, 49 targets were identified as potential targets for treatment of H. pylori infection. And these 49 targets were significantly enriched in GO processes such as protein kinase B signaling, protein kinase activity, protein kinase binding, and KEGG pathways such as Pathways in cancer, MicroRNAs in cancer, and TNF signaling pathway. Protein-protein interaction analysis yielded 5 core targets (AKT1, VEGFA, EGFR, SRC, CCND1), which were validated by molecular docking and RT-qPCR. Conclusions Overall, this study confirmed the in vitro inhibitory activity of S. officinalis against H. pylori and explored the possible pharmacological mechanisms, laying the foundation for further research and clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00442-1.
Collapse
Affiliation(s)
- Xue Shen
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weijia Zhang
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chang Peng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Yan
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Pengting Chen
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheng Jiang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuemei Yuan
- School of Ecology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Donglian Chen
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Meicun Yao
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
In Vitro and In Silico Studies of Soluble Epoxide Hydrolase Inhibitors from the Roots of Lycopus lucidus. PLANTS 2021; 10:plants10020356. [PMID: 33668538 PMCID: PMC7917821 DOI: 10.3390/plants10020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an enzyme that is considered a potential therapeutic target in human cardiovascular disease. Triterpenes (1–4) and phenylpropanoids (5–10) were isolated from Lycopus lucidus to obtain sEH inhibitors through various chromatographic purificationtechniques. The isolated compounds were evaluated for their inhibitory activity against sEH, and methyl rosmarinate (7), martynoside (8), dimethyl lithospermate (9) and 9″ methyl lithospermate (10) showed remarkable inhibitory activity, with the IC50 values ranging from 10.6 ± 3.2 to 35.7 ± 2.1 µM. Kinetic analysis of these compounds revealed that 7, 9 and 10 were competitive inhibitors bound to the active site, and 8 was the preferred mixed type inhibitor for allosteric sites. Additionally, molecular modeling has identified interacting catalytic residues and bindings between sEH and inhibitors. The results suggest that these compounds are potential candidates that can be used for further development in the prevention and treatment for cardiovascular risk.
Collapse
|
10
|
Wang S, Luo J, Liu XQ, Kang OH, Kwon DY. Antibacterial activity and synergy of antibiotics with sanguisorbigenin isolated from Sanguisorba officinalis L. against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2021; 72:238-244. [PMID: 33064844 PMCID: PMC7986612 DOI: 10.1111/lam.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022]
Abstract
The present study evaluated the antibacterial activity and the synergy of the sanguisorbigenin (SGB) from the dried root of Sanguisorba officinalis L. combined with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. A total of six strains of reference strain and clinical isolates were used to determine the antibacterial activity using a broth microdilution assay, and the synergistic effects were determined using a checkerboard assay. To analyse the mechanism of synergy, we conducted the level of penicillin-binding protein 2a by western blot. In addition, quantitative RT-PCR was performed to analyse the mecA gene expression. The minimal inhibitory concentration values of SGB against six strains of S. aureus were in the range of 12·5-50 μg ml-1 , and there were synergy, or partial synergy effects when SGB was combined with antibiotics. Furthermore, when treated with SGB, the level of penicillin-binding protein 2a and the expression of the mecA gene was reduced significantly. In conclusion, this study demonstrated that SGB is a potential natural antibacterial agent against methicillin-resistant S. aureus that represents a considerable burden on the healthcare system worldwide, and may an exceptionally modulator of β-lactam antibiotics.
Collapse
Affiliation(s)
- S Wang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| | - J Luo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - X-Q Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - O-H Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| | - D-Y Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| |
Collapse
|
11
|
Assessment of the anti-virulence potential of extracts from four plants used in traditional Chinese medicine against multidrug-resistant pathogens. BMC Complement Med Ther 2020; 20:318. [PMID: 33076882 PMCID: PMC7574281 DOI: 10.1186/s12906-020-03114-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multidrug-resistant pathogens are resistant to many antibiotics and associated with serious infections. Amomum tsaoko Crevost et Lemaire, Sanguisorba officinalis, Terminalia chebula Retz and Salvia miltiorrhiza Bge, are all used in Traditional Chinese Medicine (TCM) against multidrug-resistant pathogens, and the purpose of this study was to evaluate the antibacterial and anti-virulence activity of extracts derived from them. METHODS The antibacterial activity of ethanol and aqueous extracts from these four plants was examined against several multi-drug resistant bacterial strains, and their anti-virulence potential (including quorum quenching activity, biofilm inhibition, and blocking production of virulence factor δ-toxin) was assessed against different S. aureus strains. The chemical composition of the most effective extract was determined by LC-FTMS. RESULTS Only extracts from S. officinalis and A. tsaoko were shown to exhibit limited growth inhibition activity at a dose of 256 μg·mL-1. The S. officinalis ethanol extract, the ethanol and aqueous extract of A. tsaoko, and the aqueous extract of S. miltiorrhiza all demonstrated quorum quenching activity, but didn't significantly inhibit bacterial growth. The ethanol extract of S. officinalis inhibited bacterial toxin production and biofilm formation at low concentrations. Chemical composition analysis of the most effective extract of S. officinalis showed that it mainly contained saponins. CONCLUSIONS The most active extract tested in this study was the ethanol root extract of S. officinalis. It inhibited δ-toxin production and biofilm formation at low concentrations and saponins may be its key active components. While the four plants showed no direct antibacterial effects, their anti-virulence properties may be key to fighting bacterial infections.
Collapse
|
12
|
Finimundy TC, Karkanis A, Fernandes Â, Petropoulos SA, Calhelha R, Petrović J, Soković M, Rosa E, Barros L, Ferreira ICFR. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem 2020; 327:127043. [PMID: 32470801 DOI: 10.1016/j.foodchem.2020.127043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 01/03/2023]
Abstract
In this study, the chemical characterization and bioactive properties of S. minor cultivated under different fertilization rates (control, half rate and full rate) were evaluated. Twenty-two phenolic compounds were identified, including five phenolic acids, seven flavonoids and ten tannins. Hydrolysable tannins were prevalent, namely Sanguiin H-10, especially in leaves without fertilization (control). Roots of full-rate fertilizer (660 Kg/ha) presented the highest flavonoid content, mainly catechin and its isomers, whereas half-rate fertilizer (330 Kg/ha), presented the highest content of total phenolic compounds, due to the higher amount of ellagitannins (lambertianin C: 84 ± 1 mg/g of dry extract). Antimicrobial activities were also promising, especially against Salmonella typhimurium (MBC = 0.44 mg/mL). Moreover, root samples revealed activity against all tested cell lines regardless of fertilization rate, whereas leaves were effective only against HeLa cell line. In conclusion, S. minor could be a source of natural bioactive compounds, while fertilization could increase phenolic compounds content.
Collapse
Affiliation(s)
- Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; CITAB - University of Trás-os-Montes and Alto Douro (UTAD), Department of Agronomy, Vila Real, Portugal
| | - Anestis Karkanis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Spyridon A Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece.
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Jovana Petrović
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Eduardo Rosa
- CITAB - University of Trás-os-Montes and Alto Douro (UTAD), Department of Agronomy, Vila Real, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
13
|
Wang R, Sun J, Ye C, Wang J, Zong T, Zhou W, Li G. Chemical constituents isolated from the roots of Sanguisorba officinalis L. and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2019.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Wang R, Sun J, Jin M, Ye C, Wang J, Jin L, Ma YJ, Zhou W, Li G. Two new phenolic glycosides with anti-complementary activity from the roots of Sanguisorba officinalis L. Nat Prod Res 2020; 35:4423-4432. [PMID: 32037886 DOI: 10.1080/14786419.2020.1723092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sanguisorba officinalis L. is a traditional herbal plant that belongs to the genus Sanguisorba and the family Rosaceae. Two new phenolic glycosides (1-2), ten known phenolics (3-12), and six known monoterpenoid glycosides (13-18) were isolated from the roots of S. officinalis using silica gel column and preparative middle pressure liquid chromatography (MPLC). The chemical structures were elucidated based on extensive spectroscopic experiments, including 1D and 2D NMR as well as HR-ESI-MS, and comparison with those reported in the literature. Compounds 3-5, and 13 were isolated from the Rosaceae family and compound 7 was obtained from the genus Sanguisorba for the first time. Additionally, all compounds were evaluated for their anti-complementary activities against the classical pathway. Furthermore, compounds 1, 5, 9, and 14 showed significant anti-complementary activities with the 50% haemolytic inhibition concentrations (CH50) values of 0.40 ± 0.03, 0.57 ± 0.01, 0.51 ± 0.07, and 0.53 ± 0.05 mM, respectively.
Collapse
Affiliation(s)
- Rongshen Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Jinfeng Sun
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Mei Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, P. R. China
| | - Chao Ye
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Jiaming Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Long Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Ying Jie Ma
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China.,The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wei Zhou
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P. R. China
| |
Collapse
|
15
|
Wang R, Sun J, Jin M, Jin L, Qi Y, Cao L, Zhou W, Li G. A new triterpenoid and other constituents with cytotoxic activity from the roots of Sanguisorba officinalis L. Nat Prod Res 2019; 35:3341-3345. [PMID: 31795750 DOI: 10.1080/14786419.2019.1693569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sanguisorba officinalis L. is a traditional herbal plant that belongs to the genus Sanguisorba and the family Rosaceae. A new ursane-type triterpenoid, 3-oxo-urs-11, 13(18)-dien-19, 28-olide (1), two known ursane-type triterpenoids (3 - 4) and three known oleanane-type triterpenoids (2, 5 - 6) were isolated from the roots of S. officinalis by silica gel column and MPLC. Their structures were identified by interpretation of spectroscopic data (1 D NMR, 2 D NMR, HR-ESI-MS) and comparison with those reported in the literature. Compound 2 was isolated from the Rosaceae family, compounds 3-5 were obtained from the genus Sanguisorba, and compound 6 was obtained from the S. officinalis for the first time. Additionally, all of the isolated compounds were evaluated for their cytotoxic activity against three human cancer cells. Compound 3 showed better cytotoxic activity against A549, HeLa, SK-Hep1 cells than the other compounds with IC50 values of 48.58 ± 1.88, 47.84 ± 2.01, 42.31 ± 2.43 μM, respectively.
Collapse
Affiliation(s)
- Rongshen Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Jinfeng Sun
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Mei Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China.,Department of Pharmacy, Yanbian University Hospital, Yanji, P.R. China
| | - Lan Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Yanqiu Qi
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Lihua Cao
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Wei Zhou
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China
| |
Collapse
|