1
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
2
|
Desta KT, Abd El-Aty AM. Millettia isoflavonoids: a comprehensive review of structural diversity, extraction, isolation, and pharmacological properties. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:275-308. [PMID: 36345415 PMCID: PMC9630821 DOI: 10.1007/s11101-022-09845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED There are approximately 260 known species in the genus Millettia, many of which are used in traditional medicine to treat human and other animal ailments in various parts of the world. Being in the Leguminosae (Fabaceae) family, Millettia species are rich sources of isoflavonoids. In the past three decades alone, several isoflavonoids originating from Millettia have been isolated, and their pharmacological activities have been evaluated against major diseases, such as cancer, inflammation, and diabetes. Despite such extensive research, no recent and comprehensive review of the phytochemistry and pharmacology of Millettia isoflavonoids is available. Furthermore, the structural diversity of isoflavonoids in Millettia species has rarely been reported. In this review, we comprehensively summarized the structural diversity of Millettia isoflavonoids, the methods used for their extraction and isolation protocols, and their pharmacological properties. According to the literature, 154 structurally diverse isoflavonoids were isolated and reported from the various tissues of nine well-known Millettia species. Prenylated isoflavonoids and rotenoids were the most dominant subclasses of isoflavonoids reported. Other subclasses of reported isoflavonoids include isoflavans, aglycone isoflavones, glycosylated isoflavones, geranylated isoflavonoids, phenylcoumarins, pterocarpans and coumaronochromenes. Although some isolated molecules showed promising pharmacological properties, such as anticancer, anti-inflammatory, estrogenic, and antibacterial activities, others remained untested. In general, this review highlights the potential of Millettia isoflavonoids and could improve their utilization in drug discovery and medicinal use processes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09845-w.
Collapse
Affiliation(s)
- Kebede Taye Desta
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874 Republic of Korea
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353 China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
3
|
Chansiw N, Champakam S, Chusri P, Pangjit K, Srichairatanakool S. Quercetin-Rich Ethanolic Extract of Polygonum odoratum var Pakphai Leaves Decreased Gene Expression and Secretion of Pro-Inflammatory Mediators in Lipopolysaccharide-Induced Murine RAW264.7 Macrophages. Molecules 2022; 27:molecules27123657. [PMID: 35744785 PMCID: PMC9227601 DOI: 10.3390/molecules27123657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Polygonum odoratum var. Pakphai has been used in traditional Thai medicine for the treatment of flatulence and constipation and to relieve the inflammation caused by insect bites. Quercetin (Q), which is abundant in plant-based foods, has been found to exert anti-inflammatory properties. This study evaluated the anti-inflammatory activity of P. odoratum ethanolic extract in RAW264.7 macrophage cells. Leaves were extracted with 50% ethanol, phenolics and flavonoids were then analyzed using UHPLC-QTOF-MS and HPLC-DAD. RAW264.7 cells were induced with lipopolysaccharides (LPSs). They were then treated with the extract and prostaglandin E2 (PGE2), and interleukin-6 (IL-6) and tumor necrotic factor-alpha (TNF-α) concentrations were determined. Levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), IL-6 and TNF-α mRNAs were analyzed using qRT-PCR. Chemical analysis demonstrated that the extract was abundant with Q while also containing catechin, gallic acid, epicatechin gallate and coumarin. The extract increased the viability of RAW264.7 cells and dose-dependently decreased nitric oxide production, PGE2, IL-6 and TNF-α levels in the medium from the LPS-induced RAW264.7 cell culture. Consistently, COX-2, iNOS, IL-6 and TNF-α mRNA levels were decreased in a concentration-dependent manner (p < 0.05). Thus, the quercetin-rich ethanolic extract derived from P. odoratum var Pakphai leaves can exert anti-inflammatory activity in LPS-induced RAW264.7 cells through a reduction of the pro-inflammatory mediator response.
Collapse
Affiliation(s)
- Nittaya Chansiw
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.C.); (P.C.)
| | - Sorraya Champakam
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Pattranuch Chusri
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.C.); (P.C.)
| | - Kanjana Pangjit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53935322
| |
Collapse
|
4
|
da Luz JRD, Barbosa EA, do Nascimento TES, de Rezende AA, Ururahy MAG, Brito ADS, Araujo-Silva G, López JA, Almeida MDG. Chemical Characterization of Flowers and Leaf Extracts Obtained from Turnera subulata and Their Immunomodulatory Effect on LPS-Activated RAW 264.7 Macrophages. Molecules 2022; 27:1084. [PMID: 35164352 PMCID: PMC8839466 DOI: 10.3390/molecules27031084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
The anti-inflammatory properties of Turnera subulata have been evaluated as an alternative drug approach to treating several inflammatory processes. Accordingly, in this study, aqueous and hydroalcoholic extracts of T. subulata flowers and leaves were analyzed regarding their phytocomposition by ultrafast liquid chromatography coupled to mass spectrometry, and their anti-inflammatory properties were assessed by an in vitro inflammation model, using LPS-stimulated RAW-264.7 macrophages. The phytochemical profile indicated vitexin-2-O-rhamnoside as an important constituent in both extracts, while methoxyisoflavones, some bulky amino acids (e.g., tryptophan, tyrosine, phenylalanine), pheophorbides, and octadecatrienoic, stearidonic, and ferulic acids were detected in hydroalcoholic extracts. The extracts displayed the ability to modulate the in vitro inflammatory response by altering the secretion of proinflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines and inhibiting the PGE-2 and NO production. Overall, for the first time, putative compounds from T. subulata flowers and leaves were characterized, which can modulate the inflammatory process. Therefore, the data highlight this plant as an option to obtain extracts for phytotherapic formulations to treat and/or prevent chronic diseases.
Collapse
Affiliation(s)
- Jefferson Romáryo Duarte da Luz
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
| | - Eder A. Barbosa
- Laboratory of Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry, Darcy Ribeiro University Campus, University of Brasilia, Brasília 70910-900, DF, Brazil;
| | - Thayse Evellyn Silva do Nascimento
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Adriana Augusto de Rezende
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Marcela Abbott Galvão Ururahy
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| | - Adriana da Silva Brito
- Faculty of Health Sciences of Trairi (FACISA/UFRN), R. Passos de Miranda, Santa Cruz 59200-000, RN, Brazil;
| | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Amapá State University (UEAP), Av. Presidente Vargas, s/n, Centro, Macapá 68900-070, AP, Brazil;
| | - Jorge A. López
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
| | - Maria das Graças Almeida
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (J.R.D.d.L.); (A.A.d.R.)
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil; (T.E.S.d.N.); (J.A.L.)
- Post-Graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, R. Gen. Gustavo Cordeiro de Farias, s/n—Petrópolis, Natal 59012-570, RN, Brazil;
| |
Collapse
|
5
|
Sun ZG, Li ZN, Zhang JM, Hou XY, Yeh SM, Ming X. Recent Development of Flavonoids with Various Activities. Curr Top Med Chem 2022; 22:305-329. [PMID: 35040404 DOI: 10.2174/1568026622666220117111858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Flavonoids, a series of compounds with C6-C3-C6 structure, mostly originate from plant metabolism. Flavonoids have shown beneficial effects on many aspects of human physiology and health. Recently, many flavonoids with various activities have been discovered, which has led to more and more studies focusing on their physiological and pharmacodynamic activities. The anti-cancer and anti-viral activities especially have attracted the attention of many researchers. Therefore, the discovery and development of flavonoids as anti-disease drugs has great potential and may make significant contribution to fighting diseases. This review focus on the discovery and development of flavonoids in medicinal chemistry in recent years.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Jin-Mai Zhang
- Room 205, BIO-X white house, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, P.R. China
| | - Xiao-Yan Hou
- Qilu Pharmaceutical Co., Ltd, 8888 Lvyou Road, High-tech Zone, Jinan, 250104, P.R. China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
6
|
Buyinza D, Yang LJ, Derese S, Ndakala A, Coghi P, Heydenreich M, Wong VKW, Möller HM, Yenesew A. Cytotoxicity of isoflavones from Millettia dura. Nat Prod Res 2021; 35:2744-2747. [PMID: 34414847 DOI: 10.1080/14786419.2019.1660335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The first phytochemical investigation of the flowers of Millettia dura resulted in the isolation of seven isoflavones, a flavonol and a chalcone. Eleven isoflavones and a flavonol isolated from various plant parts from this plant were tested for cytotoxicity against a panel of cell lines, and six of these showed good activity with IC50 values of 6-14 μM. Durmillone was the most active with IC50 values of 6.6 μM against A549 adenocarcinomic human alveolar basal epithelial cancer cell line with low cytotoxicity against the non-cancerous cell lines BEAS-2B (IC50 = 58.4 μM), LO2 hepatocytes (IC50 78.7 μM) and CCD19Lu fibroblasts (IC50 >100 μM).
Collapse
Affiliation(s)
- Daniel Buyinza
- Department of Chemistry, University of Nairobi, Nairobi, Kenya.,Department of Chemistry, Kabale University, Kabale, Uganda
| | - Li Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Solomon Derese
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| | - Albert Ndakala
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| | - Paolo Coghi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | | | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Heiko M Möller
- Institut für Chemie, Universität Potsdam, Potsdam, Germany
| | - Abiy Yenesew
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
7
|
Lin FJ, Li H, Wu DT, Zhuang QG, Li HB, Geng F, Gan RY. Recent development in zebrafish model for bioactivity and safety evaluation of natural products. Crit Rev Food Sci Nutr 2021; 62:8646-8674. [PMID: 34058920 DOI: 10.1080/10408398.2021.1931023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.
Collapse
Affiliation(s)
- Fang-Jun Lin
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
8
|
Xu C, Fang MY, Wang K, Liu J, Tai GP, Zhang ZT, Ruan BF. Discovery and Development of Inflammatory Inhibitors from 2-Phenylchromonone (Flavone) Scaffolds. Curr Top Med Chem 2020; 20:2578-2598. [PMID: 32972343 DOI: 10.2174/1568026620666200924115611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are compounds based on a 2-phenylchromonone scaffold. Flavonoids can be divided into flavonoids, flavonols, dihydroflavones, anthocyanins, chalcones and diflavones according to the oxidation degree of the central tricarbonyl chain, the connection position of B-ring (2-or 3-position), and whether the tricarbonyl chain forms a ring or not. There are a variety of biological activities about flavonoids, such as anti-inflammatory activity, anti-oxidation and anti-tumor activity, and the antiinflammatory activity is apparent. This paper reviews the anti-inflammatory activities and mechanisms of flavonoids and their derivatives reported in China and abroad from 2011 till date (2011-2020), in order to find a good drug scaffold for the study of anti-inflammatory activities.
Collapse
Affiliation(s)
- Chen Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Yuan Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ke Wang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Jing Liu
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China,Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Guang-Ping Tai
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| | - Zhao-Ting Zhang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China,Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| |
Collapse
|
9
|
Yang JM, Liu YY, Yang WC, Ma XX, Nie YY, Glukhov E, Gerwick L, Gerwick WH, Lei XL, Zhang Y. An anti-inflammatory isoflavone from soybean inoculated with a marine fungus Aspergillus terreus C23-3. Biosci Biotechnol Biochem 2020; 84:1546-1553. [PMID: 32434451 DOI: 10.1080/09168451.2020.1764838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
A new isoflavone derivative compound 1 (psoralenone) was isolated from soybean inoculated with a marine fungus Aspergillus terreus C23-3, together with seven known compounds including isoflavones 2-6, butyrolactone I (7) and blumenol A (8). Their structures were elucidated by MS, NMR, and ECD. Psoralenone displayed moderate in vitro anti-inflammatory activity in the LPS-induced RAW264.7 cell model. Compound 2 (genistein) showed moderate acetylcholinesterase (AChE) inhibitory activity whereas compounds 2, 5 (biochanin A), 6 (psoralenol), and 7 exhibited potent larvicidal activity against brine shrimp. Compounds 3 (daidzein), 4 (4'-hydroxy-6,7-dimethoxyisoflavone), and 5-7 showed broad-spectrum anti-microbial activity, and compound 7 also showed moderate 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity.
Collapse
Affiliation(s)
- Jing-Ming Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University , Zhanjiang, China
- Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University , Shenzhen, China
| | - Ya-Yue Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University , Zhanjiang, China
| | - Wen-Cong Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University , Zhanjiang, China
| | - Xiao-Xiang Ma
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University , Zhanjiang, China
| | - Ying-Ying Nie
- Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University , Shenzhen, China
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego, CA, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego, CA, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego, CA, USA
| | - Xiao-Ling Lei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University , Zhanjiang, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University , Zhanjiang, China
- Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University , Shenzhen, China
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego, CA, USA
| |
Collapse
|