1
|
Black B, da Silva LBR, Hu G, Qu X, Smith DFQ, Magaña AA, Horianopoulos LC, Caza M, Attarian R, Foster LJ, Casadevall A, Kronstad JW. Glutathione-mediated redox regulation in Cryptococcus neoformans impacts virulence. Nat Microbiol 2024; 9:2084-2098. [PMID: 38956248 PMCID: PMC11930340 DOI: 10.1038/s41564-024-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
The fungal pathogen Cryptococcus neoformans is well adapted to its host environment. It has several defence mechanisms to evade oxidative and nitrosative agents released by phagocytic host cells during infection. Among them, melanin production is linked to both fungal virulence and defence against harmful free radicals that facilitate host innate immunity. How C. neoformans manipulates its redox environment to facilitate melanin formation and virulence is unclear. Here we show that the antioxidant glutathione is inextricably linked to redox-active processes that facilitate melanin and titan cell production, as well as survival in macrophages and virulence in a murine model of cryptococcosis. Comparative metabolomics revealed that disruption of glutathione biosynthesis leads to accumulation of reducing and acidic compounds in the extracellular environment of mutant cells. Overall, these findings highlight the importance of redox homeostasis and metabolic compensation in pathogen adaptation to the host environment and suggest new avenues for antifungal drug development.
Collapse
Affiliation(s)
- Braydon Black
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leandro Buffoni Roque da Silva
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xianya Qu
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel F Q Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Armando Alcázar Magaña
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Metabolomics Core Facility, Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda C Horianopoulos
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Mélissa Caza
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Larissa Yarr Medical Microbiology Laboratory, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Rodgoun Attarian
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Pfizer Canada, Kirkland, Quebec, Canada
| | - Leonard J Foster
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Metabolomics Core Facility, Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James W Kronstad
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Chang HC, Lien JC, Hsueh MC, Wu CR. Exploring the Neuroprotective Potential of Desmodium Species: Insights into Radical Scavenging Capacity and Mechanisms against 6-OHDA-Induced Neurotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1742. [PMID: 38999581 PMCID: PMC11244519 DOI: 10.3390/plants13131742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
In this study, we collected seven prevalent Taiwanese Desmodium plants, including three species with synonymous characteristics, in order to assess their antioxidant phytoconstituents and radical scavenging capacities. Additionally, we compared their inhibitory activities on monoamine oxidase (MAO) and 6-hydroxydopamine (6-OHDA) auto-oxidation. Subsequently, we evaluated the neuroprotective potential of D. pulchellum on 6-OHDA-induced nerve damage in SH-SY5Y cells and delved into the underlying neuroprotective mechanisms. Among the seven Desmodium species, D. pulchellum exhibited the most robust ABTS radical scavenging capacity and relative reducing power; correspondingly, it had the highest total phenolic and phenylpropanoid contents. Meanwhile, D. motorium showcased the best hydrogen peroxide scavenging capacity and, notably, D. sequax demonstrated remarkable prowess in DPPH radical and superoxide scavenging capacity, along with selective inhibitory activity against MAO-B. Of the aforementioned species, D. pulchellum emerged as the frontrunner in inhibiting 6-OHDA auto-oxidation and conferring neuroprotection against 6-OHDA-induced neuronal damage in the SH-SY5Y cells. Furthermore, D. pulchellum effectively mitigated the increase in intracellular ROS and MDA levels through restoring the activities of the intracellular antioxidant defense system. Therefore, we suggest that D. pulchellum possesses neuroprotective effects against 6-OHDA-induced neurotoxicity due to the radical scavenging capacity of its antioxidant phytoconstituents and its ability to restore intracellular antioxidant activities.
Collapse
Affiliation(s)
- Hung-Chi Chang
- Department of Golden-Ager Industry Management, College of Management, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Min-Chung Hsueh
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Lin HH, Tseng CY, Yu PR, Ho HY, Hsu CC, Chen JH. Therapeutic Effect of Desmodium caudatum Extracts on Alleviating Diabetic Nephropathy Mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:374-380. [PMID: 38750193 DOI: 10.1007/s11130-024-01192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Desmodium caudatum extracts (DCE) were investigated for their potential therapeutic effects on diabetic nephropathy (DN). In our study, the high-fat diet (HFD) / streptozotocin (STZ)-induced DN model in C57BL/6 mice was treated with 100 mg/kg, 200 mg/kg DCE. The results showed that DCE decreased biochemical parameters and proteinuria levels. The kidney sections staining indicated that DCE treatment recovered glomerular atrophy and alleviated lipid droplets in the glomerular. Additionally, DCE inhibited lipid and glycogen accumulation down-regulated the expression of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) proteins. DCE also reduced collagenous fibrous tissue and the expression of transforming growth factor-β1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) through Masson's trichrome staining and immunohistochemical analysis. We found that DCE alleviated hydroxyproline content, and epithelial-mesenchymal transition (EMT). Besides, the results shown that DCE enhanced the antioxidant enzymes to mitigate fibrosis by reducing oxidative stress. In conclusion, our study provided evidence of the protective effect of DCE which down-regulated hyperglycemia, hyperlipidemia and inhibition of TGF-β1 and EMT pathway but elevated antioxidant, suggesting its therapeutic implication for DN.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Pei-Rong Yu
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Hsiang-Yu Ho
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, No.110, Sec.1, Jiangou N. Rd., South Dist., Taichung City, 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
4
|
Ho TJ, Tsai BCK, Debakshee G, Shibu MA, Kuo CH, Lin CH, Lin PY, Lin SZ, Kuo WW, Huang CY. Ohwia caudata aqueous extract attenuates senescence in aging adipose-derived mesenchymal stem cells. Heliyon 2024; 10:e29729. [PMID: 38698985 PMCID: PMC11064092 DOI: 10.1016/j.heliyon.2024.e29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Stem cells exhibit pluripotency and self-renewal abilities. Adipose-derived mesenchymal stem cells can potentially be used to reconstruct various tissues. They possess significant versatility and alleviate various aging-related diseases. Unfortunately, aging leads to senescence, apoptosis, and a decline in regenerative capacity in adipose-derived mesenchymal stem cells. These changes necessitate a strategy to mitigate the effects of aging on stem cells. Ohwia caudata (O. caudata) has therapeutic effects against several illnesses. However, studies on whether O. caudata has therapeutic effects against aging are lacking. In this study, we aimed to identify potential therapeutic anti-aging effects in the crude aqueous extract of O. caudata on adipose-derived mesenchymal stem cells. Using 0.1 μM doxorubicin, we induced aging in human adipose-derived mesenchymal stem cells (hADMSCs) and evaluated whether various concentrations of O. caudata aqueous extract exhibit anti-aging effects on them. The O. caudata extract exhibited significant antioxidant effects on hADMSCs without any toxicity. Furthermore, after treatment with the O. caudata aqueous extract, the levels of mitochondrial superoxide, DNA double-strand breaks, and telomere shortening were reduced in the hADMSCs subjected to doxorubicin-induced aging. The extract also suppressed doxorubicin-induced aging by upregulating klotho and downregulating p21 in hADMSCs. These findings indicated that the O. caudata extract exhibited anti-aging properties that modulated hADMSC homeostasis. Therefore, it could be a potential candidate for restoring the self-renewal ability and multipotency of aging hADMSCs.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Goswami Debakshee
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Chih-Hsueh Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
5
|
Susanti I, Pratiwi R, Rosandi Y, Hasanah AN. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. PLANTS (BASEL, SWITZERLAND) 2024; 13:965. [PMID: 38611494 PMCID: PMC11013868 DOI: 10.3390/plants13070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
In recent years, discovering new drug candidates has become a top priority in research. Natural products have proven to be a promising source for such discoveries as many researchers have successfully isolated bioactive compounds with various activities that show potential as drug candidates. Among these compounds, phenolic compounds have been frequently isolated due to their many biological activities, including their role as antioxidants, making them candidates for treating diseases related to oxidative stress. The isolation method is essential, and researchers have sought to find effective procedures that maximize the purity and yield of bioactive compounds. This review aims to provide information on the isolation or separation methods for phenolic compounds with antioxidant activities using column chromatography, medium-pressure liquid chromatography, high-performance liquid chromatography, counter-current chromatography, hydrophilic interaction chromatography, supercritical fluid chromatography, molecularly imprinted technologies, and high-performance thin layer chromatography. For isolation or purification, the molecularly imprinted technologies represent a more accessible and more efficient procedure because they can be applied directly to the extract to reduce the complicated isolation process. However, it still requires further development and refinement.
Collapse
Affiliation(s)
- Ike Susanti
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Yudi Rosandi
- Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
6
|
Shi YJ, Gao JW, Liu CF. Facile synthesis of 8-arylated quercetin derivatives and biological activity evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Mani J, Johnson J, Hosking H, Hoyos BE, Walsh KB, Neilsen P, Naiker M. Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora. PLANTS (BASEL, SWITZERLAND) 2022; 11:2886. [PMID: 36365337 PMCID: PMC9654191 DOI: 10.3390/plants11212886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A large variety of unique and distinct flora of Australia have developed exceptional survival methods and phytochemicals and hence may provide a significant avenue for new drug discovery. This study proposes a bioassay guided fractionation protocol that maybe robust and efficient in screening plants with potential bioactive properties and isolating lead novel compounds. Hence, five native Australian plants were selected for this screening process, namely Pittosporum angustifolium (Gumbi gumbi), Terminalia ferdinandiana (Kakadu plum, seeds (KPS), and flesh (KPF)), Cupaniopsis anacardioides (Tuckeroo, seeds (TKS) and flesh (TKF)), Podocarpus elatus (Illawarra plum, seeds (IPS) and flesh (IPF)) and Pleiogynium timoriense (Burdekin plum, seeds (BPS) and flesh (BPF)). The methanolic extracts of the plants samples were analysed for Total phenolic content (TPC) and antioxidant capacity measure by FRAP. The highest values were found in the KPF which were 20,847 ± 2322 mg GAE/100 g TPC and 100,494 ± 9487 mg TXE/100 g antioxidant capacity. Extracts of GGL was deemed to be most potent with complete cell inhibition in HeLa and HT29, and about 95% inhibition in HuH7 cells. Comparative activity was also seen for KPS extract, where more than 80% cell inhibition occurred in all tested cell lines. Dose-dependent studies showed higher SI values (0.72–1.02) in KPS extracts than GGL (0.5–0.73). Microbial assays of the crude extracts were also performed against five bacterial strains commonly associated with causing food poisoning diseases were selected (Gram positive—Staphylococcus aureus and Gram negative—Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa bacteria). KPF extracts were effective in suppressing microbial growth of all tested bacterial strains except for P. aeruginosa, while TKS and TKF were only slightly effective against S. aureus. Due to the potential of the GGL crude extract to completely inhibit the cells compared to KPS, it was further fractionated and tested against the cell lines. HPLC phenolic profiling of the crude extracts were performed, and numerous peak overlaps were evident in the fruit extracts. The KPF extracts demonstrated the strongest peaks which was coherent with the fact that it had the highest TPC and antioxidant capacity values. A high occurrence of t-ferulic acid in the GGL extracts was found which may explain the cytotoxic activity of GGL extracts. Peaks in KPS and KPF extracts were tentatively identified as gallic acid, protocatechuic acid, 4-hydroxybenzoic acid and syringic acid and possibly ellagic acid. HPLC time-based fractionation of the GGL extract (F1–F5) was performed and Dose dependent cytotoxic effects were determined. It was construed that F1, having the highest SI value for HeLa, HT29 and HuH7 (1.60, 1.41 and 1.67, respectively) would be promising for further fractionation and isolation process.
Collapse
Affiliation(s)
- Janice Mani
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Joel Johnson
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Holly Hosking
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
| | - Beatriz E. Hoyos
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Kerry B. Walsh
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Paul Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (B.E.H.); (K.B.W.); (P.N.); (M.N.)
- Institute of Future Farming Systems, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| |
Collapse
|
8
|
Xie RX, Chen JL, Zhou LQ, Fu XJ, Yuan CM, Hu ZX, Huang LJ, Hao XJ, Gu W. Oreocharioside A-G, new acylated C-glycosylflavones from Oreocharis auricula (Gesneriaceae). Fitoterapia 2022; 158:105158. [PMID: 35176424 DOI: 10.1016/j.fitote.2022.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
Abstract
Seven new acylated C-glycosylflavones, oreocharioside A-G, together with two known compounds were isolated from the whole plant of Oreocharis auricula. Their structures were characterized by the comprehensive analysis of their NMR, IR, UV, CD spectra and HRESIMS data. All the new compounds were evaluated for the antioxidant and anti-inflammatory activities. The results showed that compounds 1 and 2 had significant DPPH and ABTS radical scavenging activities, with the IC50 values of 0.32-3.20 μg/mL. Compounds 2 and 3 exhibited the higher potency among all the new compounds in reducing TNF-α production.
Collapse
Affiliation(s)
- Rui-Xuan Xie
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; School of pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China
| | - Jun-Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Li-Qiang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xian-Jie Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
9
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
10
|
Antioxidative Activity of 1,3,5-Triazine Analogues Incorporating Aminobenzene Sulfonamide, Aminoalcohol/Phenol, Piperazine, Chalcone, or Stilbene Motifs. Molecules 2020; 25:molecules25081787. [PMID: 32295147 PMCID: PMC7221710 DOI: 10.3390/molecules25081787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
A series of 1,3,5-triazine analogues, incorporating aminobenzene sulfonamide, aminoalcohol/phenol, piperazine, chalcone, or stilbene structural motifs, were evaluated as potential antioxidants. The compounds were prepared by using step-by-step nucleophilic substitution of chlorine atoms in starting 2,4,6-trichloro-1,3,5-triazine. Reactions were catalyzed by Cu(I)-supported on a weakly acidic resin. The radical scavenging activity was determined in terms of %inhibition activity and EC50, using the ABTS method. Trolox and ascorbic acid (ASA) were used as standards. In the lowest concentration 1 × 10−4 M, the %inhibition activity values at 0 min were comparable with both standards at least for 10 compounds. After 60 min, compounds 5, 6, 13, and 25 showed nearly twice %inhibition (73.44–87.09%) in comparison with the standards (Trolox = 41.49%; ASA = 31.07%). Values of EC50 at 60 min (17.16–27.78 μM) were 5 times lower for compounds 5, 6, 13, and 25 than EC50 of both standards (trolox = 178.33 μM; ASA = 147.47 μM). Values of EC50 correlated with %inhibition activity. Based on these results, the presented 1,3,5-triazine analogues have a high potential in the treatment of illnesses caused or related to oxidative stress.
Collapse
|