1
|
Lin CJ, Siddique S. Parasitic nematodes: dietary habits and their implications. Trends Parasitol 2024; 40:230-240. [PMID: 38262837 DOI: 10.1016/j.pt.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Nematodes, a diverse group of roundworms, exhibit a wide range of dietary habits, including parasitism of animals and plants. These parasites cause substantial economic losses in agriculture and pose significant health challenges to humans and animals. This review explores the unique adaptations of parasitic nematodes, emphasizing their nutritional requirements and metabolic dependencies. Recent research has identified cross-kingdom compartmentalization of vitamin B5 biosynthesis in some parasitic nematodes, shedding light on coevolutionary dynamics and potential targets for control strategies. Several open questions remain regarding the complexity of nematode nutrition, host manipulation, evolutionary adaptations, and the influence of environmental factors on their metabolic processes. Understanding these aspects offers promising avenues for targeted interventions to manage and control these economically and medically important parasites.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Efon Ekangouo A, Nana Djeunga HC, Sempere G, Kamgno J, Njiokou F, Moundipa Fewou P, Geiger A. Bacteriome Diversity of Blackflies' Gut and Association with Onchocerca volvulus, the Causative Agent of Onchocerciasis in Mbam Valley (Center Region, Cameroon). Pathogens 2021; 11:pathogens11010044. [PMID: 35055992 PMCID: PMC8779297 DOI: 10.3390/pathogens11010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
Vector control using larvicides is the main alternative strategy to address limits of preventive chemotherapy using ivermectin for the control of onchocerciasis. However, it remains substantially limited by implementation difficulties, ecological concerns and the resistance of vector populations. Therefore, efficient and environmentally safe alternative control strategies are still needed. This study explores the composition of the blackfly bacteriome and its variability in the presence of Onchocerca volvulus infection, in order to determine their potential as a novel vector control-based approach to fight onchocerciasis. An entomological survey of a collection of samples was performed in the Bafia health district, a historical endemic focus for onchocerciasis in Cameroon. A total of 1270 blackflies were dissected and the infection rate was 10.1%, indicative of ongoing transmission of onchocerciasis in the surveyed communities. Sequencing process of blackflies’ gut DNA for bacteria screening revealed 14 phyla and 123 genera, highlighting the diversity of gut blackflies bacterial communities. Eight bacteria formed the core of blackfly bacteriome and Wolbachia was the predominant genus with 73.4% of relative abundance of blackflies’ gut bacterial communities. Acidomonas and Roseanomas genera were significantly abundant among infected blackflies (p = 0.01), whereas other genera such as Brevibacterium and Fructobacillus were associated with the absence of infection (p = 0.0009). Differences in gut bacterial distribution of blackflies according to their infection status by the parasite suggest a causal relationship between the bacteriome composition and the onset of blackflies’ infection by O. volvulus or vice versa. Blackfly native bacteria are then potentially involved in infection by O. volvulus, either by facilitating or preventing the parasite infestation of the vector. These bacteria represent an interesting potential as a biological tool/target for a novel approach of vector control to fight onchocerciasis.
Collapse
Affiliation(s)
- Arnauld Efon Ekangouo
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Hugues C. Nana Djeunga
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- Correspondence: ; Tel.: +237-699-076-499
| | - Guilhem Sempere
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- South Green Bioinformatics Platform, Biodiversity, F-34934 Montpellier, France
- UMR InterTryp, CIRAD (Centre de Coopération Internationale en Recherche Agronomique Pour le Développement), Campus International de Baillarguet, F-34398 Montpellier, France
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Paul Moundipa Fewou
- Department of Biochemistry, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| | - Anne Geiger
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé P.O. Box 5797, Cameroon; (A.E.E.); (J.K.); (A.G.)
- UMR InterTryp, IRD (Institut de Recherche Pour le Développement), University of Montpellier, F-34394 Montpellier, France;
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon;
| |
Collapse
|
3
|
Brattig NW, Cheke RA, Garms R. Onchocerciasis (river blindness) - more than a century of research and control. Acta Trop 2021; 218:105677. [PMID: 32857984 DOI: 10.1016/j.actatropica.2020.105677] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20-30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections.
Collapse
|
4
|
Makenga Bof JC, Muteba D, Mansiangi P, Ilunga-Ilunga F, Coppieters Y. Analysis of severe adverse effects following community-based ivermectin treatment in the Democratic Republic of Congo. BMC Pharmacol Toxicol 2019; 20:49. [PMID: 31420005 PMCID: PMC6697993 DOI: 10.1186/s40360-019-0327-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/23/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The progress of mass, community-directed, treatment with ivermectin (CDTI) for onchocerciasis control was disrupted by severe adverse effects (SAE) in the Democratic Republic of Congo (DRC). The study aimed at determining the frequency of post-CDTI SAE as well as factors associated with the occurrence of SAE. METHODS Our retrospective study relied on SAE collection cards, as archived by the DRC Ministry of Health, and compiled for people who benefited from ivermectin treatment then further developed SAE. The study included 945 post-CDTI SAE recorded in DRC between 2003 and 2017. These cases occurred in 15 projects out of 22 projects implemented in the country. All cards were reviewed and analysed. RESULTS Between the years 2003 and 2017, the total average population treated was around 15,552,588 among which 945 cases of SAE were registered in DR Congo, i.e. 6 cases of SAE for 100,000 persons treated per year. 55 deaths related to post-CDTI SAE were recorded, which represents 5.8% of all cases of SAE. Non-neurological SAE were dominated by severe headaches (74.8%), myalgia (64.0%) and arthralgia (62.7%). Neurological SAE were mainly coma (94.1%), motor deficit (75.4%) and palpebral subconjunctival haemorrhages (38.8%). Factors associated with the occurrence of SAE were: male, age over 18 years old, alcohol consumption, hemp intake and the presence of loiasis. The study also highlighted weaknesses of the National Program for Onchocerciasis Control (NPOC) in terms of awareness campaigns among the population. CONCLUSION Co-endemicity of loiasis and onchocerciasis is one of the key factors responsible for the occurrence of SAE following ivermectin treatment. Mobilization of resources necessary to the appropriate management of SAE and awareness of populations are essential to achieve onchocerciasis control in DRC.
Collapse
Affiliation(s)
- Jean-Claude Makenga Bof
- School of Public Health, Université Libre de Bruxelles (ULB), Route de Lennik numéro 808 à 1070, Brussels, Belgium
| | - Daniel Muteba
- National Program for Onchocerciasis Control (NPOC), Kinshasa, Gombe Democratic Republic of Congo
| | - Paul Mansiangi
- School of Public Health, Faculty of Medicine, Université de Kinshasa (UNIKIN), Route de Kimwenza, Lemba Kinshasa, Democratic Republic of Congo
| | - Félicien Ilunga-Ilunga
- School of Public Health, Université Libre de Bruxelles (ULB), Route de Lennik numéro 808 à 1070, Brussels, Belgium
- Institut Supérieur des Techniques Médicales (ISTM), Route de Kimwenza, Lemba Kinshasa, Democratic Republic of Congo
| | - Yves Coppieters
- School of Public Health, Université Libre de Bruxelles (ULB), Route de Lennik numéro 808 à 1070, Brussels, Belgium
| |
Collapse
|
5
|
Gebrezgabiher G, Mekonnen Z, Yewhalaw D, Hailu A. Reaching the last mile: main challenges relating to and recommendations to accelerate onchocerciasis elimination in Africa. Infect Dis Poverty 2019; 8:60. [PMID: 31269966 PMCID: PMC6609392 DOI: 10.1186/s40249-019-0567-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Onchocerciasis (river blindness), caused by the filarial worm species Onchocerca volvulus, is a serious vector-borne neglected tropical disease (NTD) of public health and socioeconomic concern. It is transmitted through the bite of black flies of the genus Simulium, and manifested in dermal and ocular lesions. Ninety-nine percent of the total global risk and burden of onchocerciasis is in Africa. This scoping review examines the key challenges related to the elimination of onchocerciasis by 2020-2025 in Africa, and proposes recommendations to overcome the challenges and accelerate disease elimination. To find relevant articles published in peer-reviewed journals, a search of PubMed and Google Scholar databases was carried out. MAIN TEXT Rigorous regional interventions carried out to control and eliminate onchocerciasis in the past four decades in Africa have been effective in bringing the disease burden under control; it is currently not a public health problem in most endemic areas. Notably, transmission of the parasite is interrupted in some hyperendemic localities. Recently, there has been a policy shift from control to complete disease elimination by 2020 in selected countries and by 2025 in the majority of endemic African countries. The WHO has published guidelines for stopping mass drug administration (MDA) and verifying the interruption of transmission and elimination of human onchocerciasis. Therefore, countries have revised their plans, established a goal of disease elimination in line with an evidence based decision to stop MDA and verify elimination, and incorporated it into their NTDs national master plans. Nevertheless, challenges remain pertaining to the elimination of onchocerciasis in Africa. The challenge we review in this paper are: incomplete elimination mapping of all transmission zones, co-endemicity of onchocerciasis and loiasis, possible emergence of ivermectin resistance, uncoordinated cross-border elimination efforts, conflict and civil unrest, suboptimal program implementation, and technical and financial challenges. This paper also proposes recommendations to overcome the challenges and accelerate disease elimination. These are: a need for complete disease elimination mapping, a need for collaborative elimination activities between national programs, a need for a different drug distribution approach in conflict-affected areas, a need for routine monitoring and evaluation of MDA programs, a need for implementing alternative treatment strategies (ATSs) in areas with elimination anticipated beyond 2025, and a need for strong partnerships and continued funding. CONCLUSIONS National programs need to regularly monitor and evaluate the performance and progress of their interventions, while envisaging the complete elimination of onchocerciasis from their territory. Factors hindering the targeted goal of interruption of parasite transmission need to be identified and remedial actions should be taken. If possible and appropriate, ATSs need to be implemented to accelerate disease elimination by 2025.
Collapse
Affiliation(s)
- Gebremedhin Gebrezgabiher
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- College of Veterinary Medicine, Samara University, Samara, Ethiopia
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Cantey PT, Roy SL, Boakye D, Mwingira U, Ottesen EA, Hopkins AD, Sodahlon YK. Transitioning from river blindness control to elimination: steps toward stopping treatment. Int Health 2019; 10:i7-i13. [PMID: 29471338 PMCID: PMC5881257 DOI: 10.1093/inthealth/ihx049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
The transition from onchocerciasis control to elimination requires country programmes to rethink their approach to a variety of activities as they move from addressing morbidity to addressing transmission of the parasite. Although the 2016 WHO guidelines provide extensive recommendations, it was beyond the scope of the document to provide guidance on all aspects of the transition. This paper will discuss some of the important issues that programmes are grappling with as they transition to elimination and provide some potential approaches that programmes can use to address them. Although there are some data to support some aspects of the suggested approaches, operational research will be needed to generate data to support these approaches further and to determine how programmes could best tailor them to their own unique epidemiological challenges. Good communication between the national programmes and the broader global programme will facilitate the clear articulation of programmatic challenges and the development of the evidence to support programme decision-making.
Collapse
Affiliation(s)
- Paul T Cantey
- Department of Neglected Tropical Diseases, World Health Organization, Geneva 1211, Switzerland
| | - Sharon L Roy
- Division of Parasitic Diseases and Malaria, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Daniel Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, Accra, LG581, Ghana
| | - Upendo Mwingira
- Neglected Tropical Diseases Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dar es Salaam 11478, Tanzania.,National Institute for Medical Research, Dar es Salaam 11101, Tanzania
| | | | | | | |
Collapse
|
7
|
Koala L, Nikièma AS, Paré AB, Drabo F, Toé LD, Belem AMG, Boakye DA, Traoré S, Dabiré RK. Entomological assessment of the transmission following recrudescence of onchocerciasis in the Comoé Valley, Burkina Faso. Parasit Vectors 2019; 12:34. [PMID: 30646934 PMCID: PMC6332526 DOI: 10.1186/s13071-019-3290-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Onchocerciasis, or river blindness, is a dermal filariasis caused by infection with the nematode parasite Onchocerca volvulus, transmitted to humans through the bites of blackflies of the genus Simulium. Despite the decade-long West African Regional Programme for the Elimination of Onchocerciasis, involving the mass administration of ivermectin to populations in endemic areas, recrudescence has occurred. An example is in the Cascades Region of south-west Burkina Faso where the resumption of transmission had resulted in infection prevalences of up to 70% in some villages. In 2011, a strategy for community-directed distribution of ivermectin (CDTI) was set up to respond to this worrying re-emergence. Here, we report on a study of Onchocerca spp. transmission in the affected area carried out from January to December 2012. Every month, host-seeking adult females of the S. damnosum complex were collected at sites on the River Comoé near the four villages (Bodadiougou, Bolibana, Badara Karaboro and Badara Dogossè) that had recorded the highest prevalences in 2010. Collected blackflies were dissected and infective larvae were identified using the O-150 PCR method. Results A total of 9114 S. damnosum (s.l.) adult females were collected, of which 5142 were parous (56.4%) and 78 (1.51%) were infective carrying a total of 137 infective larvae. The annual transmission potential (ATP) was calculated as 0, 30, 255 and 771 infective larvae/man/year in Badara Dogossè, Bolibana, Badara Karaboro and Bodadiougou, respectively. Transmission levels in the latter two are of particular concern as they were higher than 100 infective larvae/person/year, the designated minimum threshold required for elimination of severe pathology, including damage to vision. Conclusions These results confirm that recrudescence of onchocerciasis has occurred, and that transmission of O. volvulus was active at sites on the Comoé River in the Cascades region in 2012. In accordance with WHO recommendations, CDTI should be continued and the situation in the Cascades region should be closely monitored if further spread of this outbreak is to be avoided. Electronic supplementary material The online version of this article (10.1186/s13071-019-3290-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lassane Koala
- Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de l'Innovation, Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, BP 545, Bobo Dioulasso 01, Burkina Faso.
| | - Achille S Nikièma
- Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de l'Innovation, Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, BP 545, Bobo Dioulasso 01, Burkina Faso
| | - Alain B Paré
- Ministère de la Santé, Direction Générale de la Santé, BP 7003, Ouagadougou 01, Burkina Faso
| | - François Drabo
- Ministère de la Santé, Direction Générale de la Santé, BP 7003, Ouagadougou 01, Burkina Faso
| | - Laurent D Toé
- WHO/AFRO/ESPEN Laboratory, Ouagadougou, Burkina Faso
| | - Adrien M G Belem
- Université Nazi Boni de Bobo-Dioulasso 01, BP 1091, Bobo-Dioulasso, Burkina Faso
| | | | | | - Roch K Dabiré
- Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de l'Innovation, Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, BP 545, Bobo Dioulasso 01, Burkina Faso
| |
Collapse
|
8
|
Shey RA, Ghogomu SM, Njume FN, Gainkam LOT, Poelvoorde P, Mutesa L, Robert A, Humblet P, Munyampundu JP, Kamgno J, Lelubre C, Vanhamme L, Souopgui J. Prediction and validation of the structural features of Ov58GPCR, an immunogenic determinant of Onchocerca volvulus. PLoS One 2018; 13:e0202915. [PMID: 30256790 PMCID: PMC6157839 DOI: 10.1371/journal.pone.0202915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/11/2018] [Indexed: 11/18/2022] Open
Abstract
Onchocerciasis is a severely debilitating yet neglected tropical disease (NTD) that creates social stigma, generates and perpetuates poverty, and leads ultimately in some cases to irreversible unilateral or bilateral blindness if untreated. Consequently, the disease is a major impediment to socioeconomic development. Many control programs have been launched for the disease with moderate successes achieved. This mitigated hit is partially due to the lingering need for reliable, non-invasive and easily applicable tools for mapping endemic regions and post-elimination surveillance. In this work, bioinformatics analyses combined with immunological assays were applied in a bid to develop potential tools for diagnosis and assessing the success of drug treatment programs. We report that (i) the O. volvulus antigen, Ov58GPCR is a G-protein coupled receptor (GPCR) conserved in related nematodes, (ii) synthetic peptides predicted to be in the extracellular domain (ECD) of Ov58GPCR are indeed immunogenic epitopes in actively-infected individuals, (iii) synthetic peptide cocktails discriminate between actively-infected individuals, treated individuals and healthy African controls, (iv) polyclonal antibodies against one of the peptides or against the bacterially-expressed ECD reacted specifically with the native antigen of O. volvulus total and surface extracts, (v) Ov58GPCR is transcribed in both larvae and adult parasite stages, (vi) IgG and IgE responses to the recombinant ECD decline with ivermectin treatment. All these findings suggest that the extracellular domain and synthetic peptides of Ov58GPCR, as well as the specific immune response generated could be harnessed in the context of disease diagnosis and surveillance.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Lea Olive Tchouate Gainkam
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annie Robert
- Faculté de santé publique, Institut de recherche expérimentale et clinique, Pôle d'épidémiologie et biostatistique, Université Catholique de Louvain, Clos Chapelle-aux-champs, Woluwe-Saint-Lambert, Belgium
| | - Perrine Humblet
- École de santé publique, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jean-Pierre Munyampundu
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Joseph Kamgno
- Department of Epidemiology, Centre for research on filariasis and other tropical diseases, (CRFilMT), Yaoundé, Cameroon
| | - Christophe Lelubre
- Laboratoire de Médecine Expérimentale, Université Libre de Bruxelles (ULB) - Unité 222, CHU Charleroi (Hôpital André Vésale), Montigny-Le-Tilleul, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM Universite Libre de Bruxelles, Gosselies Campus, Gosselies, Hainaut, Belgium
| |
Collapse
|
9
|
Crowe A, Koehler AV, Sheorey H, Tolpinrud A, Gasser RB. PCR-coupled sequencing achieves specific diagnosis of onchocerciasis in a challenging clinical case, to underpin effective treatment and clinical management. INFECTION GENETICS AND EVOLUTION 2018; 66:192-194. [PMID: 30236522 DOI: 10.1016/j.meegid.2018.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022]
Abstract
This study demonstrates the utility of a PCR-based DNA sequencing approach to make a specific diagnosis of onchocerciasis in a returned traveller. Although a clinical diagnosis was not possible, the surgical excision of a suprascapular nodule from this patient, combined with an histological examination of this nodule and PCR-based sequencing of DNA from a nematode from this lesion solved the case. The analysis of DNA sequence data confirmed the presence of Onchocerca volvulus infection, supporting an effective treatment-clinical management strategy for the patient.
Collapse
Affiliation(s)
- Amy Crowe
- Department of Microbiology, St Vincent's Hospital, Melbourne, Victoria 3065, Australia.
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Harsha Sheorey
- Department of Microbiology, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - Anita Tolpinrud
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
10
|
Colebunders R, Basáñez MG, Siling K, Post RJ, Rotsaert A, Mmbando B, Suykerbuyk P, Hopkins A. From river blindness control to elimination: bridge over troubled water. Infect Dis Poverty 2018; 7:21. [PMID: 29587844 PMCID: PMC5872540 DOI: 10.1186/s40249-018-0406-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An estimated 25 million people are currently infected with onchocerciasis (a parasitic infection caused by the filarial nematode Onchocerca volvulus and transmitted by Simulium vectors), and 99% of these are in sub-Saharan Africa. The African Programme for Onchocerciasis Control closed in December 2015 and the World Health Organization has established a new structure, the Expanded Special Project for the Elimination of Neglected Tropical Diseases for the coordination of technical support for activities focused on five neglected tropical diseases in Africa, including onchocerciasis elimination. AIMS In this paper we argue that despite the delineation of a reasonably well-defined elimination strategy, its implementation will present particular difficulties in practice. We aim to highlight these in an attempt to ensure that they are well understood and that effective plans can be laid to solve them by the countries concerned and their international partners. CONCLUSIONS A specific concern is the burden of disease caused by onchocerciasis-associated epilepsy in hyperendemic zones situated in countries experiencing difficulties in strengthening their onchocerciasis control programmes. These difficulties should be identified and programmes supported during the transition from morbidity control to interruption of transmission and elimination.
Collapse
Affiliation(s)
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Imperial College London, London, UK
| | - Katja Siling
- Institute of Tropical Medicine, Antwerp, Belgium
- London School of Hygiene & Tropical Medicine, London, UK
| | - Rory J. Post
- London School of Hygiene & Tropical Medicine, London, UK
- Liverpool John Moores University, Liverpool, UK
| | - Anke Rotsaert
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Bruno Mmbando
- National Institute for Medical Research, Tanga, Tanzania
| | | | - Adrian Hopkins
- Neglected and Disabling diseases of Poverty Consultant, Gravesend, Kent, UK
| |
Collapse
|
11
|
Komlan K, Vossberg PS, Gantin RG, Solim T, Korbmacher F, Banla M, Padjoudoum K, Karabou P, Köhler C, Soboslay PT. Onchocerca volvulus infection and serological prevalence, ocular onchocerciasis and parasite transmission in northern and central Togo after decades of Simulium damnosum s.l. vector control and mass drug administration of ivermectin. PLoS Negl Trop Dis 2018; 12:e0006312. [PMID: 29494606 PMCID: PMC5849363 DOI: 10.1371/journal.pntd.0006312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/13/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Background Mass drug administration (MDA) of ivermectin has become the main intervention to control onchocerciasis or “river blindness”. In Togo, after many years of MDA, Onchocerca volvulus infection has declined dramatically, and elimination appears achievable, but in certain river basins the current situation remains unknown. We have conducted parasitological, serological, ophthalmological, and entomological assessments in northern and central Togo within the river basins of Ôti, Kéran and Mô. Methodology/Principal findings Examinations were completed in 1,455 participants from 11 onchocerciasis sentinel villages, and O. volvulus transmission by Simulium damnosum sensu lato (s.l.) was evaluated. In children (aged 1–10 years), the prevalence of microfilariae (Mf) was 2.3% and in adults it ranged from 5.1 to 13.3%. Positive IgG4 responses to O. volvulus adult (crude) worm antigen (OvAg) and the recombinant Ov16 antigen were in all-ages 48.7% and 34.4%, and 29.1% and 14.9% in children, respectively. In the river basin villages of Kéran, Mô and Ôti, the IgG4 seroprevalences to OvAg in children were 51.7%, 23.5% and 12.7%, respectively, and to the Ov16 antigen 33.3% (Kéran) and 5.2% (Ôti). Onchocerciasis ocular lesions (punctate keratitis, evolving iridocyclitis and chorioretinitis) were observed in children and young adults. O. volvulus-specific DNA (Ov150) was detected by poolscreen in vector samples collected from Tchitchira/Kéran(22.8%), Bouzalo/Mô(11.3%), Baghan/Mô(2.9%) and Pancerys/Ôti(4.9%); prevalences of O. volvulus infection in S. damnosum s.l. were, respectively, 1%, 0.5%, 0.1% and 0.2%. Conclusions/Significance In the northern and central river basins in Togo, interruption of O. volvulus transmission has not yet been attained. Patent O. volvulus infections, positive antibody responses, progressive ocular onchocerciasis were diagnosed, and parasite transmission by S. damnosum s.l. occurred close to the survey locations. Future interventions may require approaches selectively targeted to non-complying endemic populations, to the seasonality of parasite transmission and national onchocerciasis control programs should harmonize cross-border MDA as a coordinated intervention. Mass drug administration (MDA) with ivermectin has become the main tool in the efforts to control and eliminate onchocerciasis (“river blindness”). In some areas, and after many years of MDA, levels of Onchocerca volvulus infection (the causative parasite) have declined greatly, and elimination appears achievable. In certain river basins of northern and central Togo, the present epidemiological situation remains unknown. The guidelines of the World Health Organization recommend that before ivermectin MDA can be stopped, interruption of O. volvulus transmission must be demonstrated. To this end, parasitological, serological, ophthalmological, and entomological assessments were conducted in the Ôti, Kéran and Mô river basins. O. volvulus infections and positive antibody responses were found in children aged ≤10 years and adults. Progressive ocular onchocerciasis was diagnosed, and parasite transmission by Simulium damnosum s.l. (the disease vector) occurred close to the survey locations. Thus, O. volvulus transmission continues in northern and central Togo, and future interventions may require approaches selectively adapted to seasonal migration of non-complying endemic populations in and out of the river basins, as well as seasonal transmission by the vectors. National control programmes should harmonize cross-border MDA as a coordinated intervention.
Collapse
Affiliation(s)
- Kossi Komlan
- Onchocerciasis Reference Laboratory, National Institute of Hygiene, Sokodé, Togo
| | - Patrick S. Vossberg
- Institute for Tropical Medicine, University of Tübingen, University Clinics, Tübingen, Germany
| | - Richard G. Gantin
- Onchocerciasis Reference Laboratory, National Institute of Hygiene, Sokodé, Togo
- Institute for Tropical Medicine, University of Tübingen, University Clinics, Tübingen, Germany
| | - Tchalim Solim
- Centre Hospitalier Universitaire Campus, Université de Lomé, Lomé, Togo
| | - Francois Korbmacher
- Institute for Tropical Medicine, University of Tübingen, University Clinics, Tübingen, Germany
| | - Méba Banla
- Centre Hospitalier Universitaire Campus, Université de Lomé, Lomé, Togo
| | | | | | - Carsten Köhler
- Institute for Tropical Medicine, University of Tübingen, University Clinics, Tübingen, Germany
| | - Peter T. Soboslay
- Onchocerciasis Reference Laboratory, National Institute of Hygiene, Sokodé, Togo
- Institute for Tropical Medicine, University of Tübingen, University Clinics, Tübingen, Germany
- * E-mail:
| |
Collapse
|