1
|
Liu W, Du J, Qin Z, Zhao M, Du S, Xie J, Zhang Y, Wang M, Wang S. Potent synergistic effect of natural product-inspired Sinomenine derivatives with fluconazole against azole-resistant Candida albicans. Bioorg Med Chem Lett 2025; 121:130159. [PMID: 40068740 DOI: 10.1016/j.bmcl.2025.130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Candida albicans (C. albicans) is the most common cause of invasive Candida infections worldwide. The acquired resistance of C. albicans to fluconazole, a first-line antifungal drug, has been frequently reported, posing significant challenges to treatment. Combination therapy has emerged as an effective strategy to combat drug resistance. In this study, we synthesized a series of sinomenine derivatives and evaluated in vitro synergistic activity against azole-resistant C. albicans. The results demonstrated that compound 3ja exhibited a potent synergistic effect with fluconazole against azole-resistant C. albicans. Mechanism studies revealed that the combination of 3ja and FLC significantly induced reactive oxygen species accumulation, disrupted membrane integrity, altered membrane sterols, and promoted apoptosis in C. albicans.
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiayao Du
- Faculty of Pharmacy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhenzhen Qin
- Faculty of Pharmacy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mei Zhao
- Faculty of Pharmacy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuaibo Du
- Faculty of Pharmacy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianwu Xie
- Faculty of Pharmacy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ya Zhang
- School of Pharmacy, Fourth Military Medical University, Xi'an 710027, China.
| | - Mengzhou Wang
- Faculty of Pharmacy, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shengzheng Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an 710027, China.
| |
Collapse
|
2
|
Fung S, Shirley M. Rezafungin: A Review in Invasive Candidiasis. Drugs 2025; 85:415-423. [PMID: 39913021 DOI: 10.1007/s40265-024-02134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 02/07/2025]
Abstract
Rezafungin (Rezzayo®) is a next-generation echinocandin antifungal with improved pharmacokinetic properties over first-generation echinocandins that allows for once-weekly rather than once-daily intravenous administration. It has recently been approved for the treatment of adults with invasive candidiasis in the EU and UK, and is approved for adults who have limited or no alternative options for the treatment of candidaemia and invasive candidiasis in the USA. In the pivotal phase 3 ReSTORE trial, rezafungin was non-inferior to caspofungin (a first-line echinocandin antifungal agent) based both on global cure rates at day 14 and all-cause mortality rates at day 30 in adults with candidaemia or invasive candidiasis. Additionally, the once-weekly administration of rezafungin has the potential advantage of front-loading the dose and increasing drug exposure, with some evidence suggesting that rezafungin may achieve earlier infection clearance relative to caspofungin. Rezafungin was generally well tolerated, with the most common treatment-emergent adverse events being hypokalaemia, pyrexia, diarrhoea and anaemia. Therefore, rezafungin is a useful addition to the treatments currently available for invasive candidiasis in adults, with potential benefits associated with less frequent administration compared with first-generation echinocandins.
Collapse
Affiliation(s)
- Simon Fung
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Matt Shirley
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
3
|
Trapani F, Viceconte G, Morena V, Tiseo G, Mori G, Kölking B, Khatamzas E. Long-term Safety and Effectiveness of Rezafungin Treatment in Candidemia and Invasive Candidiasis: Results From an Early Access Program in Italy and Germany. Open Forum Infect Dis 2025; 12:ofaf034. [PMID: 40110419 PMCID: PMC11920862 DOI: 10.1093/ofid/ofaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Outcomes are reported for 6 adults receiving rezafungin for chronic, hard-to-treat, invasive candidiasis (including Candida parapsilosis) during an early access program. Rezafungin was well tolerated and administered via once-weekly outpatient intravenous infusion for up to 39 weeks during the program, enabling hospital discharge and replacing daily antifungal infusions.
Collapse
Affiliation(s)
- Filippo Trapani
- Infectious Disease Unit, Department of Oncology and Hematology, Guglielmo da Saliceto Hospital, Piacenza, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulio Viceconte
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Valentina Morena
- Infectious Diseases Unit, "A. Manzoni" Hospital, ASST Lecco, Italy
| | - Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Giovanni Mori
- Infectious Diseases Unit, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Britta Kölking
- Department of Infectious Diseases and Tropical Medicine, Centre for Infectious Diseases, Heidelberg Hospital, Heidelberg, Germany
| | - Elham Khatamzas
- Department of Infectious Diseases and Tropical Medicine, Centre for Infectious Diseases, Heidelberg Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner site Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Huang X, Dong Q, Zhou Q, Fang S, Xu Y, Long H, Chen J, Li X, Qin H, Mu D, Cai X. Genomics insights of candidiasis: mechanisms of pathogenicity and drug resistance. Front Microbiol 2025; 16:1531543. [PMID: 40083780 PMCID: PMC11903725 DOI: 10.3389/fmicb.2025.1531543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Candidiasis, a prevalent class of human infections caused by fungi belonging to the Candida genus, is garnering increasing attention due to its pathogenicity and the emergence of drug resistance. The advancement of genomics technologies has offered powerful tools for investigating the pathogenic mechanisms and drug resistance characteristics of Candida. This comprehensive review provides an overview of the applications of genomics in candidiasis research, encompassing genome sequencing, comparative genomics, and functional genomics, along with the pathogenic features and core virulence factors of Candida. Moreover, this review highlights the role of genomic variations in the emergence of drug resistance, further elucidating the evolutionary and adaptive mechanisms of Candida. In conclusion, the review underscores the current state of research and prospective avenues for exploration of candidiasis, providing a theoretical basis for clinical treatments and public health strategies.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qin Dong
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Qi Zhou
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Shitao Fang
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Yiheng Xu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Hongjie Long
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Jingyi Chen
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xiao Li
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Huaguang Qin
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Dan Mu
- Key Laboratory of Biodiversity Conservation and Characteristic Resource Utilization in Southwest Anhui, Anqing Forestry Technology Innovation Research Institute, School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Cortés JA, Valderrama-Rios MC, Peçanha-Pietrobom PM, Júnior MS, Diaz-Brochero C, Robles-Torres RR, Espinosa-Almanza CJ, Nocua-Báez LC, Nucci M, Álvarez-Moreno CA, Queiroz-Telles F, Rabagliati R, Rojas-Fermín R, Finquelievich JL, Riera F, Cornejo-Juárez P, Corzo-León DE, Cuéllar LE, Zurita J, Hernández AR, Colombo AL. Evidence-based clinical standard for the diagnosis and treatment of candidemia in critically ill patients in the intensive care unit. Braz J Infect Dis 2025; 29:104495. [PMID: 39709887 PMCID: PMC11846572 DOI: 10.1016/j.bjid.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Candidemia is the predominant form of invasive candidiasis and the most frequently occurring serious fungal infection in critically ill patients in Intensive Care Units (ICU). Studies carried out in Latin America reveal a higher incidence of candidemia and higher mortality rates when compared to North America or Europe. This highlights the need to develop guidelines for correctly diagnosing and treating candidemia in critically ill patients in the ICU. These guidelines are part of the efforts to implement antifungal optimization programs in the region to obtain better clinical outcomes and promote rational antifungal use. This evidence-based clinical standard, established through expert consensus for the Latin American context, contains recommendations and algorithms for diagnosing and treating candidemia in critically ill ICU patients.
Collapse
Affiliation(s)
- Jorge Alberto Cortés
- Universidad Nacional de Colombia, Facultad de Medicina, Departamento de Medicina Interna, Bogotá, Colombia; Hospital Universitario Nacional de Colombia, Unidad de Infectología, Bogotá, Colombia.
| | - Martha Carolina Valderrama-Rios
- Universidad Nacional de Colombia, Facultad de Medicina, Departamento de Medicina Interna, Bogotá, Colombia; Hospital Universitario Nacional de Colombia, Unidad de Infectología, Bogotá, Colombia
| | - Paula M Peçanha-Pietrobom
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Enfermidades Infecciosas, São Paulo, SP, Brasil
| | | | - Cándida Diaz-Brochero
- Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Departamento de Medicina Interna, Bogotá, Colombia
| | | | | | - Laura Cristina Nocua-Báez
- Universidad Nacional de Colombia, Facultad de Medicina, Departamento de Medicina Interna, Bogotá, Colombia
| | - Marcio Nucci
- Universidade Federal do Rio de Janeiro, Hospital Universitário, Departament of Internal Medicine, Rio de Janeiro, RJ, Brazil; Grupo Oncoclínicas, Brazil
| | - Carlos Arturo Álvarez-Moreno
- Universidad Nacional de Colombia, Facultad de Medicina, Departamento de Medicina Interna, Bogotá, Colombia; Clínica Universitaria Colombia, Clínica Colsanitas Grupo Keralty, Bogotá, Colombia
| | - Flavio Queiroz-Telles
- Universidade Federal de Paraná, Hospital de Clínicas, Departamento de Saúde Pública, Curitiba, PR, Brasil
| | - Ricardo Rabagliati
- Pontificia Universidad Católica de Chile, Escuela de Medicina, Department of Adult Infectious Diseases, Santiago, Chile
| | - Rita Rojas-Fermín
- Hospital General Plaza de la Salud, Santo Domingo, República Dominicana
| | - Jorge L Finquelievich
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Micología, Buenos Aires, Argentina
| | - Fernando Riera
- División de Enfermedades Infecciosas, Sanatorio Allende Córdoba, Córdoba, Argentina; Universidad Nacional de Córdoba, Enfermedades Infecciosas, Córdoba, Argentina
| | | | - Dora E Corzo-León
- Universidad de Exeter, Centro de Micología Médica del Medical Research Council, Exeter, Reino Unido
| | - Luis E Cuéllar
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Jeannete Zurita
- Pontificia Universidad Católica del Ecuador, Facultad de Medicina, Quito, Ecuador; Zurita & Zurita Laboratorios, Unidad de Investigaciones en Biomedicina, Quito, Ecuador
| | | | - Arnaldo Lopes Colombo
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Divisão de Enfermidades Infecciosas, São Paulo, SP, Brasil; Antimicrobial Resistance Institute of São Paulo (ARIES), São Paulo, SP, Brasil
| |
Collapse
|
6
|
da Silva LJ, Rodrigues DS, de Farias Cabral VP, da Silva CR, Sá LGDAV, de Andrade-Neto JB, Barbosa AD, Flaresso AA, Rocha SNCD, Cavalcanti BC, Moraes MOD, Rios MEF, Pampolha Filho IS, Júnior HVN. Unveiling novel insights: geraniol's enhanced anti-candida efficacy and mechanistic innovations against multidrug-resistant candida strains. Braz J Microbiol 2024; 55:3721-3731. [PMID: 39297913 PMCID: PMC11711867 DOI: 10.1007/s42770-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES This study addressed the need for new treatments for severe Candida infections, especially resistant strains. It evaluated the antifungal potential of geraniol alone and with fluconazole against various Candida spp., including resistant strains, and investigated geraniol's mechanism of action using flow cytometry. METHODS The research assessed the inhibitory effects of geraniol on the growth of various Candida species at concentrations ranging from 110 to 883 µg/ml. The study also explored the potential synergistic effects when geraniol was combined with fluconazole. The mechanism of action was investigated through flow cytometry, with a particular emphasis on key enzymes associated with plasma membrane synthesis, membrane permeability changes, mitochondrial membrane depolarization, reactive oxygen species (ROS) induction, and genotoxicity. RESULTS Geraniol demonstrated significant antifungal activity against different Candida species, inhibiting growth at concentrations within the range of 110 to 883 µg/ml. The mechanism of action appeared to be multifactorial. Geraniol was associated with the inhibition of crucial enzymes involved in plasma membrane synthesis, increased membrane permeability, induction of mitochondrial membrane depolarization, elevated ROS levels, and the presence of genotoxicity. These effects collectively contributed to cell apoptosis. CONCLUSIONS Geraniol, alone and in combination with fluconazole, shows promise as a potential therapeutic option for Candida spp. INFECTIONS Its diverse mechanism of action, impacting crucial cellular processes, highlights its potential as an effective antifungal agent. Further research into geraniol's therapeutic applications may aid in developing innovative strategies to address Candida infections, especially those resistant to current therapies.
Collapse
Affiliation(s)
- Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Batista de Andrade-Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Bruno Coelho Cavalcanti
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Erivanda França Rios
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
7
|
Lévesque S, Brown N, Dufresne PJ, Allard C. Performance of common primary and chromogenic culture media for MALDI-TOF MS identification of clinically relevant yeasts. Microbiol Spectr 2024; 12:e0097424. [PMID: 39162536 PMCID: PMC11448071 DOI: 10.1128/spectrum.00974-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
Timely and accurate identification of yeasts is essential for adequate treatment, considering the increase in antifungal resistance of some species, particularly for C. auris. Current matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) manufacturer's protocol for identification of yeasts requires 24- to 72-h cultivation on Sabouraud dextrose media (SAB), but not some of the mainstay primary culture media used in mycology such as inhibitory mold agar (IMA), Mycosel, CHROMagar Candida Plus, and CHROMagar Candida. As culture media can influence MALDI-TOF MS identification results, this study evaluated the accuracy and performance of identification of clinically relevant yeasts on these first-line media using the VITEK-MS MALDI-TOF MS system.IMPORTANCEIn this study, a panel of 140 strains (21 species) was used to assess the performance of the selected media. Although not in the manufacturer's list of accepted media, IMA and chromogenic media are suitable for the identification of yeasts on the VITEK-MS systems. CHROMagar Candida Plus allowed the identification of 135/140 isolates tested after 24-h incubation similar to SAB reference media (137/140). Yeast isolates that grew on Mycosel selective media were also reliably identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. VITEK-MS system with IVD database V3.2 correctly identified C. auris strains to the species level on CHROMagar Candida Plus alleviating the need for subcultivation and reduced turnaround time (24-72 h) to identification for patient screening.
Collapse
Affiliation(s)
- Simon Lévesque
- Service de microbiologie, CIUSSS de l'Estrie - Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
- Département de microbiologie et infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nathalie Brown
- Service de microbiologie, CIUSSS de l'Estrie - Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Philippe J Dufresne
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Catherine Allard
- Service de microbiologie, CIUSSS de l'Estrie - Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
- Département de microbiologie et infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
8
|
Pelliccia S, Russomanno P, Barone S, Mateu B, Alfano AI, Miranda M, Coretti L, Lembo F, Piccolo M, Irace C, Friggeri L, Hargrove TY, Curtis A, Lepesheva GI, Kavanagh K, Buommino E, Brindisi M. A First-in-Class Pyrazole-isoxazole Enhanced Antifungal Activity of Voriconazole: Synergy Studies in an Azole-Resistant Candida albicans Strain, Computational Investigation and in Vivo Validation in a Galleria mellonella Fungal Infection Model. J Med Chem 2024; 67:14256-14276. [PMID: 39115219 PMCID: PMC11482282 DOI: 10.1021/acs.jmedchem.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The widespread and irrational use of azole antifungal agents has led to an increase of azole-resistant Candida albicans strains with an urgent need for combination drug therapy, enhancing the treatment efficacy. Here, we report the discovery of a first-in-class pyrazole-isoxazole, namely, 5b, that showed remarkable growth inhibition against the C. albicans ATCC 10231 strain in combination with voriconazole, acting as a downregulator of ERG 11 (Cyp51) gene expression with a significant reduction of the yeast-to-hypha morphological transition. Furthermore, C. albicans CYP51 enzyme assay and in-depth molecular docking studies unveiled the unique ability of the combination of 5b and voriconazole to completely fill the CYP51 binding sites. In vivo studies using a Galleria mellonella model confirmed the previously in vitro observed synergistic effect of 5b with voriconazole. Also considering its biocompatibility in a cellular model of human keratinocytes, these results indicate that 5b represents a promising compound for a further optimization campaign.
Collapse
Affiliation(s)
- Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Russomanno
- Magnetic Resonance Centre (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) and Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Baptiste Mateu
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Lorena Coretti
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy,School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Friggeri
- Department of Cell and Development Biology, U4225 Medical Research Building III, Nashville, Tennessee 37232, United States
| | - Tatiana Y. Hargrove
- Department of Biochemistry,Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron Curtis
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Elisabetta Buommino
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
9
|
Moraitaki E, Kyriakidis I, Pelagiadis I, Katzilakis N, Stratigaki M, Chamilos G, Tragiannidis A, Stiakaki E. Epidemiology of Invasive Fungal Diseases: A 10-Year Experience in a Tertiary Pediatric Hematology-Oncology Department in Greece. J Fungi (Basel) 2024; 10:498. [PMID: 39057383 PMCID: PMC11278103 DOI: 10.3390/jof10070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Although advances in the management of pediatric neoplasms have profoundly improved infectious disease outcomes, invasive fungal diseases (IFDs) remain a major cause of morbidity and mortality in children and adolescents with high-risk hematological malignancies. A retrospective study was conducted in the Pediatric Hematology-Oncology Department of the University General Hospital of Heraklion for 2013-2022 to estimate the prevalence and describe the clinical and epidemiological characteristics of IFDs for pediatric and adolescent patients with neoplasia. Demographic, clinical, and laboratory parameters were analyzed to identify risk factors for the development of IFD. The overall prevalence of IFDs was estimated to be 7.8% (12/154 patients) throughout the study. The mean age at IFD diagnosis was 9.8 years (SD 6.4 years). The most common IFD was possible/probable invasive pulmonary aspergillosis (IPA; in ≈50%), followed by candidemia/invasive candidiasis (in 44%). Candida parapsilosis was the most prevalent Candida species (4/6 events). Of interest, the majority (75%) of IFDs were breakthrough infections. Patients with increased risk for IFDs were those who were colonized by fungi in sites other than the oral cavity, hospitalized in the intensive care unit for >7 days, received >7 different antimicrobials in the last 3 months, or had severe neutropenia for >44 days. Two children out of a total of 12 with IFD died due to refractory disease or relapse (16.7%). More detailed and prospective epidemiological studies on fungal infections in pediatric patients with hematological or solid neoplasms can contribute to the optimization of prevention and treatment.
Collapse
Affiliation(s)
- Eleni Moraitaki
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.M.); (I.K.); (I.P.); (N.K.); (M.S.)
- MSc Program “Hematology-Oncology of Childhood and Adolescence”, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Kyriakidis
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.M.); (I.K.); (I.P.); (N.K.); (M.S.)
| | - Iordanis Pelagiadis
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.M.); (I.K.); (I.P.); (N.K.); (M.S.)
| | - Nikolaos Katzilakis
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.M.); (I.K.); (I.P.); (N.K.); (M.S.)
| | - Maria Stratigaki
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.M.); (I.K.); (I.P.); (N.K.); (M.S.)
| | - Georgios Chamilos
- Clinical Microbiology and Microbial Pathogenesis Department, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Athanasios Tragiannidis
- Pediatric & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (E.M.); (I.K.); (I.P.); (N.K.); (M.S.)
- MSc Program “Hematology-Oncology of Childhood and Adolescence”, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
10
|
Carvalho-Silva JM, Vilela Teixeira AB, Schiavon MA, dos Reis AC. Antimicrobial gel with silver vanadate and silver nanoparticles: antifungal and physicochemical evaluation. Future Microbiol 2024; 19:1217-1227. [PMID: 38979570 PMCID: PMC11633398 DOI: 10.1080/17460913.2024.2366630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Aim: To develop a β-AgVO3 gel and evaluate its physicochemical stability and antifungal activity against Candida albicans.Materials & methods: The gel was prepared from the minimum inhibitory concentration (MIC) of β-AgVO3. The physicochemical stability was evaluated by centrifugation, accelerated stability (AS), storage (St), pH, syringability, viscosity and spreadability tests and antifungal activity by the agar diffusion.Results: The MIC was 62.5 μg/ml. After centrifugation, AS and St gels showed physicochemical stability. Lower viscosity and higher spreadability were observed for the higher β-AgVO3 concentration and the minimum force for extrusion was similar for all groups. Antifungal effect was observed only for the β-AgVO3 gel with 20xMIC.Conclusion: The β-AgVO3 gel showed physicochemical stability and antifungal activity.
Collapse
Affiliation(s)
- João Marcos Carvalho-Silva
- Department of Dental Materials & Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ana Beatriz Vilela Teixeira
- Department of Dental Materials & Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marco Antônio Schiavon
- Department of Natural Sciences, Federal University of São João del-Rei, São João del-Rei,Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials & Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Kumar V, Huang J, Dong Y, Hao GF. Targeting Fks1 proteins for novel antifungal drug discovery. Trends Pharmacol Sci 2024; 45:366-384. [PMID: 38493014 DOI: 10.1016/j.tips.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Fungal infections are a major threat to human health. The limited availability of antifungal drugs, the emergence of drug resistance, and a growing susceptible population highlight the critical need for novel antifungal agents. The enzymes involved in fungal cell wall synthesis offer potential targets for antifungal drug development. Recent studies have enhanced our focus on the enzyme Fks1, which synthesizes β-1,3-glucan, a critical component of the cell wall. These studies provide a deeper understanding of Fks1's function in cell wall biosynthesis, pathogenicity, structural biology, evolutionary conservation across fungi, and interaction with current antifungal drugs. Here, we discuss the role of Fks1 in the survival and adaptation of fungi, guided by insights from evolutionary and structural analyses. Furthermore, we delve into the dynamics of Fks1 modulation with novel antifungal strategies and assess its potential as an antifungal drug target.
Collapse
Affiliation(s)
- Vinit Kumar
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; BMLT, Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand 825301, India
| | - Juan Huang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
12
|
Menu E, Filori Q, Dufour JC, Ranque S, L’Ollivier C. A Repertoire of the Less Common Clinical Yeasts. J Fungi (Basel) 2023; 9:1099. [PMID: 37998905 PMCID: PMC10671991 DOI: 10.3390/jof9111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Invasive fungal diseases are a public health problem. They affect a constantly increasing number of at-risk patients, and their incidence has risen in recent years. These opportunistic infections are mainly due to Candida sp. but less common or rare yeast infections should not be underestimated. These so-called "less common" yeasts include Ascomycota of the genera Candida (excluding the five major Candida species), Magnusiomyces/Saprochaete, Malassezia, and Saccharomyces, and Basidiomycota of the genera Cryptococcus (excluding the Cryptococcus neoformans/gattii complex members), Rhodotorula, and Trichosporon. The aim of this review is to (i) inventory the less common yeasts isolated in humans, (ii) provide details regarding the specific anatomical locations where they have been detected and the clinical characteristics of the resulting infections, and (iii) provide an update on yeast taxonomy. Of the total of 239,890 fungal taxa and their associated synonyms sourced from the MycoBank and NCBI Taxonomy databases, we successfully identified 192 yeasts, including 127 Ascomycota and 65 Basidiomycota. This repertoire allows us to highlight rare yeasts and their tropism for certain anatomical sites and will provide an additional tool for diagnostic management.
Collapse
Affiliation(s)
- Estelle Menu
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France; (S.R.); (C.L.)
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerranéennes, Aix Marseille Université, 13385 Marseille, France
| | - Quentin Filori
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, Aix Marseille University, 13385 Marseille, France; (Q.F.); (J.-C.D.)
| | - Jean-Charles Dufour
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, Aix Marseille University, 13385 Marseille, France; (Q.F.); (J.-C.D.)
- APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l’Information et de la Communication, 13385 Marseille, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France; (S.R.); (C.L.)
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerranéennes, Aix Marseille Université, 13385 Marseille, France
| | - Coralie L’Ollivier
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France; (S.R.); (C.L.)
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerranéennes, Aix Marseille Université, 13385 Marseille, France
| |
Collapse
|