1
|
Gluth A, Li X, Gritsenko MA, Gaffrey MJ, Kim DN, Lalli PM, Chu RK, Day NJ, Sagendorf TJ, Monroe ME, Feng S, Liu T, Yang B, Qian WJ, Zhang T. Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-Treated Pancreatic Beta Cells. Mol Cell Proteomics 2024; 23:100881. [PMID: 39550035 PMCID: PMC11700301 DOI: 10.1016/j.mcpro.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
Studying regulation of protein function at a systems level necessitates an understanding of the interplay among diverse posttranslational modifications (PTMs). A variety of proteomics sample processing workflows are currently used to study specific PTMs but rarely characterize multiple types of PTMs from the same sample inputs. Method incompatibilities and laborious sample preparation steps complicate large-scale physiological investigations and can lead to variations in results. The single-pot, solid-phase-enhanced sample preparation (SP3) method for sample cleanup is compatible with different lysis buffers and amenable to automation, making it attractive for high-throughput multi-PTM profiling. Herein, we describe an integrative SP3 workflow for multiplexed quantification of protein abundance, cysteine thiol oxidation, phosphorylation, and acetylation. The broad applicability of this approach is demonstrated using cell and tissue samples, and its utility for studying interacting regulatory networks is highlighted in a time-course experiment of cytokine-treated β-cells. We observed a swift response in the global regulation of protein abundances consistent with rapid activation of JAK-STAT and NF-κB signaling pathways. Regulators of these pathways as well as proteins involved in their target processes displayed multi-PTM dynamics indicative of complex cellular response stages: acute, adaptation, and chronic (prolonged stress). PARP14, a negative regulator of JAK-STAT, had multiple colocalized PTMs that may be involved in intraprotein regulatory crosstalk. Our workflow provides a high-throughput platform that can profile multi-PTMomes from the same sample set, which is valuable in unraveling the functional roles of PTMs and their co-regulation.
Collapse
Affiliation(s)
- Austin Gluth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA; Department of Biological Systems Engineering, Washington State University, Richland, Washington, USA
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Doo Nam Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Nicholas J Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tyler J Sagendorf
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Song Feng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Bin Yang
- Department of Biological Systems Engineering, Washington State University, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
2
|
Pollé OG, Pyr Dit Ruys S, Lemmer J, Hubinon C, Martin M, Herinckx G, Gatto L, Vertommen D, Lysy PA. Plasma proteomics in children with new-onset type 1 diabetes identifies new potential biomarkers of partial remission. Sci Rep 2024; 14:20798. [PMID: 39242727 PMCID: PMC11379901 DOI: 10.1038/s41598-024-71717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Partial remission (PR) occurs in only half of people with new-onset type 1 diabetes (T1D) and corresponds to a transient period characterized by low daily insulin needs, low glycemic fluctuations and increased endogenous insulin secretion. While identification of people with newly-onset T1D and significant residual beta-cell function may foster patient-specific interventions, reliable predictive biomarkers of PR occurrence currently lack. We analyzed the plasma of children with new-onset T1D to identify biomarkers present at diagnosis that predicted PR at 3 months post-diagnosis. We first performed an extensive shotgun proteomic analysis using Liquid Chromatography-Tandem-Mass-Spectrometry (LCMS/MS) on the plasma of 16 children with new-onset T1D and quantified 98 proteins significantly correlating with Insulin-Dose Adjusted glycated hemoglobin A1c score (IDAA1C). We next applied a series of both qualitative and statistical filters and selected protein candidates that were associated to pathophysiological mechanisms related to T1D. Finally, we translationally verified several of the candidates using single-shot targeted proteomic (PRM method) on raw plasma. Taken together, we identified plasma biomarkers present at diagnosis that may predict the occurrence of PR in a single mass-spectrometry run. We believe that the identification of new predictive biomarkers of PR and β-cell function is key to stratify people with new-onset T1D for β-cell preservation therapies.
Collapse
Affiliation(s)
- Olivier G Pollé
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
- Specialized Pediatrics Service, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | - Julie Lemmer
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Camille Hubinon
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Manon Martin
- Computational Biology and Bioinformatics (CBIO) Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Gaetan Herinckx
- MASSPROT Platform, Institut de Duve, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics (CBIO) Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Didier Vertommen
- MASSPROT Platform, Institut de Duve, UCLouvain, Brussels, Belgium
| | - Philippe A Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
- Specialized Pediatrics Service, Cliniques universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
3
|
Joglekar MV, Kaur S, Pociot F, Hardikar AA. Prediction of progression to type 1 diabetes with dynamic biomarkers and risk scores. Lancet Diabetes Endocrinol 2024; 12:483-492. [PMID: 38797187 DOI: 10.1016/s2213-8587(24)00103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024]
Abstract
Identifying biomarkers of functional β-cell loss is an important step in the risk stratification of type 1 diabetes. Genetic risk scores (GRS), generated by profiling an array of single nucleotide polymorphisms, are a widely used type 1 diabetes risk-prediction tool. Type 1 diabetes screening studies have relied on a combination of biochemical (autoantibody) and GRS screening methodologies for identifying individuals at high-risk of type 1 diabetes. A limitation of these screening tools is that the presence of autoantibodies marks the initiation of β-cell loss, and is therefore not the best biomarker of progression to early-stage type 1 diabetes. GRS, on the other hand, represents a static biomarker offering a single risk score over an individual's lifetime. In this Personal View, we explore the challenges and opportunities of static and dynamic biomarkers in the prediction of progression to type 1 diabetes. We discuss future directions wherein newer dynamic risk scores could be used to predict type 1 diabetes risk, assess the efficacy of new and emerging drugs to retard, or prevent type 1 diabetes, and possibly replace or further enhance the predictive ability offered by static biomarkers, such as GRS.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | | | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
4
|
Maddaloni E, Amendolara R, Balena A, Latino A, Sessa RL, Buzzetti R. Immune checkpoint modulators in early clinical development for the treatment of type 1 diabetes. Expert Opin Investig Drugs 2024; 33:303-318. [PMID: 38427915 DOI: 10.1080/13543784.2024.2326036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Despite the improvements of insulin therapy, people with type 1 diabetes (T1D) still suffer from a decreased quality of life and life expectancy. The search toward a cure for T1D is therefore still a scorching open field of research. AREAS COVERED Tackling the immune checkpoint signaling pathways has gained importance in the field of cancer immunotherapy. The same pathways can be targeted in autoimmunity with an opposite principle: to dampen the exaggerated immune response. In this review, we report a comprehensive excursus on the cellular and molecular mechanisms that lead to loss of immunological tolerance, and recent evidence on the role of immune checkpoint molecules in the development of T1D and their potential application for the mitigation of autoimmune diabetes. EXPERT OPINION Contrasting results about the efficacy of immune checkpoint modulators for T1D have been published, with very few molecules from preclinical studies eligible for use in humans. The heterogeneous and complex pathophysiology of T1D may explain the conflicting evidence. Designing clinical trials that acknowledge the pathophysiological and clinical complexity of T1D and that forecast the need of simultaneously tackling different disease pathways will be crucial to enhance the benefits which may be gained by such compounds.
Collapse
Affiliation(s)
- Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Amendolara
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Balena
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Latino
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario Luigi Sessa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Weldemariam MM, Sudhir PR, Woo J, Zhang Q. Effects of multiple stressors on pancreatic human islets proteome reveal new insights into the pathways involved. Proteomics 2023; 23:e2300022. [PMID: 37489002 PMCID: PMC10591809 DOI: 10.1002/pmic.202300022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Pancreatic β-cell dysfunction is an early hallmark of type 1 diabetes mellitus. Among the potentially critical factors that cause β-cell dysfunction are cytokine attack, glucotoxicity, induction of endoplasmic reticulum (ER) or mitochondria stress. However, the exact molecular mechanism underlying β-cell's inability to maintain glucose homeostasis under severe stresses is unknown. This study used proinflammatory cytokines, thapsigargin, and rotenone in the presence of high concentration glucose to mimicking the conditions experienced by dysfunctional β-cells in human pancreatic islets, and profiled the alterations to the islet proteome with TMT-based proteomics. The results were further verified with label-free quantitative proteomics. The differentially expressed proteins under stress conditions reveal that immune related pathways are mostly perturbed by cytokines, while the respiratory electron transport chains and protein processing in ER pathways by rotenone. Thapsigargin together with high glucose induces dramatic increases of proteins in lipid synthesis and peroxisomal protein import pathways, with energy metabolism and vesicle secretion related pathways downregulated. High concentration glucose, on the other hand, alleviated complex I inhibition induced by rotenone. Our results contribute to a more comprehensive understanding of the molecular events involved in β-cell dysfunction.
Collapse
Affiliation(s)
- Mehari Muuz Weldemariam
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Putty-Reddy Sudhir
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
6
|
Weldemariam MM, Woo J, Zhang Q. Pancreatic INS-1 β-Cell Response to Thapsigargin and Rotenone: A Comparative Proteomics Analysis Uncovers Key Pathways of β-Cell Dysfunction. Chem Res Toxicol 2022; 35:1080-1094. [PMID: 35544339 DOI: 10.1021/acs.chemrestox.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-secreting β-cells in the pancreatic islets are exposed to various endogenous and exogenous stressing conditions, which may lead to β-cell dysfunction or apoptosis and ultimately to diabetes mellitus. However, the detailed molecular mechanisms underlying β-cell's inability to survive under severe stresses remain to be explored. This study used two common chemical stressors, thapsigargin and rotenone, to induce endoplasmic reticulum (ER) and mitochondria stress in a rat insuloma INS-1 832/13 β-cell line, mimicking the conditions experienced by dysfunctional β-cells. Proteomic changes of cells upon treatment with stressors at IC50 were profiled with TMT-based quantitative proteomics and further verified using label-free quantitive proteomics. The differentially expressed proteins under stress conditions were selected for in-depth bioinformatic analysis. Thapsigargin treatment specifically perturbed unfolded protein response (UPR) related pathways; in addition, 58 proteins not previously linked to the UPR related pathways were identified with consistent upregulation under stress induced by thapsigargin. Conversely, rotenone treatment resulted in significant proteome changes in key mitochondria regulatory pathways such as fatty acid β-oxidation, cellular respiration, citric acid cycle, and respiratory electron transport. Our data also demonstrated that both stressors increased reactive oxygen species production and depleted adenosine triphosphate synthesis, resulting in significant dysregulation of oxidative phosphorylation signaling pathways. These novel dysregulated proteins may suggest an alternative mechanism of action in β-cell dysfunction and provide potential targets for probing ER- and mitochondria stress-induced β-cell death.
Collapse
Affiliation(s)
- Mehari Muuz Weldemariam
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, United States.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
7
|
Vig S, Lambooij JM, Zaldumbide A, Guigas B. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Front Immunol 2021; 12:669492. [PMID: 33936111 PMCID: PMC8085402 DOI: 10.3389/fimmu.2021.669492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.
Collapse
Affiliation(s)
- Saurabh Vig
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer MJ, Bain JR, Myer CJ, Bhattacharya SK, Buchwald P, Abdulreda MH. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Biomolecules 2021; 11:383. [PMID: 33806609 PMCID: PMC7999903 DOI: 10.3390/biom11030383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biomarkers are crucial for detecting early type-1 diabetes (T1D) and preventing significant β-cell loss before the onset of clinical symptoms. Here, we present proof-of-concept studies to demonstrate the potential for identifying integrated biomarker signature(s) of T1D using parallel multi-omics. METHODS Blood from human subjects at high risk for T1D (and healthy controls; n = 4 + 4) was subjected to parallel unlabeled proteomics, metabolomics, lipidomics, and transcriptomics. The integrated dataset was analyzed using Ingenuity Pathway Analysis (IPA) software for disturbances in the at-risk subjects compared to controls. RESULTS The final quadra-omics dataset contained 2292 proteins, 328 miRNAs, 75 metabolites, and 41 lipids that were detected in all samples without exception. Disease/function enrichment analyses consistently indicated increased activation, proliferation, and migration of CD4 T-lymphocytes and macrophages. Integrated molecular network predictions highlighted central involvement and activation of NF-κB, TGF-β, VEGF, arachidonic acid, and arginase, and inhibition of miRNA Let-7a-5p. IPA-predicted candidate biomarkers were used to construct a putative integrated signature containing several miRNAs and metabolite/lipid features in the at-risk subjects. CONCLUSIONS Preliminary parallel quadra-omics provided a comprehensive picture of disturbances in high-risk T1D subjects and highlighted the potential for identifying associated integrated biomarker signatures. With further development and validation in larger cohorts, parallel multi-omics could ultimately facilitate the classification of T1D progressors from non-progressors.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - Ciara J. Myer
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Nakayasu ES, Metz TO, Mirmira RG. Probing islet stress in type 1 diabetes. Aging (Albany NY) 2020; 12:18795-18796. [PMID: 33048839 PMCID: PMC7732288 DOI: 10.18632/aging.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|