1
|
Khan AHA, Velasco-Arroyo B, Rad C, Curiel-Alegre S, Rumbo C, de Wilde H, Pérez-de-Mora A, Martel-Martín S, Barros R. Metal(loid) tolerance, accumulation, and phytoremediation potential of wetland macrophytes for multi-metal(loid)s polluted water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65724-65740. [PMID: 39601950 PMCID: PMC11631999 DOI: 10.1007/s11356-024-35519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Natural based solutions, notably constructed/artificial wetland treatment systems, rely heavily on identification and use of macrophytes with the ability to tolerate multiple contaminants and grow for an extended period to reduce contamination. The potential to tolerate and remediate metal(loid) contaminated groundwater from an industrial site located in Flanders (Belgium) was assessed for 10 wetland macrophytes (including Carex riparia Curtis, Cyperus longus Baker, Cyperus rotundus L., Iris pseudacorus L., Juncus effusus L., Lythrum salicaria L., Mentha aquatica L., Phragmites australis Trin. ex Steud., Scirpus holoschoenus L., and Typha angustifolia L.). The experiment was conducted under static conditions, where plants were exposed to polluted acidic (pH ~ 4) water, having high level of metal(loid)s for 15 days. Plant biomass, morphology, and metal uptake by roots and shoots were analysed every 5 days for all species. Typha angustifolia and Scirpus holoschoenus produced ~ 3 and ~ 1.1 times more dried biomass than the controls, respectively. For S. holoschoenus, P. australis, and T. angustifolia, no apparent morphological stress symptoms were observed, and plant heights were similar between control and plants exposed to polluted groundwater. Higher concentrations of all metal(loid)s were detected in the roots indicating a potential for phytostabilization of metal(loid)s below the water column. For J. effusus and T. angustifolia, Cd, Ni, and Zn accumulation was observed higher in the shoots. S. holoschoenus, P. australis, and T. angustifolia are proposed for restoration and phytostabilization strategies in natural and/or constructed wetland and aquatic ecosystems affected by metal(loid) inputs.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, s/n., 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
| | - Herwig de Wilde
- Department of Soil and Groundwater, TAUW België nv, Waaslandlaan 8A3, 9160, Lokeren, Belgium
| | - Alfredo Pérez-de-Mora
- Department of Soil and Groundwater, TAUW GmbH, Landsberger Str. 290, Munich, 80687, Germany
| | - Sonia Martel-Martín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n., 09001, Burgos, Spain.
| |
Collapse
|
2
|
Al Mamun A, Rahman MM, Huq MA, Rahman MM, Rana MR, Rahman ST, Khatun ML, Alam MK. Phytoremediation: a transgenic perspective in omics era. Transgenic Res 2024; 33:175-194. [PMID: 38922381 DOI: 10.1007/s11248-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Shabiha Tasbir Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Mst Lata Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Khasrul Alam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
3
|
Deepa N, Chauhan S, Singh A. Unraveling the functional characteristics of endophytic bacterial diversity for plant growth promotion and enhanced secondary metabolite production in Pelargonium graveolens. Microbiol Res 2024; 283:127673. [PMID: 38484575 DOI: 10.1016/j.micres.2024.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
The rich diversity of microbial endophytic communities associated with plants, often referred to as the second genome, serves as a compelling illustration of efficient co-evolution. This noteworthy partnership plays a pivotal role in sustaining plant well-being and enhancing plant adaptability across diverse habitats. Therefore, examining the diversity of endophytic microbes associated with their particular host plant is valuable for gaining insights into the vast spectrum of plant-microbe interactions. The present experiments aimed at investigating the bacterial endophytic diversity in both root and shoot tissues of Pelargonium graveolens, employing culture dependent and culture independent high-throughput metagenomics approach. A total of 614 and 620 operational taxonomic units (OTUs), encompassing 291 and 229 genera, were identified in the shoot and root tissues of P. graveolens, respectively. Furthermore, the subsequent classification of OTUs revealed 15 highly abundant phyla, with Proteobacteria dominating both root and shoot tissues. Notably, an exceptionally high abundance of Firmicutes phyla was observed in the shoot compared to the root. Additionally, 30 bacterial endophytes from the root, stem, petiole, and leaves were isolated and molecularly characterized, unveiling a consistent pattern of diversity distribution between the root and shoot of P. graveolens. Upon screening all isolates for plant growth promoting traits, Pseudomonas oryzihabitans was found to be positive for major biochemical test like nitrogen fixation, phosphate solubilization etc. and on inoculation resulted in about two-fold increase in content of essential oil accompanied by a significant rise in the geraniol and citronellol content. Diving deep into the genetic constitution of P. oryzihabitans unveiled a substantial number of genes directly and indirectly contributing to the endophyte's capability in colonizing host plants effectively. In summary, data obtained from metagenomics and culture dependent approaches including glass house trials suggest potential bacterial endophytes suitable for field applications for yield enhancement and in planta secondary metabolite enhancement investigations.
Collapse
Affiliation(s)
- Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivam Chauhan
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Savacı G, Ünal S, Yer Çelik EN, Karadeniz M. Effect of drought and soil heavy metal contamination on three maple species: a case study of Kastamonu University campus in Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:46. [PMID: 38102315 DOI: 10.1007/s10661-023-12233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
This study investigated the effects of heavy metals and drought on tree drying in three maple species located in the Kastamonu Campus in northwestern Türkiye. Soil samples were taken from 0-30 cm depth under maple species, and some soil properties were analyzed. The standardized precipitation evapotranspiration index was calculated for the drought impression using 71 years of climate data. The severe drought has had its effect (1.516) since August 2020. There was an extreme drought in January and February 2021 (-2.032 and -2.076, respectively), and this drought effect lasted until August as a severe drought. Chromium concentration at maple species was almost twice higher than the Maximum Allowable Limit for Türkiye (> 100 mg kg-1). The highest nickel concentration was found under Acer pseudoplatanus (97.25 mg kg-1) and Acer negundo (108.13 mg kg-1). The sampling sites were nonsignificant for copper (p = 0.806), lead (p = 0.916), and zinc (p = 0.866) heavy metals. Phyllosticta minima and Phyllactinia marissallii were detected in maple trees. In conclusion, it is understood that drought and heavy metal accumulation (chromium, nickel) in the soil affect tree drying. Physiological drought was first seen in trees due to the lack of rainfall in 2020. Soils were contaminated with heavy metals, and finally, diseases were seen. These results show that adverse climate events due to global climate change will have a negative impact on the growth and development of maple species, as their severity is expected to increase in the next few years.
Collapse
Affiliation(s)
- Gamze Savacı
- Faculty of Forestry, Department of Forest Engineering, Kastamonu University, 37150, Kastamonu, Türkiye.
| | - Sabri Ünal
- Faculty of Forestry, Department of Forest Engineering, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Esra Nurten Yer Çelik
- Faculty of Forestry, Department of Forest Engineering, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Mertcan Karadeniz
- Faculty of Forestry, Department of Forest Engineering, Kastamonu University, 37150, Kastamonu, Türkiye
| |
Collapse
|
5
|
Oleńska E, Małek W, Wójcik M, Szopa S, Swiecicka I, Aleksandrowicz O, Włostowski T, Zawadzka W, Sillen WMA, Vangronsveld J, Cholakova I, Langill T, Thijs S. Bacteria associated with Zn-hyperaccumulators Arabidopsis halleri and Arabidopsis arenosa from Zn-Pb-Cd waste heaps in Poland as promising tools for bioremediation. Sci Rep 2023; 13:12606. [PMID: 37537323 PMCID: PMC10400580 DOI: 10.1038/s41598-023-39852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
To identify metal adapted bacteria equipped with traits positively influencing the growth of two hyperaccumulator plant species Arabidopsis arenosa and Arabidopsis halleri, we isolated bacteria inhabiting rhizosphere and vegetative tissues (roots, basal and stem leaves) of plants growing on two old Zn-Pb-Cd waste heaps in Bolesław and Bukowno (S. Poland), and characterized their potential plant growth promoting (PGP) traits as well as determined metal concentrations in rhizosphere and plant tissues. To determine taxonomic position of 144 bacterial isolates, 16S rDNA Sanger sequencing was used. A metabolic characterization of isolated strains was performed in vitro using PGP tests. A. arenosa and A. halleri accumulate high amounts of Zn in their tissues, especially in stem leaves. Among in total 22 identified bacterial taxa, the highest level of the taxonomical diversity (H' = 2.01) was revealed in A. halleri basal leaf endophytes originating from Bukowno waste heap area. The 96, 98, 99, and 98% of investigated strains showed tolerant to Cd, Zn, Pb and Cu, respectively. Generally, higher percentages of bacteria could synthesize auxins, siderophores, and acetoin as well as could solubilize phosphate. Nine of waste heap origin bacterial strains were tolerant to toxic metals, showed in vitro PGP traits and are potential candidates for bioremediation.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland.
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Sebastian Szopa
- SHIM-POL A.M. Borzymowski, 5 Lubomirski, 05-080, Izabelin, Poland
| | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | | | - Tadeusz Włostowski
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | - Weronika Zawadzka
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | - Wouter M A Sillen
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Iva Cholakova
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tori Langill
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Sofie Thijs
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
6
|
Guo P, Rennenberg H, Du H, Wang T, Gao L, Flemetakis E, Hänsch R, Ma M, Wang D. Bacterial assemblages imply methylmercury production at the rice-soil system. ENVIRONMENT INTERNATIONAL 2023; 178:108066. [PMID: 37399771 DOI: 10.1016/j.envint.2023.108066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
The plant microbiota can affect plant health and fitness by promoting methylmercury (MeHg) production in paddy soil. Although most well-known mercury (Hg) methylators are observed in the soil, it remains unclear how rice rhizosphere assemblages alter MeHg production. Here, we used network analyses of microbial diversity to identify bulk soil (BS), rhizosphere (RS) and root bacterial networks during rice development at Hg gradients. Hg gradients greatly impacted the niche-sharing of taxa significantly relating to MeHg/THg, while plant development had little effect. In RS networks, Hg gradients increased the proportion of MeHg-related nodes in total nodes from 37.88% to 45.76%, but plant development enhanced from 48.59% to 50.41%. The module hub and connector in RS networks included taxa positively (Nitrososphaeracea, Vicinamibacteraceae and Oxalobacteraceae) and negatively (Gracilibacteraceae) correlating with MeHg/THg at the blooming stage. In BS networks, Deinococcaceae and Paludibacteraceae were positively related to MeHg/THg, and constituted the connector at the reviving stage and the module hub at the blooming stage. Soil with an Hg concentration of 30 mg kg-1 increased the complexity and connectivity of root microbial networks, although microbial community structure in roots was less affected by Hg gradients and plant development. As most frequent connector in root microbial networks, Desulfovibrionaceae did not significantly correlate with MeHg/THg, but was likely to play an important role in the response to Hg stress.
Collapse
Affiliation(s)
- Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Robert Hänsch
- Institute for Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, China.
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing, China
| |
Collapse
|
7
|
Pooam M, El-Ballat EM, Jourdan N, Ali HM, Hano C, Ahmad M, El-Esawi MA. SNAC3 Transcription Factor Enhances Arsenic Stress Tolerance and Grain Yield in Rice ( Oryza sativa L.) through Regulating Physio-Biochemical Mechanisms, Stress-Responsive Genes, and Cryptochrome 1b. PLANTS (BASEL, SWITZERLAND) 2023; 12:2731. [PMID: 37514345 PMCID: PMC10383536 DOI: 10.3390/plants12142731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Arsenic (As) is one of the toxic heavy metal pollutants found in the environment. An excess of As poses serious threats to plants and diminishes their growth and productivity. NAC transcription factors revealed a pivotal role in enhancing crops tolerance to different environmental stresses. The present study investigated, for the first time, the functional role of SNAC3 in boosting As stress tolerance and grain productivity in rice (Oryza sativa L.). Two SNAC3-overexpressing (SNAC3-OX) and two SNAC3-RNAi transgenic lines were created and validated. The wild-type and transgenic rice plants were exposed to different As stress levels (0, 25, and 50 µM). The results revealed that SNAC3 overexpression significantly improved rice tolerance to As stress and boosted grain yield traits. Under both levels of As stress (25 and 50 µM), SNAC3-OX rice lines exhibited significantly lower levels of oxidative stress biomarkers and OsCRY1b (cryptochrome 1b) expression, but they revealed increased levels of gas exchange characters, chlorophyll, osmolytes (soluble sugars, proteins, proline, phenols, and flavonoids), antioxidant enzymes (SOD, CAT, APX, and POD), and stress-tolerant genes expression (OsSOD-Cu/Zn, OsCATA, OsCATB, OsAPX2, OsLEA3, OsDREB2B, OsDREB2A, OsSNAC2, and OsSNAC1) in comparison to wild-type plants. By contrast, SNAC3 suppression (RNAi) reduced grain yield components and reversed the aforementioned measured physio-biochemical and molecular traits. Taken together, this study is the first to demonstrate that SNAC3 plays a vital role in boosting As stress resistance and grain productivity in rice through modulating antioxidants, photosynthesis, osmolyte accumulation, and stress-related genes expression, and may be a useful candidate for further genetic enhancement of stress resistance in many crops.
Collapse
Affiliation(s)
- Marootpong Pooam
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nathalie Jourdan
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Mohamed A El-Esawi
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
8
|
Tripti, Kumar A, Maleva M, Borisova G, Rajkumar M. Amaranthus Biochar-Based Microbial Cell Composites for Alleviation of Drought and Cadmium Stress: A Novel Bioremediation Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:1973. [PMID: 37653890 PMCID: PMC10222574 DOI: 10.3390/plants12101973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Metal contamination coupled with aridity is a major challenge for remediation of abiotic stressed soils throughout the world. Both biochar and beneficial bacteria showed a significant effect in bioremediation; however, their conjugate study needs more exploration. Two rhizobacteria strains Serratia sp. FV34b and Pseudomonas sp. ASe42b isolated from multi-metal and drought stressed sites showed multiple plant-growth-promoting attributes (phosphate solubilization, indole-3-acetic acid, siderophore, and ammonia production). Both strains were able to tolerate a high concentration of Cd along with being resistant to drought (-0.05 to -0.73 MPa). The seldom studied biomass of Amaranthus caudatus L. was used for biochar preparation by pyrolyzing it at 470 °C for 160 min under limited oxygen and then using it for the preparation of biochar-based microbial cell composites (BMC)s. To check the efficiency of BMC under Cd stress (21 mg kg-1 soil) and drought, a pot-scale study was conducted using Brassica napus L. for 47 days. Both the BMC5 (Biochar + Serratia sp. FV43b) and BMC9 (Biochar + Pseudomonas sp. ASe42b) improved the seed germination, plant biometrical (shoot and root biomass, length of organs) and physiological (photosynthetic pigments, proline, malondialdehyde, and relative water content) parameters under drought (exerted until it reaches up to 50% of field capacity) and Cd-spiked soil. However, for most of them, no or few significant differences were observed for BMC9 before and after drought. Moreover, BMC9 maximized the Cd accumulation in root and meager transfer to shoot, making it a best bioformulation for sustainable bioremediation of Cd and drought stressed soils using rapeseed plant.
Collapse
Affiliation(s)
- Tripti
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Adarsh Kumar
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Maria Maleva
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Galina Borisova
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore 641046, India;
| |
Collapse
|
9
|
Majewska M, Wdowiak-Wróbel S, Marek-Kozaczuk M, Nowak A, Tyśkiewicz R. Cadmium-resistant Chryseobacterium sp. DEMBc1 strain: characteristics and potential to assist phytoremediation and promote plant growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83567-83579. [PMID: 35768711 DOI: 10.1007/s11356-022-21574-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of phytoremediation is closely related to the various interactions between pollutants, soil particles, rhizosphere microorganisms, and plants. Therefore, the object of current study was a cadmium-tolerant bacterium isolated from the rye rhizosphere, with a high degree of genetic similarity to the genus Chryseobacterium. Chryseobacterium sp. DEMBc1 was able to grow with 36 different BiologGN2 carbon sources and show the adaptation to stress factors such as Cd (100 μg ml-1), low temperature (8 °C), and salinity (2% NaCl). Furthermore, it was shown that DEMBc1 had the characteristics of plant growth-promoting microorganisms: it was able to produce ammonia, indole acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase, and siderophores, as well as solubilize Ca3(PO4)3. After inoculation with DEMBc1, a significant decrease in the concentration of Cd was observed in the roots of Festuca ovina grown in Cd-polluted soil, compared to the non-inoculated Cd-polluted soil. It was also noticed that DEMBc1 produced a large amount of extracellular polymeric substances that were significantly higher than the cellular biomass. These polymers can form a barrier to reduce the translocation of Cd from the growth medium to the plant roots. According to the current study, DEMBc1 has a stabilizing potential and can decrease the mobility of Cd in the F. ovina rhizosphere, bioaccumulate metals in plant tissues, and effectively improve the bioavailability of nutrients, especially Fe, N, and P in a polluted environments.
Collapse
Affiliation(s)
- Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland.
| | - Sylwia Wdowiak-Wróbel
- Department of Genetic and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetic and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network - New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego Ave. 13a, 24-110, Puławy, Poland
| |
Collapse
|
10
|
Malla MA, Dubey A, Raj A, Kumar A, Upadhyay N, Yadav S. Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118851. [PMID: 35085655 DOI: 10.1016/j.envpol.2022.118851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The overuse of pesticides for augmenting agriculture productivity always comes at the cost of environment, biodiversity, and human health and has put the land, water, and environmental footprints under severe threat throughout the globe. Underpinning and maximizing the microbiome functions in pesticide-contaminated environments has become a prerequisite for a sustainable environment and resilient agriculture. It is imperative to elucidate the metabolic network of the microbial communities and environmental variables at the contaminated site to predict the best strategy for remediation and soil microbe-pesticide interactions. High throughput next-generation sequencing and in silico analysis allow us to identify and discern the members and characteristics of core microbiomes at the contaminated site. Integration of modern high throughput multi-omics investigations and informatics pipelines provide novel approaches and pathways to capitalize on the core microbiomes for enhancing environmental functioning and mitigation. The role of eco-genomics tools in visualising the microbial network, taxonomy, functional potential, and environmental variables in contaminated habitats is discussed in this review. The integrated role of the potential microbe identification as individual or consortia, mechanistic approach for pesticide degradation, identification of responsible enzymes/genes, and in silico approach is emphasized for the prospects of the area.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India; Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India.
| | - Niraj Upadhyay
- Department of Chemistry, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| |
Collapse
|
11
|
Poria V, Dębiec-Andrzejewska K, Fiodor A, Lyzohub M, Ajijah N, Singh S, Pranaw K. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. FRONTIERS IN PLANT SCIENCE 2022; 13:999866. [PMID: 36340355 PMCID: PMC9634634 DOI: 10.3389/fpls.2022.999866] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 05/13/2023]
Abstract
Land that has little to no utility for agriculture or industry is considered marginal land. This kind of terrain is frequently found on the edge of deserts or other arid regions. The amount of land that can be used for agriculture continues to be constrained by increasing desertification, which is being caused by climate change and the deterioration of agriculturally marginal areas. Plants and associated microorganisms are used to remediate and enhance the soil quality of marginal land. They represent a low-cost and usually long-term solution for restoring soil fertility. Among various phytoremediation processes (viz., phytodegradation, phytoextraction, phytostabilization, phytovolatilization, phytofiltration, phytostimulation, and phytodesalination), the employment of a specific mechanism is determined by the state of the soil, the presence and concentration of contaminants, and the plant species involved. This review focuses on the key economically important plants used for phytoremediation, as well as the challenges to plant growth and phytoremediation capability with emphasis on the advantages and limits of plant growth in marginal land soil. Plant growth-promoting bacteria (PGPB) boost plant development and promote soil bioremediation by secreting a variety of metabolites and hormones, through nitrogen fixation, and by increasing other nutrients' bioavailability through mineral solubilization. This review also emphasizes the role of PGPB under different abiotic stresses, including heavy-metal-contaminated land, high salinity environments, and organic contaminants. In our opinion, the improved soil fertility of marginal lands using PGPB with economically significant plants (e.g., Miscanthus) in dual precession technology will result in the reclamation of general agriculture as well as the restoration of native vegetation.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Klaudia Dębiec-Andrzejewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marharyta Lyzohub
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nur Ajijah
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Kumar Pranaw, ;
| |
Collapse
|
12
|
Becerra AG, Menoyo E, Cornejo P, Cabello M. Metal Soil Contamination, Metallophytes, and Arbuscular Mycorrhizal Fungi From South America. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Liu H, Tang X, Xu X, Dai Y, Zhang X, Yang Y. Potential for phytoremediation of neonicotinoids by nine wetland plants. CHEMOSPHERE 2021; 283:131083. [PMID: 34182627 DOI: 10.1016/j.chemosphere.2021.131083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Broad-spectrum insecticides such as neonicotinoids tend to accumulate and detrimentally impact natural ecosystems. Accordingly, we aimed to assess the neonicotinoid phytoremediation abilities of nine wetland plant species commonly used in constructed wetland systems: Acorus calamus, Typha orientalis, Arundo donax, Thalia dealbata, Canna indica, Iris pseudacorus, Cyperus alternifolius, Cyperus papyrus and Juncus effusus. We assessed their removal of six neonicotinoids and explored the mechanisms responsible for the observed removal in a 28-day experiment. The planted systems effectively removed the neonicotinoids, with removal efficiencies of 9.5-99.9%. Compared with the other neonicotinoids, imidacloprid, thiacloprid and acetamiprid were most readily removed in the planted systems. C. alternifolius and C. papyrus exhibited the best removal performance for all six neonicotinoids. Based on our assessment of mass balance, the main removal processes were biodegradation and plant accumulation. Plants can enhance neonicotinoid removal through enhancing biodegradation. The differences in transport and accumulation behaviors may be related to plant species and physicochemical properties of neonicotinoids. Further research is merited on the toxicity of neonicotinoids to plants and microorganisms and the metabolic pathways by which neonicotinoids are broken down in wetland systems.
Collapse
Affiliation(s)
- Huanping Liu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaoyan Tang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Xiaomin Xu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yunv Dai
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaomeng Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
14
|
Hou J, Wang Q, Liu W, Zhong D, Ge Y, Christie P, Luo Y. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148411. [PMID: 34465037 DOI: 10.1016/j.scitotenv.2021.148411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Biodegradation of soil contaminants may be promoted near plant roots due to the "rhizosphere effect" which may enhance microbial growth and activity. However, the effects of different plant cultivars within a single species on degradation remains unclear. Here, we evaluated the removal of soil total petroleum hydrocarbons (TPHs) by ten different cultivars of tall fescue grass (Festuca arundinacea L.) and their associated rhizosphere microbiomes. TPH removal efficiency across the ten different cultivars was not significantly correlated with plant biomass. Rhizing Star and Greenbrooks cultivars showed the maximum (76.6%) and minimum (62.2%) TPH removal efficiencies, respectively, after 120 days. Significant differences were observed between these two cultivars in the composition of rhizosphere bacterial and fungal communities, especially during the early stages (day 30) of remediation but the differences decreased later (day 90). Putative petroleum-degrading bacterial and fungal guilds were enriched in the presence of tall fescue. Moreover, the complexity of microbial networks declined in treatments with higher TPH removal efficiency. The relative abundances of saprotrophic fungi and putative genes alkB and C12O in bacetria involved in petroleum degradation increased, especially in the presence of Rhizing Star cultivar, and this was consistent with the TPH removal efficiency results. These results indicate the potential of tall fescue grass cultivars and their associated rhizosphere microbiomes to phytoremediate petroleum hydrocarbon-contaminated soils.
Collapse
Affiliation(s)
- Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingling Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Daoxu Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, China
| | - Yanyan Ge
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
15
|
Żurek G, Wiewióra B, Rybka K, Prokopiuk K. Different response of perennial ryegrass-Epichloë endophyte symbiota to the elevated concentration of heavy metals in soil. J Appl Genet 2021; 63:47-59. [PMID: 34546560 PMCID: PMC8755660 DOI: 10.1007/s13353-021-00661-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023]
Abstract
The phenomenon of plant mutualistic symbiosis with microbes may have a positive effect on the improvement of plant tolerance to environmental stresses as well as on the ability of plants to accumulate heavy metal (HM) ions from soil. The influence of Epichloë fungal endophyte (Ascomycota, Clavicipitaceae) on perennial ryegrass (Lolium perenne L.) plants grown in the presence of elevated concentrations of HM ions (Cd2+, Pb2+, and Cu2+) in soil was studied. The presence of Epichloë in the host grass tissues resulted in different accumulation of HM ions in the aboveground parts of the plants. In some cases, endophyte infection positively affected ryegrass ability to accumulate HM ions from soil. In plants with (E +) and without (E -) endophytes, the hormesis effect was induced by the elevated concentration of Cu2+ ions, resulting in better growth and photosynthesis, as examined by measurements of Chl a fluorescence. The obtained results indicate that based on the laboratory evaluation of the efficiency of HM accumulation, we were able to choose the best associations of perennial ryegrass with endophytes for HM phytoremediation.
Collapse
Affiliation(s)
- Grzegorz Żurek
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland
| | - Barbara Wiewióra
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland.
| | - Krystyna Rybka
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland
| | - Kamil Prokopiuk
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland
| |
Collapse
|
16
|
Bhagat N, Raghav M, Dubey S, Bedi N. Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance. J Microbiol Biotechnol 2021; 31:1045-1059. [PMID: 34226402 PMCID: PMC9706007 DOI: 10.4014/jmb.2105.05009] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.
Collapse
Affiliation(s)
- Neeta Bhagat
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida 201301, India,Corresponding author Phone: +7042420808 E-mail:
| | - Meenu Raghav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida 201301, India
| | - Sonali Dubey
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida 201301, India
| | - Namita Bedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida 201301, India
| |
Collapse
|
17
|
Halecki W, Klatka S. Aplication of Soil Productivity Index after Eight Years of Soil Reclamation with Sewage Sludge Amendments. ENVIRONMENTAL MANAGEMENT 2021; 67:822-832. [PMID: 33462681 PMCID: PMC8032590 DOI: 10.1007/s00267-020-01422-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Remediation methods are gaining acceptance as effective and inexpensive techniques used in the reclamation of degraded areas. The reclamation of post-mining sites has become important for the conservation of soil and vegetation. An assessment of potential productivity of plants based on the depth of their root zone is crucial for the validation of properties of post-mining soils. Our aim was to present soil productivity parameters that would facilitate assessment of various post-mining objects. Soil productivity index (SPI) was calculated to assess soil quality, mainly in areas degraded by hard coal mining. It is based on an equation determining the relationship between the productivity index and the physical, chemical, and hydrological properties of soil. Our study demonstrated the positive effects of enriched sewage sludge with amendments on newly formed soil and plants. The soil productivity index was 0.81, demonstrating the suitable condition of the initial soil resulting from reclamation. This parameter might be important for post-industrial reclamation, such as wasteland intended to be transformed into woodland. Considering the composition of sewage sludge amendments, it can be successfully used as an effective method of restoring and improving both the physical and chemical properties of soils, thus effectively replacing mineral fertilisers. The use of sewage sludge in soil reclamation will be an important method of managing this waste material in post-mining areas.
Collapse
Affiliation(s)
- Wiktor Halecki
- Department of Land Reclamation and Environmental Development, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 24-28, 30-059, Kraków, Poland.
| | - Sławomir Klatka
- Department of Land Reclamation and Environmental Development, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 24-28, 30-059, Kraków, Poland
| |
Collapse
|
18
|
Ebrahimbabaie P, Pichtel J. Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7710-7741. [PMID: 33403642 DOI: 10.1007/s11356-020-11598-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation. There is no optimally developed single technology; therefore, the possibility of using combined technologies for CVOC remediation, for example bioremediation integrated with reduction by nZVI, is presented. Some methods are still in the development stage. Advantages and disadvantages of each treatment strategy are provided. It is hoped that this paper can provide a basic framework for selection of successful CVOC remediation strategies.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA
| | - John Pichtel
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA.
| |
Collapse
|
19
|
Meena M, Sonigra P, Yadav G. Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2485-2508. [PMID: 33095900 DOI: 10.1007/s11356-020-11112-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The current scenario of increased population and industrial advancement leads to the spoliation of freshwater and tapper of the quality of water. These results decrease in freshwater bodies near all of the areas. Besides, organic and inorganic compounds discharged from different sources into the available natural water bodies are the cause of pollution. The occurrence of heavy metals in water and volatile organic compounds (VOCs) in the air is responsible for a vast range of negative impacts on the atmosphere and human health. Nonetheless, high uses of heavy metals for human purposes may alter the biochemical and geochemical equilibrium. The major air contaminants which are released into the surroundings known as VOCs are produced through different kinds of sources, such as petrochemical and pharmaceutical industries. VOCs are known to cause various health hazards. VOCs are a pivotal group of chemicals that evaporate readily at room temperature. To get over this problem, biofiltration technology has been evolved for the treatment of heavy metals using biological entities such as plants, algae, fungi, and bacteria. Biofiltration technology is a beneficial and sustainable method for the elimination of toxic pollutants from the aquatic environment. Various types of biological technologies ranging from biotrickling filters to biofilters have been developed and they are cost-effective, simple to fabricate, and easy to perform. A significant advantage of this process is the pollutant that is transformed into biodegradable trashes which can decompose within an average time period, thus yielding no secondary pollutants. The aim of this article is to scrutinize the role of biofiltration in the removal of heavy metals in wastewater and VOCs and also to analyze the recent bioremediation technologies and methods.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
20
|
Nguyen TQ, Sesin V, Kisiala A, Emery RJN. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:7-22. [PMID: 33074580 DOI: 10.1002/etc.4909] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
Heavy metals can represent a threat to the health of aquatic ecosystems. Unlike organic chemicals, heavy metals cannot be eliminated by natural processes such as their degradation into less toxic compounds, and this creates unique challenges for their remediation from soil, water, and air. Phytoremediation, defined as the use of plants for the removal of environmental contaminants, has many benefits compared to other pollution-reducing methods. Phytoremediation is simple, efficient, cost-effective, and environmentally friendly because it can be carried out at the polluted site, which simplifies logistics and minimizes exposure to humans and wildlife. Macrophytes represent a unique tool to remediate diverse environmental media because they can accumulate heavy metals from contaminated sediment via roots, from water via submerged leaves, and from air via emergent shoots. In this review, a synopsis is presented about how plants, especially macrophytes, respond to heavy metal stress; and we propose potential roles that phytohormones can play in the alleviation of metal toxicity in the aquatic environment. We focus on the uptake, translocation, and accumulation mechanisms of heavy metals in organs of macrophytes and give examples of how phytohormones interact with plant defense systems under heavy metal exposure. We advocate for a more in-depth understanding of these processes to inform more effective metal remediation techniques from metal-polluted water bodies. Environ Toxicol Chem 2021;40:7-22. © 2020 SETAC.
Collapse
Affiliation(s)
- Thien Q Nguyen
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Verena Sesin
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
21
|
Bravo G, Vega-Celedón P, Gentina JC, Seeger M. Bioremediation by Cupriavidus metallidurans Strain MSR33 of Mercury-Polluted Agricultural Soil in a Rotary Drum Bioreactor and Its Effects on Nitrogen Cycle Microorganisms. Microorganisms 2020; 8:E1952. [PMID: 33316980 PMCID: PMC7763483 DOI: 10.3390/microorganisms8121952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
Nitrogen cycle microorganisms are essential in agricultural soils and may be affected by mercury pollution. The aims of this study are to evaluate the bioremediation of mercury-polluted agricultural soil using Cupriavidus metallidurans MSR33 in a rotary drum bioreactor (RDB) and to characterize the effects of mercury pollution and bioremediation on nitrogen cycle microorganisms. An agricultural soil was contaminated with mercury (II) (20-30 ppm) and subjected to bioremediation using strain MSR33 in a custom-made RDB. The effects of mercury and bioremediation on nitrogen cycle microorganisms were studied by qPCR. Bioremediation in the RDB removed 82% mercury. MSR33 cell concentrations, thioglycolate, and mercury concentrations influence mercury removal. Mercury pollution strongly decreased nitrogen-fixing and nitrifying bacterial communities in agricultural soils. Notably, after soil bioremediation process nitrogen-fixing and nitrifying bacteria significantly increased. Diverse mercury-tolerant strains were isolated from the bioremediated soil. The isolates Glutamicibacter sp. SB1a, Brevundimonas sp. SB3b, and Ochrobactrum sp. SB4b possessed the merG gene associated with the plasmid pTP6, suggesting the horizontal transfer of this plasmid to native gram-positive and gram-negative bacteria. Bioremediation by strain MSR33 in an RDB is an attractive and innovative technology for the clean-up of mercury-polluted agricultural soils and the recovery of nitrogen cycle microbial communities.
Collapse
Affiliation(s)
- Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Juan Carlos Gentina
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile;
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
22
|
Rabêlo FHS, Borgo L, Merloti LF, Pylro VS, Navarrete AA, Mano RH, Thijs S, Vangronsveld J, Alleoni LRF. Effects of winter and summer conditions on Cd fractionation and bioavailability, bacterial communities and Cd phytoextraction potential of Brachiaria decumbens and Panicum maximum grown in a tropical soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138885. [PMID: 32361355 DOI: 10.1016/j.scitotenv.2020.138885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 05/04/2023]
Abstract
The interactions between soil properties, microorganisms, plant species and climate affect cadmium (Cd) availability in tropical soils. In this study, we investigated the effects of simulated summer and winter conditions on Cd fractionation and bacterial communities in Oxisols and on growth of two high biomass production-grasses (Brachiaria decumbens and Panicum maximum) that were evaluated for their Cd phytoextraction potential. We also assessed how these interactions could influence the availability of Cd and its possible phytoextraction by these grasses. The Cd fraction bound to carbonates was higher in the winter conditions, while Cd bound to Fe- and Mn oxides was higher in the summer conditions, which resulted in a higher Cd availability in winter compared to summer conditions. B. decumbens and P. maximum took up more Cd when grown in the winter conditions, but their biomasses were not affected by the higher Cd uptake. The occurrence and relative abundance of bacterial taxa in the bare soil differed from the soils cultivated with grasses, where the Gammaproteobacteria predominated. However, no positive correlations were observed between the rhizosphere bacterial community in the cultivated soils and Cd availability, irrespective of the season conditions.
Collapse
Affiliation(s)
- Flávio Henrique Silveira Rabêlo
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil; Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium.
| | - Lucélia Borgo
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil; Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium
| | - Luis Fernando Merloti
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | | | | | - Rodrigo Hideki Mano
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, Brazil
| | - Sofie Thijs
- Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Diepenbeek, Belgium; Maria Curie-Skłodowska University, Faculty of Biology and Biotechnology, Lublin, Poland
| | | |
Collapse
|
23
|
Hariyo DD, Saparrat MCN, Barrera MD. Changes in microbial communities during phytoremediation of contaminated soil with phenanthrene. Braz J Microbiol 2020; 51:1853-1860. [PMID: 32519212 DOI: 10.1007/s42770-020-00309-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Although polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that affect negatively soils biology, several strategies lead to their removal such as the phytoremediation. In order to assess the potential of phytoremediation using "alfalfa" Medicago sativa as a strategy to reduce the phenanthrene on the soil, we analyzed the structure and dynamic of the microbial communities of a microcosm soil artificially contaminated with phenanthrene (2000 ppm), which was exposed to the plants. At different incubation times (7, 14, 21, 28, 42, and 56 days), a soil sample was taken from each microcosm and the residual amount of phenanthrene was quantified. Dehydrogenase activity and the count of fungi and bacteria were also estimated. Bacterial communities were characterized using PCR-DGGE, Shannon and Weaver's indexes, multivariate analysis, and rarefaction curves. It was found that phytoremediation treatment was associated with a higher richness and bacterial diversity compared with those on control soil. Although an OTUs (Operational Taxonomic Unit) succession over time was detected in both treatments, bacterial richness and diversity were conditioned by the phenanthrene concentration available and also dependent on the treatment, which were associated to different bacterial communities. In this study, phytoremediation treatment reduced the content of phenanthrene in the soil after 56 days to a 0.45% compared with the control treatment, which only reached to 4.25%. This preliminary work suggests the promoting activity of "alfalfa" plants, through rhizodegradation, to remove in soil PAHs, as well as its relevance in the activation of different ecological processes mediated by soil microorganisms.
Collapse
Affiliation(s)
- Diego D Hariyo
- Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119, 1900, La Plata, Argentina.
| | - Mario C N Saparrat
- Instituto de Fisiología Vegetal (INFIVE), UNLP, CCT, La Plata, CONICET, Diag. 113 y 61, CC 327, 1900, La Plata, Argentina.,Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), 53 # 477, B1900AVJ, La Plata, Argentina.,Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, UNLP, 60 y 119, 1900, La Plata, Argentina
| | - Marcelo D Barrera
- LISEA, Facultad de Ciencias Agrarias y Forestales, UNLP, CC 31, 1900, La Plata, Argentina
| |
Collapse
|
24
|
Mariano C, Mello IS, Barros BM, da Silva GF, Terezo AJ, Soares MA. Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13550-13564. [PMID: 32030584 DOI: 10.1007/s11356-020-07913-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
This study examined how soil mercury contamination affected the structure and functionality of rhizobacteria communities from Aeschynomene fluminensis and Polygonum acuminatum and how rhizobacteria mediate metal bioremediation. The strains were isolated using culture-dependent methods, identified through 16S rDNA gene sequencing, and characterized with respect to their functional traits related to plant growth promotion and resistance to metals and antibiotics. The bioremediation capacity of the rhizobacteria was determined in greenhouse using corn plants. The isolated bacteria belonged to the phyla Actinobacteria, Deinococcus-Thermus, Firmicutes, and Proteobacteria, with great abundance of the species Microbacterium trichothecenolyticum. The rhizobacteria abundance, richness, and diversity were greater in mercury-contaminated soils. Bacteria isolated from contaminated environments had higher minimum inhibitory concentration values, presented plasmids and the merA gene, and were multi-resistant to metals and antibiotics. Enterobacter sp._C35 and M. trichothecenolyticum_C34 significantly improved (Dunnett's test, p < 0.05) corn plant growth in mercury-contaminated soil. These bacteria helped to reduce up to 87% of the mercury content in the soil, and increased the mercury bioaccumulation factor by up to 94%. Mercury bioremediation mitigated toxicity of the contaminated substrate. Enterobacter sp._C35, Bacillus megaterium_C28, and Bacillus mycoides_C1 stimulated corn plant growth and could be added to biofertilizers produced in research and related industries.
Collapse
Affiliation(s)
- Caylla Mariano
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Ivani Souza Mello
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Breno Martins Barros
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Ailton Jose Terezo
- Central Analytical of Fuels, Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Marcos Antônio Soares
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
25
|
BenIsrael M, Wanner P, Fernandes J, Burken JG, Aravena R, Parker BL, Haack EA, Tsao DT, Dunfield KE. Quantification of toluene phytoextraction rates and microbial biodegradation functional profiles at a fractured bedrock phytoremediation site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135890. [PMID: 31865073 DOI: 10.1016/j.scitotenv.2019.135890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 05/28/2023]
Abstract
This field study evaluated the efficacy of a mature hybrid poplar phytoremediation system for the remediation of toluene in a fractured bedrock aquifer site. Phytoextraction activity of the trees and the ecology and biodegradation potential of root-colonizing bacteria that ultimately influence how much toluene is transported from the roots and phytoextracted to the aboveground point of measurement were explored. Peak-season toluene mass removal rates ranging from 313 to 743 μg/day were quantified using passive in planta contaminant sampling techniques and continuous heat dissipation transpiration measurements in tree stems. Root bacterial microbiome structure and biodegradation potential were evaluated via high-throughput sequencing and predictive metagenomic functional modelling of bacterial 16S rRNA genes in roots. Poplar roots were colonized mostly by Proteobacteria, Actinobacteria, and Bacteroidetes. Distinct, more uniform communities were observed in roots associated with trees planted in the toluene source area compared to other areas, with differences apparent at lower taxonomic levels. Significant enrichment of Streptomyces in roots was observed in the source area, implicating that genus as a potentially important poplar endophyte at toluene-impacted sites. Moreover, significantly greater aerobic toluene biodegradation capacity was predicted in these roots compared to other areas using taxonomic functional modelling. Together with passive sampling, the molecular results provided supporting evidence of biodegradation activity in the source area and contextualized the detected phytoextraction patterns. These results support the application of phytoremediation systems for aromatic hydrocarbons in environments with complex geology and demonstrate field-validated monitoring techniques to assess phytoextraction and biodegradation in these systems.
Collapse
Affiliation(s)
- Michael BenIsrael
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Philipp Wanner
- G(360) Institute for Groundwater Research, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Jeremy Fernandes
- G(360) Institute for Groundwater Research, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Joel G Burken
- Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, 1401 N. Pine St., Rolla, MO 65409-0030, USA
| | - Ramon Aravena
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Beth L Parker
- G(360) Institute for Groundwater Research, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Elizabeth A Haack
- EcoMetrix Inc., 6800 Campobello Road, Mississauga, ON L5N 2L8, Canada
| | - David T Tsao
- BP Corporation North America Inc., 150 W Warrenville Road #605-2E, Naperville, IL 60563, USA
| | - Kari E Dunfield
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
26
|
Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbe-assisted organopollutant removal, or in planta crop decontamination, is based on an interactive system between organopollutant-degrading endophytic bacteria (DEBOP) and crops in alleviating organic toxins in plants. This script focuses on the fast-growing body of literature that has recently bloomed in organopollutant control in agricultural plants. The various facets of DEBOP under study include their colonization, distribution, plant growth-promoting mechanisms, and modes of action in the detoxification process in plants. Also, an assessment of the biotechnological advances, advantages, and bottlenecks in accelerating the implementation of this decontamination strategy will be undertaken. The highlighted key research directions from this review will shape the future of agro-environmental sustainability and preservation of human health.
Collapse
Affiliation(s)
- Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
27
|
Borowik A, Wyszkowska J, Gałązka A, Kucharski J. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27738-27751. [PMID: 31338761 PMCID: PMC6791909 DOI: 10.1007/s11356-019-05888-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/01/2019] [Indexed: 05/29/2023]
Abstract
The objective of this study was to analyze the effect of two grass species, i.e. red fescue (Festuca rubra) and tall fescue (F. arundinacea), on the functional and genetic diversity of soil-dwelling microorganisms and on the enzymatic activity of soil not polluted and polluted with diesel oil. Grasses were examined for their effectiveness in accelerating degradation of PAHs introduced into soil with diesel oil. A growing experiment was conducted in Kick-Brauckman pots. The soil not polluted and polluted with diesel oil (7 cm3 kg-1 d.m.) was determined for the count of bacteria, colony development index, ecophysiological diversity index, functional diversity (using Biolog system), genetic diversity of bacteria (using NGS), enzymatic activity, and content of hydrocarbons. Study results demonstrated disturbed homeostasis of soil. The toxic effect of diesel oil on grasses alleviate with time since soil pollution. The yield of the first swath of red fescue decreased by 98% and that of tall fescue by 92%, whereas the yields of the second swath decreased by 82% and 89%, and these of the third swath by 50% and 47%, respectively. Diesel oil diminished also the functional and genetic diversity of bacteria. The use of grasses significantly decreased contents of C6-C12 (gasoline total), C12-C35 mineral oils, BTEX (volatile aromatic hydrocarbons), and PAHs in the soil, as well as enabled restoring the microbiological equilibrium in the soil, and increased functional and genetic diversity of bacteria. For this reason, both analyzed grass species, i.e. Festuca rubra and F. arundinacea, may be recommended for the remediation of soil polluted with diesel oil.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland.
| | - Anna Gałązka
- Institute of Soil Science and Plant Cultivation - State Research Institute, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| |
Collapse
|
28
|
Shameer K, Naika MB, Shafi KM, Sowdhamini R. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:19-39. [DOI: 10.1016/j.pbiomolbio.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
29
|
Shaheen S, Ahmad R, Mahmood Q, Pervez A, Maroof Shah M, Hafeez F. Gene expression and biochemical response of giant reed under Ni and Cu stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1474-1485. [PMID: 31264465 DOI: 10.1080/15226514.2019.1633269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Giant reed (Arundo donax) has proved to be effective in detoxification, accumulation and tolerance of toxic metals. The present study explored the stress response of giant reed against Cu and Ni stress. The effect of metal stress was studied on dry weight, chlorophyll pigments antioxidant enzymes production and selected genes expression. The accumulation of heavy metals increased in a concentration-dependent manner and depicted toxicity symptoms in leaves beyond 75 mg/L of Cu or Ni. Oxidative stress was evident in giant reed under highest exposure of Ni and Cu which increased antioxidants activities (SOD, POD and CAT). It was observed that metal transport and detoxification were possible due to the expression of glutathione reductase, Natural Resistance-Associated Macrophage Protein (NRAMP) and Yellow Stripe-Like (YSL) genes. These insights into the genetic basis of a successful remediating plant species will be useful in understanding heavy metals tolerance in giant reed.
Collapse
Affiliation(s)
- Shahida Shaheen
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Rafiq Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Mohammad Maroof Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| |
Collapse
|
30
|
Abstract
Microorganisms colonizing plant surfaces and internal tissues provide a number of life-support functions for their host. Despite increasing recognition of the vast functional capabilities of the plant microbiome, our understanding of the ecology and evolution of the taxonomically hyperdiverse microbial communities is limited. Here, we review current knowledge of plant genotypic and phenotypic traits as well as allogenic and autogenic factors that shape microbiome composition and functions. We give specific emphasis to the impact of plant domestication on microbiome assembly and how insights into microbiomes of wild plant relatives and native habitats can contribute to reinstate or enrich for microorganisms with beneficial effects on plant growth, development, and health. Finally, we introduce new concepts and perspectives in plant microbiome research, in particular how community ecology theory can provide a mechanistic framework to unravel the interplay of distinct ecological processes-i.e., selection, dispersal, drift, diversification-that structure the plant microbiome.
Collapse
Affiliation(s)
- Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Francisco Dini-Andreote
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; .,Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; .,Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
31
|
Odoh CK, Zabbey N, Sam K, Eze CN. Status, progress and challenges of phytoremediation - An African scenario. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:365-378. [PMID: 30818239 DOI: 10.1016/j.jenvman.2019.02.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 05/21/2023]
Abstract
Environmental pollution occasioned by artisanal activities and technical failures at exploration sites has affected mostly oil producing and other mineral resources mining regions in developed and developing nations. As conventional techniques of remediation seem to be progressively unreliable and inefficient, contaminated land management experts have adopted a plant-based technology described as 'phytoremediation' for effective detoxification and removal of contaminants in substrate environmental media (soil and sediment). This technique, has gained public acceptance because of its aesthetic, eco-friendly, solar energy driven and low cost attributes. With complexity of environmental pollution in Africa, identification of appropriate remediation approach that deliver net environmental benefit and economic profit to the society is vital, while also focusing on the exploitation of plants genetic tools for more clarity on phyto tolerance, uptake and translocation of pollutants. In this article, we reviewed the status, progress and challenges of phytoremediation in selected African countries (South Africa, Nigeria, Tanzania, Zambia, Egypt and Ghana), the ecological impact of the pollutants, phytoremediation strategies and the possible plants of choice. Besides highlighting the support roles played by soil fauna and flora, the fate of harvested biomass/dieback and its future prospects are also discussed. We further explored the factors challenging phytoremediation progress in Africa, amidst its promising potentials and applicability for sustainable ecosystem management paradigm.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Nenibarini Zabbey
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, PMB, 5323, East-West Road, Choba, Rivers State, Nigeria; Environment and Conservation Unit, Centre for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria
| | - Kabari Sam
- Environment and Conservation Unit, Centre for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria; Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Warri, Delta State, Nigeria.
| | - Chibuzor Nwadibe Eze
- Department of Microbiology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
32
|
Kogbara RB, Badom BK, Ayotamuno JM. Tolerance and phytoremediation potential of four tropical grass species to land-applied drill cuttings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 20:1446-1455. [PMID: 30652512 DOI: 10.1080/15226514.2018.1501337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work evaluated the tolerance and phytoremediation potential of four tropical grasses over a 12-week period, with a view to assessing their suitability for land farming of oil-based drill cuttings. It considered four grass species, namely, guinea grass (Megathyrsus maximus), spear grass (Imperata cylindrica), gamba grass (Andropogon gayanus), and elephant grass (Pennisetum purpureum). The treatments involved growing each of the four grasses on a mixture of 3:1 soil/drill-cuttings ratio, after failed trials with mix ratios ranging from 1:3 to 2:1 soil/drill-cuttings ratio, and on uncontaminated soil. The TPH concentration dropped by 27-81% from 4805 mg kg-1 in the 3:1 soil/drill-cuttings mixtures in the different treatments after 12 weeks. Better growth performance in the contaminated treatments, compared to uncontaminated controls, correlated with higher reduction in TPH and metals concentrations. The contaminated elephant grass treatment showed better plant height and leaf sizes than the uncontaminated control. The growth parameters of contaminated treatments with the other three grasses ranged from 29 to 75% of the corresponding uncontaminated controls. The results demonstrate that the relative suitability of the grasses for land farming of oil-based drill cuttings is in the order, elephant grass > guinea grass > gamba grass > spear grass.
Collapse
Affiliation(s)
- Reginald B Kogbara
- a Department of Agricultural & Environmental Engineering , Rivers State University , Port Harcourt , Nigeria
- b Mechanical Engineering Program , Texas A&M University at Qatar , Doha , Qatar
| | - Baribor K Badom
- a Department of Agricultural & Environmental Engineering , Rivers State University , Port Harcourt , Nigeria
| | - Josiah M Ayotamuno
- a Department of Agricultural & Environmental Engineering , Rivers State University , Port Harcourt , Nigeria
| |
Collapse
|
33
|
Ullah S, Mahmood T, Iqbal Z, Naeem A, Ali R, Mahmood S. Phytoremediative potential of salt-tolerant grass species for cadmium and lead under contaminated nutrient solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1012-1018. [PMID: 31016987 DOI: 10.1080/15226514.2019.1594683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phytoremediation of heavy metal contaminated soils represents a promising technique and salt-tolerant hyperaccumulators for multiple metals are the need of time. Therefore, phytoremediation potential of four salt-tolerant grass species [Dhab (Desmostachya bipinnata), Kallar (Leptochloa fusca), Para (Brachiaria mutica) and Sporobolus (Sporobolus arabicus Boiss)] was evaluated for cadmium (Cd) and lead (Pb) in a hydroponic study. The plants were harvested after a growth period of 3 months in a nutrient solution containing different levels of Cd (0, 5, and 25 mg L-1) and Pb (0, 25, and 125 mg L-1). Results indicated that Dhab grass showed the highest root and shoot dry matter yield followed by Para, Kallar and Sporobolus grass irrespective of metal or its level under which they were grown. All the grass species showed considerable Cd-accumulating potential with an accumulation of >150 mg kg-1of shoot dry matter at a higher level of Cd-contamination (25 mg L-1). While in case of shoot Pb-accumulation only Para grass performed well and accumulated Pb >1000 mg kg-1 of shoot dry matter at the higher level of Pb-contamination (125 mg L-1). Moreover, Para and Dhab grasses performed better for shoot Cd-uptake, while only Para grass showed promising shoot Pb uptake potential. In conclusion, these grass species could be penitentially used for phytoremediation of salt-affected Cd and Pb contaminated soils.
Collapse
Affiliation(s)
- Sana Ullah
- a Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| | - Tariq Mahmood
- a Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| | - Zafar Iqbal
- a Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| | - Asif Naeem
- a Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| | - Rehmat Ali
- a Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| | - Sajid Mahmood
- a Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB) , Faisalabad , Pakistan
| |
Collapse
|
34
|
Deng S, Ke T, Li L, Cai S, Zhou Y, Liu Y, Guo L, Chen L, Zhang D. Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1088-1097. [PMID: 29153474 DOI: 10.1016/j.envpol.2017.11.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 05/08/2023]
Abstract
Rhizospheric microbes play important roles in plant growth and heavy metals (HMs) transformation, possessing great potential for the successful phytoremediation of environmental pollutants. In the present study, the rhizosphere of Elsholtzia haichowensis Sun was comprehensively studied to uncover the influence of environmental factors (EFs) on the whole microbial communities including bacteria, fungi and archaea, via quantitative polymerase chain reaction (qPCR) and high-throughput sequencing. By analyzing molecular ecological network and multivariate regression trees (MRT), we evaluated the distinct impacts of 37 EFs on soil microbial community. Of them, soil pH, HMs, soil texture and nitrogen were identified as the most influencing factors, and their roles varied across different domains. Soil pH was the main environmental variable on archaeal and bacterial community but not fungi, explaining 25.7%, 46.5% and 40.7% variation of bacterial taxonomic composition, archaeal taxonomic composition and a-diversity, respectively. HMs showed important roles in driving the whole microbial community and explained the major variation in different domains. Nitrogen (NH4-N, NO3-N, NO2-N and TN) explained 47.3% variation of microbial population composition and 15.9% of archaeal taxonomic composition, demonstrating its influence in structuring the rhizospheric microbiome, particularly archaeal and bacterial community. Soil texture accounted for 10.2% variation of population composition, 28.9% of fungal taxonomic composition, 19.2% of fungal a-diversity and 7.8% of archaeal a-diversity. Rhizosphere only showed strong impacts on fungi and bacteria, accounting for 14.7% and 4.9% variation of fungal taxonomic composition and bacterial a-diversity. Spatial distance had stronger influence on bacteria and archaea than fungi, but not as significant as other EFs. For the first time, our study provides a complete insight into key influential EFs on rhizospheric microbes and how their roles vary across microbial domains, giving a hand for understanding the construction of microbial communities in rhizosphere.
Collapse
Affiliation(s)
- Songqiang Deng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China
| | - Tan Ke
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Longtai Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China
| | - Shenwen Cai
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563000, PR China
| | - Yuyue Zhou
- College of Life Sciences, Wuhan University, Wuhan 430079, PR China
| | - Yue Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430079, PR China.
| | - Lanzhou Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
35
|
Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? TRENDS IN PLANT SCIENCE 2018; 23:25-41. [PMID: 29050989 DOI: 10.1016/j.tplants.2017.09.003] [Citation(s) in RCA: 841] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly.
Collapse
Affiliation(s)
- Joelle Sasse
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Trent Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Genome Institute, Walnut Creek, CA 94958, USA.
| |
Collapse
|
36
|
Mishra J, Singh R, Arora NK. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms. Front Microbiol 2017; 8:1706. [PMID: 28932218 PMCID: PMC5592232 DOI: 10.3389/fmicb.2017.01706] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022] Open
Abstract
Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be exploited to reduce HM stress in plants. Several rhizosphere microorganisms are known to play essential role in the management of HM stresses in plants. They can accumulate, transform, or detoxify HM. In general, the benefit from these microbes can have a vast impact on plant’s health. Plant–microbe associations targeting HM stress may provide another dimension to existing phytoremediation and rhizoremediation uses. In this review, applied aspects and mechanisms of action of heavy metal tolerant-plant growth promoting (HMT-PGP) microbes in ensuring plant survival and growth in contaminated soils are discussed. The use of HMT-PGP microbes and their interaction with plants in remediation of contaminated soil can be the approach for the future. This low input and sustainable biotechnology can be of immense use/importance in reclaiming the HM contaminated soils, thus increasing the quality and yield of such soils.
Collapse
Affiliation(s)
- Jitendra Mishra
- Rhizosphere Microbiology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Rachna Singh
- Rhizosphere Microbiology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Naveen K Arora
- Rhizosphere Microbiology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| |
Collapse
|
37
|
Burger J, Gochfeld M, Bunn A, Downs J, Jeitner C, Pittfield T, Salisbury J, Kosson D. A Methodology to Evaluate Ecological Resources and Risk Using Two Case Studies at the Department of Energy's Hanford Site. ENVIRONMENTAL MANAGEMENT 2017; 59:357-372. [PMID: 27904947 DOI: 10.1007/s00267-016-0798-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
An assessment of the potential risks to ecological resources from remediation activities or other perturbations should involve a quantitative evaluation of resources on the remediation site and in the surrounding environment. We developed a risk methodology to rapidly evaluate potential impact on ecological resources for the U.S. Department of Energy's Hanford Site in southcentral Washington State. We describe the application of the risk evaluation for two case studies to illustrate its applicability. The ecological assessment involves examining previous sources of information for the site, defining different resource levels from 0 to 5. We also developed a risk rating scale from non-discernable to very high. Field assessment is the critical step to determine resource levels or to determine if current conditions are the same as previously evaluated. We provide a rapid assessment method for current ecological conditions that can be compared to previous site-specific data, or that can be used to assess resource value on other sites where ecological information is not generally available. The method is applicable to other Department of Energy's sites, where its development may involve a range of state regulators, resource trustees, Tribes and other stakeholders. Achieving consistency across Department of Energy's sites for valuation of ecological resources on remediation sites will assure Congress and the public that funds and personnel are being deployed appropriately.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, Piscataway, NJ, 08854-8082, USA.
- Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Vanderbilt University, Nashville, TN, 37235, USA.
| | - Michael Gochfeld
- Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Vanderbilt University, Nashville, TN, 37235, USA
- Rutgers, robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Amoret Bunn
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Janelle Downs
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Christian Jeitner
- Division of Life Sciences, Rutgers University, Piscataway, NJ, 08854-8082, USA
- Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Vanderbilt University, Nashville, TN, 37235, USA
| | - Taryn Pittfield
- Division of Life Sciences, Rutgers University, Piscataway, NJ, 08854-8082, USA
- Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Vanderbilt University, Nashville, TN, 37235, USA
| | - Jennifer Salisbury
- Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Vanderbilt University, Nashville, TN, 37235, USA
| | - David Kosson
- Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|