1
|
Li YY, Li J, Li Y, Long HP, Lin W, Wang YK, Tang R, Liu XW, Jiang D, Liu S, Cao D, Tan GS, Xu KP, Wang WX. Binding uric acid: a pure chemical solution for the treatment of hyperuricemia. RSC Adv 2024; 14:24165-24174. [PMID: 39101063 PMCID: PMC11294985 DOI: 10.1039/d4ra04626a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024] Open
Abstract
Hyperuricemia, characterized by elevated uric acid levels and subsequent crystal deposition, contributing to conditions such as gout, cardiovascular events, and kidney injury, poses a significant health threat, particularly in developed countries. Current drug options for treatment are limited, with safety concerns, leading to suboptimal therapeutic outcomes in symptomatic hyperuricemia patients and a lack of pharmaceutical interventions for asymptomatic cases. Distinguishing from the previous drug design strategies, we directly target uric acid, the pathological molecule of hyperuricemia, resulting in a pyrimidine derivative capable of increasing the solubility and excretion of uric acid by forming a complex with it. Its prodrug showed an anti-hyperuricemia activity comparable to benzbromarone and a favorable safety profile in vivo. Our finding provides a strategy purely based on organic chemistry to address the largely unmet therapeutic needs on novel anti-hyperuricemia drugs.
Collapse
Affiliation(s)
- Yun-Yun Li
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Jing Li
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Yan Li
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Hong-Ping Long
- The First Hospital of Hunan University of Chinese Medicine Changsha Hunan 410007 PR China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Yi-Kun Wang
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Xue-Wu Liu
- Hunan Prima Drug Research Center Co., Ltd, Hunan Research Center for Drug Safety Evaluation, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs Changsha Hunan 410331 PR China
| | - Dejian Jiang
- Hunan Prima Drug Research Center Co., Ltd, Hunan Research Center for Drug Safety Evaluation, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs Changsha Hunan 410331 PR China
| | - Shao Liu
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Gui-Shan Tan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University Changsha Hunan 410008 PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha Hunan 410008 PR China
- Hunan Prima Drug Research Center Co., Ltd, Hunan Research Center for Drug Safety Evaluation, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs Changsha Hunan 410331 PR China
| |
Collapse
|
2
|
Mou L, Zhu L, Chen X, Hu Y, Zhu H, Xu Y. Genotype and Phenotype of Renal Hypouricemia: A Single-Center Study from China. Mol Diagn Ther 2024; 28:87-99. [PMID: 37971623 DOI: 10.1007/s40291-023-00683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Renal hypouricemia (RHUC), a rare inherited disorder characterized by impaired uric acid reabsorption and subsequent profound hypouricemia, occurs mainly due to variants in SLC22A12 or SLC2A9. Only anecdotal cases and one small-scale RHUC screening study have been reported in the Chinese population. METHODS A total of 19 patients with RHUC from 17 unrelated families were recruited from our center. The medical history, clinical manifestations, biochemical exam, and clinical outcomes were collected. Next-generation sequencing-based targeted gene sequencing or whole exon sequencing was performed. RESULTS A total of 22 variants in SLC22A12 or SLC2A9 were found in 19 patients. The variant c.944G>A (p.W315X) in SLC2A9 was identified in three patients. Three variants c.165C>A (p.D55E), c.1549_1555delGAGACCC (p.E517Rfs*17), and c.1483T>C (p.W495R) in SLC22A12 and three variants c.1215+1G>A (splicing variant), c.643A>C (p.T215P), and c.227C>A (p.S76X) in SLC2A9 were novel. A proportion of 10 out of 19 patients presented with exercise-induced acute kidney injury (EIAKI). The renal outcome was favorable. Five patients had nephrolithiasis, in whom three had hypercalciuria. CONCLUSION The current study reported six novel variants in SLC22A12 and SLC2A9 genes of Chinese patients with RHUC. The variant c.944G>A (p.W315X) in SLC2A9 may be common in Chinese patients. EIAKI is the main clinical phenotype associated with RHUC in our cohort, with a favorable outcome. Hypercalciuria presented in some RHUC patients is a new finding.
Collapse
Affiliation(s)
- Lijun Mou
- Department of Nephrology, Zhejiang University School of Medicine Second Affiliated Hospital, Jiefang Rd 88, Hangzhou, 310009, Zhejiang, China
| | - Lina Zhu
- Department of Nephrology, Zhejiang University School of Medicine Second Affiliated Hospital, Jiefang Rd 88, Hangzhou, 310009, Zhejiang, China.
| | - Xujiao Chen
- Division of Nephrology, Huashan Hospital Fudan University, Shanghai, China
| | - Ying Hu
- Department of Nephrology, Zhejiang University School of Medicine Second Affiliated Hospital, Jiefang Rd 88, Hangzhou, 310009, Zhejiang, China
| | - Hong Zhu
- Department of Nephrology, Zhejiang University School of Medicine Second Affiliated Hospital Jiande Branch, Jiande, Zhejiang, China
| | - Ying Xu
- Kidney Disease Center, Institute of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Aizawa C, Okabe M, Takahashi D, Sagasaki M, Watanabe M, Fujimoto T, Yoshioka Y, Katsuma A, Kimura A, Miyamoto D, Sato N, Okamoto K, Ichida K, Miyazaki Y, Yokoo T. Possible Use of Non-purine Selective Xanthine Oxidoreductase Inhibitors for Prevention of Exercise-induced Acute Kidney Injury Associated with Renal Hypouricemia. Intern Med 2023; 62:2725-2730. [PMID: 36754409 PMCID: PMC10569912 DOI: 10.2169/internalmedicine.0678-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023] Open
Abstract
Exercise-induced acute kidney injury (EIAKI) is frequently complicated with renal hypouricemia (RHUC). In patients with RHUC, limiting anaerobic exercise can prevent EIAKI. However, it is challenging to reduce exercise intensity in athletes. We herein report a 16-year-old Japanese football player with familial RHUC with compound heterozygous mutations in urate transporter 1 (URAT1) who presented with recurrent EIAKI. As prophylaxis (hydration during exercise) could not prevent EIAKI, febuxostat was initiated. EIAKI was not observed for 16 months despite exercising intensively. Hence, non-purine-selective xanthine oxidoreductase inhibitors may decrease the incidence of EIAKI in athletes with RHUC.
Collapse
Affiliation(s)
- Chiharu Aizawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
| | - Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | | | - Makoto Sagasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Department of Nephrology and Hypertension, Atsugi City Hospital, Japan
| | - Mao Watanabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Toshinari Fujimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Yuuki Yoshioka
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Ai Katsuma
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Ai Kimura
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Daisuke Miyamoto
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Japan
| | - Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Kimiyoshi Ichida
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Japan
| |
Collapse
|
4
|
Vitamin C transporter SVCT1 serves a physiological role as a urate importer: functional analyses and in vivo investigations. Pflugers Arch 2023; 475:489-504. [PMID: 36749388 PMCID: PMC10011331 DOI: 10.1007/s00424-023-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Uric acid, the end product of purine metabolism in humans, is crucial because of its anti-oxidant activity and a causal relationship with hyperuricemia and gout. Several physiologically important urate transporters regulate this water-soluble metabolite in the human body; however, the existence of latent transporters has been suggested in the literature. We focused on the Escherichia coli urate transporter YgfU, a nucleobase-ascorbate transporter (NAT) family member, to address this issue. Only SLC23A proteins are members of the NAT family in humans. Based on the amino acid sequence similarity to YgfU, we hypothesized that SLC23A1, also known as sodium-dependent vitamin C transporter 1 (SVCT1), might be a urate transporter. First, we identified human SVCT1 and mouse Svct1 as sodium-dependent low-affinity/high-capacity urate transporters using mammalian cell-based transport assays. Next, using the CRISPR-Cas9 system followed by the crossing of mice, we generated Svct1 knockout mice lacking both urate transporter 1 and uricase. In the hyperuricemic mice model, serum urate levels were lower than controls, suggesting that Svct1 disruption could reduce serum urate. Given that Svct1 physiologically functions as a renal vitamin C re-absorber, it could also be involved in urate re-uptake from urine, though additional studies are required to obtain deeper insights into the underlying mechanisms. Our findings regarding the dual-substrate specificity of SVCT1 expand the understanding of urate handling systems and functional evolutionary changes in NAT family proteins.
Collapse
|
5
|
Wu Y, Guo X, Peng Y, Fang Z, Zhang X. Roles and Molecular Mechanisms of Physical Exercise in Sepsis Treatment. Front Physiol 2022; 13:879430. [PMID: 35845992 PMCID: PMC9277456 DOI: 10.3389/fphys.2022.879430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Physical exercise is a planned, purposeful action to keep a healthy lifestyle and improve physical fitness. Physical exercise has been widely used as a non-pharmacological approach to preventing and improving a wide range of diseases, including cardiovascular disease, cancer, metabolic disease, and neurodegenerative disease. However, the effects of physical exercise on sepsis have not been summarized until now. In this review, we discuss the effects of physical exercise on multiple organ functions and the short- and long-time outcomes of sepsis. Furthermore, the molecular mechanisms underlying the protective effects of physical exercise on sepsis are discussed. In conclusion, we consider that physical exercise may be a beneficial and non-pharmacological alternative for the treatment of sepsis.
Collapse
Affiliation(s)
- You Wu
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Guo
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Intensive Care Unit, Joint Logistics Force No. 988 Hospital, Zhengzhou, China
| | - Yuliang Peng
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zongping Fang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
6
|
Natsuko PD, Laura SC, Denise CC, Lucio VR, Carlos AS, Fausto SM, Ambar LM. Differential gene expression of ABCG2, SLC22A12, IL-1β, and ALPK1 in peripheral blood leukocytes of primary gout patients with hyperuricemia and their comorbidities: a case-control study. Eur J Med Res 2022; 27:62. [PMID: 35505381 PMCID: PMC9063158 DOI: 10.1186/s40001-022-00684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background The ABCG2, SLC22A12, and ALPK1 genes have been strongly associated with dysfunction of urate metabolism in patients with gout, but it is unknown how these transporters are expressed in patients with acute or chronic gout. Our objectives were to: (a) analyze the gene expression of urate transporters and of inflammation genes in peripheral blood from gout patients and controls; (b) determine whether the metabolic profile of gout patients can influence the gene expression profile and the expression of urate transporters, ABCG2 and SLC22A12, and inflammation molecules, ALPK1 and IL-1β, in peripheral blood leukocytes from gout patients; (c) compare them with their metabolic profile and the gene expression of people without gout and without hyperuricemia. Methods A total of 36 chronic and acute patients and 52 controls were recruited, and ABCG2, SLC22A12, IL-1β, and ALPK1 gene expression was evaluated by quantitative real-time PCR. Correlations of gene expression with clinical and laboratory parameters of patients were also analyzed. Results IL-1β was significantly increased in peripheral blood mononuclear cells (PBMCs) of patients compared with their polymorphonuclear leukocytes white blood cells (PMNLs, p < 0.05). A significant increase in ABCG2 and IL-1β was found in PMNLs from patients compared to controls (p < 0.05). Correlations of gene expression in patients were found with levels of serum uric acid (sUA), serum creatinine, C-reactive protein (CRP), triglycerides, body mass index (BMI), kidney disease, hypertension, and metabolic syndrome. Conclusions Our data suggest that leukocytes of patients respond to the presence of hyperuricemia and comorbidities, expressing ABCG2 and IL-1β genes differentially compared to normouricemic and nondisease states. Hyperuricemia, dyslipidemia, and obesity probably stimulate the differential gene expression of peripheral blood leukocytes (neutrophils and monocytes), even in an asymptomatic state.
Collapse
Affiliation(s)
- Paniagua-Díaz Natsuko
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México
| | - Sanchez-Chapul Laura
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México
| | - Clavijo-Cornejo Denise
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación, Mexico City, Mexico., Instituto Nacional de Rehabilitación - "Luis Guillermo Ibarra Ibarra". Tlalpan, Ciudad de México, México
| | - Ventura-Ríos Lucio
- Laboratorio de Ultrasonido Musculoesquelético Articular, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Tlalpan, Ciudad de México, México
| | - Aguilar-Salinas Carlos
- Unidad de investigación de enfermedades metabólicas, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán. Tlalpan, Ciudad de Mexico, México
| | - Sanchez-Muñoz Fausto
- Department of immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Tlalpan, Ciduad de México, México
| | - López-Macay Ambar
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México.
| |
Collapse
|
7
|
Toyoda Y, Kawamura Y, Nakayama A, Morimoto K, Shimizu S, Tanahashi Y, Tamura T, Kondo T, Kato Y, Ichida K, Suzuki H, Shinomiya N, Kobayashi Y, Takada T, Matsuo H. OAT10/SLC22A13 Acts as a Renal Urate Re-Absorber: Clinico-Genetic and Functional Analyses With Pharmacological Impacts. Front Pharmacol 2022; 13:842717. [PMID: 35462902 PMCID: PMC9019507 DOI: 10.3389/fphar.2022.842717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 01/23/2023] Open
Abstract
Dysfunctional missense variant of organic anion transporter 10 (OAT10/SLC22A13), rs117371763 (c.1129C>T; p.R377C), is associated with a lower susceptibility to gout. OAT10 is a urate transporter; however, its physiological role in urate handling remains unclear. We hypothesized that OAT10 could be a renal urate re-absorber that will be a new molecular target of urate-lowering therapy like urate transporter 1 (URAT1, a physiologically-important well-known renal urate re-absorber) and aimed to examine the effect of OAT10 dysfunction on renal urate handling. For this purpose, we conducted quantitative trait locus analyses of serum urate and fractional excretion of uric acid (FEUA) using samples obtained from 4,521 Japanese males. Moreover, we performed immunohistochemical and functional analyses to assess the molecular properties of OAT10 as a renal urate transporter and evaluated its potential interaction with urate-lowering drugs. Clinico-genetic analyses revealed that carriers with the dysfunctional OAT10 variant exhibited significantly lower serum urate levels and higher FEUA values than the non-carriers, indicating that dysfunction of OAT10 increases renal urate excretion. Given the results of functional assays and immunohistochemical analysis demonstrating the expression of human OAT10 in the apical side of renal proximal tubular cells, our data indicate that OAT10 is involved in the renal urate reabsorption in renal proximal tubules from urine. Additionally, we found that renal OAT10 inhibition might be involved in the urate-lowering effect of losartan and lesinurad which exhibit uricosuric effects; indeed, losartan, an approved drug, inhibits OAT10 more strongly than URAT1. Accordingly, OAT10 can be a novel potential molecular target for urate-lowering therapy.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Keito Morimoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yuki Tanahashi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Takaaki Kondo
- Program in Radiological and Medical Laboratory Sciences, Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yasufumi Kato
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- *Correspondence: Tappei Takada, ; Hirotaka Matsuo,
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
- *Correspondence: Tappei Takada, ; Hirotaka Matsuo,
| |
Collapse
|
8
|
Nandi SK, Panda AK, Chakraborty A, Rathee S, Roy I, Barik S, Mohapatra SS, Biswas A. Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Front Mol Biosci 2022; 9:844826. [PMID: 35252358 PMCID: PMC8890618 DOI: 10.3389/fmolb.2022.844826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/18/2023] Open
Abstract
Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium species. Its potential role in modulating cellular functions and implications in systemic, pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic and prognostic biomarker owing to its close association with disease’s progression. Several stresses induce altered ATP generation, causing disorders and illnesses. Small heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature. Some important functions that they exhibit include preventing protein aggregation, enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-apoptotic functions. Expression and functions of sHSPs in humans are closely associated with several diseases like cataracts, cardiovascular diseases, renal diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose molecular chaperone functions are implicated in the growth and survival of pathogens in host species. As both ATP and sHSPs, remain closely associated with several human diseases and survival of bacterial pathogens in the host, therefore substantial research has been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP on the structure and function of human and mycobacterial sHSPs is discussed. Additionally, how such interactions can influence the onset of several human diseases is also discussed.
Collapse
Affiliation(s)
- Sandip K. Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Shivani Rathee
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Ipsita Roy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| |
Collapse
|
9
|
Hosoya T, Uchida S, Shibata S, Tomioka NH, Matsumoto K, Hosoyamada M. Xanthine Oxidoreductase Inhibitors Suppress the Onset of Exercise-Induced AKI in High HPRT Activity Urat1- Uox Double Knockout Mice. J Am Soc Nephrol 2022; 33:326-341. [PMID: 34799437 PMCID: PMC8819989 DOI: 10.1681/asn.2021050616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hereditary renal hypouricemia type 1 (RHUC1) is caused by URAT1/SLC22A12 dysfunction, resulting in urolithiasis and exercise-induced AKI (EIAKI). However, because there is no useful experimental RHUC1 animal model, the precise pathophysiologic mechanisms underlying EIAKI have yet to be elucidated. We established a high HPRT activity Urat1-Uox double knockout (DKO) mouse as a novel RHUC1 animal model for investigating the cause of EIAKI and the potential therapeutic effect of xanthine oxidoreductase inhibitors (XOIs). METHODS The novel Urat1-Uox DKO mice were used in a forced swimming test as loading exercise to explore the onset mechanism of EIAKI and evaluate related purine metabolism and renal injury parameters. RESULTS Urat1-Uox DKO mice had uricosuric effects and elevated levels of plasma creatinine and BUN as renal injury markers, and decreased creatinine clearance observed in a forced swimming test. In addition, Urat1-Uox DKO mice had increased NLRP3 inflammasome activity and downregulated levels of Na+-K+-ATPase protein in the kidney, as Western blot analysis showed. Finally, we demonstrated that topiroxostat and allopurinol, XOIs, improved renal injury and functional parameters of EIAKI. CONCLUSIONS Urat1-Uox DKO mice are a useful experimental animal model for human RHUC1. The pathogenic mechanism of EIAKI was found to be due to increased levels of IL-1β via NLRP3 inflammasome signaling and Na+-K+-ATPase dysfunction associated with excessive urinary urate excretion. In addition, XOIs appear to be a promising therapeutic agent for the treatment of EIAKI.
Collapse
Affiliation(s)
- Takuji Hosoya
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan,Biological Research Department, Research Institute, Fuji Yakuhin Co., Ltd., Saitama, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Naoko H. Tomioka
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Koji Matsumoto
- Biological Research Department, Research Institute, Fuji Yakuhin Co., Ltd., Saitama, Japan
| | - Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
10
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
11
|
Wu M, Ma Y, Chen X, Liang N, Qu S, Chen H. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Dis Model Mech 2021; 14:dmm048041. [PMID: 33648977 PMCID: PMC8015218 DOI: 10.1242/dmm.048041] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/13/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological research has shown that elevated serum urate concentration is a risk factor for the development of kidney disease; however, the mechanisms underlying this process have not yet been elucidated. To examine the role of urate in the kidney, we used Wistar rats to functionally disrupt expression of urate oxidase (UOX) by using the CRISPR/Cas9 system. In comparison to wild-type (WT) rats, serum urate levels spontaneously and persistently increased in UOX-KO rats, without showing a significant decrease in survival rate. Architecture and function of the kidneys in UOX-KO rats were impaired. Injury to the kidney resulted in increased interstitial fibrosis, macrophage infiltration, increased expression of NLRP3 and IL-1β, and activation of multiple cell-signaling pathways associated with autophagy, such as AMPK, p38 MAPK, ERK and JNK pathways. Inhibition of autophagy with the PI3K inhibitor 3-MA abrogated the development of kidney damage and attenuated renal fibrosis, macrophage infiltration, and expression of NLRP3 and IL-1β in injured kidneys. In conclusion, the UOX-KO rat is a great model to study hyperuricemia-related diseases. Hyperuricemia-induced autophagy and NLRP3-dependent inflammation are critically involved in the development of renal damage and, therefore, highlight the inhibition of autophagy and inflammation in search of therapeutic strategies to treat uric acid nephropathy.
Collapse
Affiliation(s)
- Mian Wu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215000, China
| | - Yiwen Ma
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Xiaoting Chen
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Nan Liang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
12
|
Hosoya T, Uchida S, Shibata S, Tomioka NH, Hosoyamada M. Perfecting a high hypoxanthine phosphoribosyltransferase activity-uricase KO mice to test the effects of purine- and non-purine-type xanthine dehydrogenase (XDH) inhibitors. Br J Pharmacol 2020; 177:2274-2285. [PMID: 31971609 PMCID: PMC7174878 DOI: 10.1111/bph.14978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Purine metabolism in mice and human differ in terms of uricase (Uox) activity as well as hypoxanthine phosphoribosyltransferase (HPRT) activity. The aim of this study was the establishment of high HPRT activity-Uox knockout (KO) mice as a novel hyperuricaemic model. Then to investigate the effects of purine-type xanthine dehydrogenase (XDH) inhibitor, allopurinol, and non-purine-type XDH inhibitor, topiroxostat, on purine metabolism. EXPERIMENTAL APPROACH A novel hyperuricaemic mouse model was established by mating B6-ChrXCMSM mice with uricase KO mice. The pharmacological effects of allopurinol and topiroxostat were explored by evaluating urate, hypoxanthine, xanthine and creatinine in the plasma and urine of these model mice. Furthermore, we analysed the effect of both drugs on erythrocyte hypoxanthine phosphoribosyltransferase activity. KEY RESULTS Plasma urate level and urinary urate/creatinine ratio significantly decreased after administration of allopurinol 30 mg·kg-1 or topiroxostat 1 mg·kg-1 for 7 days. The urate-lowering effect was equivalent for allopurinol and topiroxostat. However, the urinary hypoxanthine/creatinine ratio and xanthine/creatinine ratio after treatment with topiroxostat were significantly lower than for allopurinol. In addition, the urinary oxypurine/creatinine ratio was significantly lowered after treatment with topiroxostat, but allopurinol elicited no such effect. Furthermore, allopurinol inhibited mouse erythrocyte hypoxanthine phosphoribosyltransferase, while topiroxostat did not. CONCLUSIONS AND IMPLICATIONS High hypoxanthine phosphoribosyltransferase activity- uricase KO mice were established as a novel hyperuricaemic animal model. In addition, topiroxostat, a non-purine-type xanthine dehydrogenase inhibitor, elicited a potent plasma urate-lowering effect. However, unlike allopurinol, topiroxostat did not perturb the salvage pathway, resulting in lowered total oxypurine excretion.
Collapse
Affiliation(s)
- Takuji Hosoya
- Department of Human Physiology & Pathology, Faculty of Pharma‐ScienceTeikyo UniversityTokyoJapan
- Biological Research Department, Medical R&D DivisionFuji Yakuhin Co., Ltd.SaitamaJapan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal MedicineTeikyo University School of MedicineTokyoJapan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal MedicineTeikyo University School of MedicineTokyoJapan
| | - Naoko H. Tomioka
- Department of Human Physiology & Pathology, Faculty of Pharma‐ScienceTeikyo UniversityTokyoJapan
| | - Makoto Hosoyamada
- Department of Human Physiology & Pathology, Faculty of Pharma‐ScienceTeikyo UniversityTokyoJapan
| |
Collapse
|
13
|
Hosoyamada M, Tomioka NH, Ohtsubo T, Ichida K. Xanthine oxidoreductase knockout mice with high HPRT activity were not rescued by NAD + replenishment. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1465-1473. [PMID: 32126884 DOI: 10.1080/15257770.2020.1725044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although xanthinuria is nonfatal in human, xanthine oxidoreductase knockout (Xor-KO) mice have only a short lifespan. Hypoxanthine phosphoribosyltransferase activity (HPRT) in human and wild mice is higher than in laboratory mice. The aim of this study was to investigate the underlying mechanisms that give rise to the longer lifespan of high-HPRT/Xor-KO mice. Before Xor-KO mice die, urinary excretion of hypoxanthine increased with a corresponding decrease in excretion of xanthine. The switch of excretion from xanthine to hypoxanthine might be a cause of death for Xor-KO mice, suggesting inhibition of NAD+-dependent IMP dehydrogenase. Because hypoxanthine inhibits the synthesis of nicotinamide mononucleotide (NMN), a precursor of NAD+, the accumulation of hypoxanthine in Xor-KO mice may cause a depletion in the levels of NAD+. Moreover, urinary excretion of urate in high-HPRT/Uox-KO/Xor-KO mice means urate derived from gut microbiota is absorbed by the intestine. Likewise, over excretion of oxypurine in mice may be caused by intestinal absorption of oxypurine. For NAD+ replenishment, oral supplementation with 1% L-tryptophan, an alternative precursor of NAD+, resulted in a recovery of body weight gain in high-HPRT/Uox-KO/Xor-KO mice. In conclusion, the death of Xor-KO mice by renal failure seems to be caused by a depletion in NAD+ levels due to the intracellular accumulation of hypoxanthine. NAD+ replenishment by oral supplementation of NMN or tryptophan was complicated by the effect of gut microbiota and failed to rescue high-HPRT/Xor-KO mice. The attenuation of intestinal absorption of oxypurines seems to be necessary to avoid hypoxanthine accumulation and over excretion of oxypurine.
Collapse
Affiliation(s)
- Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Naoko H Tomioka
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Toshio Ohtsubo
- Department of Internal Medicine (Hypertension), Fukuoka Red Cross Hospital, Fukuoka, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
14
|
Lu J, Dalbeth N, Yin H, Li C, Merriman TR, Wei WH. Mouse models for human hyperuricaemia: a critical review. Nat Rev Rheumatol 2020; 15:413-426. [PMID: 31118497 DOI: 10.1038/s41584-019-0222-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyperuricaemia (increased serum urate concentration) occurs mainly in higher primates, including in humans, because of inactivation of the gene encoding uricase during primate evolution. Individuals with hyperuricaemia might develop gout - a painful inflammatory arthritis caused by monosodium urate crystal deposition in articular structures. Hyperuricaemia is also associated with common chronic diseases, including hypertension, chronic kidney disease, type 2 diabetes and cardiovascular disease. Many mouse models have been developed to investigate the causal mechanisms for hyperuricaemia. These models are highly diverse and can be divided into two broad categories: mice with genetic modifications (genetically induced models) and mice exposed to certain environmental factors (environmentally induced models; for example, pharmaceutical or dietary induction). This Review provides an overview of the mouse models of hyperuricaemia and the relevance of these models to human hyperuricaemia, with an emphasis on those models generated through genetic modifications. The challenges in developing and comparing mouse models of hyperuricaemia and future research directions are also outlined.
Collapse
Affiliation(s)
- Jie Lu
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.,Shandong Provincial Key Laboratory of Metabolic Diseases, Department of Endocrinology and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Huiyong Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), CAS, Shanghai, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Diseases, Department of Endocrinology and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Wen-Hua Wei
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
15
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
16
|
Johnson TA, Jinnah HA, Kamatani N. Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Front Pharmacol 2019; 10:98. [PMID: 30837873 PMCID: PMC6390775 DOI: 10.3389/fphar.2019.00098] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in cellular-energy associated genes have been shown to lead to various monogenic disorders. Notably, mitochondrial disorders often impact skeletal muscle, brain, liver, heart, and kidneys, which are the body’s top energy-consuming organs. However, energy-related dysfunctions have not been widely seen as causes of common diseases, although evidence points to such a link for certain disorders. During acute energy consumption, like extreme exercise, cells increase the favorability of the adenylate kinase reaction 2-ADP -> ATP+AMP by AMP deaminase degrading AMP to IMP, which further degrades to inosine and then to purines hypoxanthine -> xanthine -> urate. Thus, increased blood urate levels may act as a barometer of extreme energy consumption. AMP deaminase deficient subjects experience some negative effects like decreased muscle power output, but also positive effects such as decreased diabetes and improved prognosis for chronic heart failure patients. That may reflect decreased energy consumption from maintaining the pool of IMP for salvage to AMP and then ATP, since de novo IMP synthesis requires burning seven ATPs. Similarly, beneficial effects have been seen in heart, skeletal muscle, or brain after treatment with allopurinol or febuxostat to inhibit xanthine oxidoreductase, which catalyzes hypoxanthine -> xanthine and xanthine -> urate reactions. Some disorders of those organs may reflect dysfunction in energy-consumption/production, and the observed beneficial effects related to reinforcement of ATP re-synthesis due to increased hypoxanthine levels in the blood and tissues. Recent clinical studies indicated that treatment with xanthine oxidoreductase inhibitors plus inosine had the strongest impact for increasing the pool of salvageable purines and leading to increased ATP levels in humans, thereby suggesting that this combination is more beneficial than a xanthine oxidoreductase inhibitor alone to treat disorders with ATP deficiency.
Collapse
Affiliation(s)
| | - H A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
17
|
Auberson M, Stadelmann S, Stoudmann C, Seuwen K, Koesters R, Thorens B, Bonny O. SLC2A9 (GLUT9) mediates urate reabsorption in the mouse kidney. Pflugers Arch 2018; 470:1739-1751. [PMID: 30105595 PMCID: PMC6224025 DOI: 10.1007/s00424-018-2190-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Uric acid (UA) is a metabolite of purine degradation and is involved in gout flairs and kidney stones formation. GLUT9 (SLC2A9) was previously shown to be a urate transporter in vitro. In vivo, humans carrying GLUT9 loss-of-function mutations have familial renal hypouricemia type 2, a condition characterized by hypouricemia, UA renal wasting associated with kidney stones, and an increased propensity to acute renal failure during strenuous exercise. Mice carrying a deletion of GLUT9 in the whole body are hyperuricemic and display a severe nephropathy due to intratubular uric acid precipitation. However, the precise role of GLUT9 in the kidney remains poorly characterized. We developed a mouse model in which GLUT9 was deleted specifically along the whole nephron in a tetracycline-inducible manner (subsequently called kidney-inducible KO or kiKO). The urate/creatinine ratio was increased as early as 4 days after induction of the KO and no GLUT9 protein was visible on kidney extracts. kiKO mice are morphologically identical to their wild-type littermates and had no spontaneous kidney stones. Twenty-four-hour urine collection revealed a major increase of urate urinary excretion rate and of the fractional excretion of urate, with no difference in urate concentration in the plasma. Polyuria was observed, but kiKO mice were still able to concentrate urine after water restriction. KiKO mice displayed lower blood pressure accompanied by an increased heart rate. Overall, these results indicate that GLUT9 is a crucial player in renal handling of urate in vivo and a putative target for uricosuric drugs.
Collapse
Affiliation(s)
- Muriel Auberson
- Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1011, Lausanne, Switzerland
| | - Sophie Stadelmann
- Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1011, Lausanne, Switzerland
| | - Candice Stoudmann
- Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1011, Lausanne, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | | | - Bernard Thorens
- Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1011, Lausanne, Switzerland. .,Service of Nephrology, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
18
|
Sanchez-Niño MD, Zheng-Lin B, Valiño-Rivas L, Sanz AB, Ramos AM, Luño J, Goicoechea M, Ortiz A. Lesinurad: what the nephrologist should know. Clin Kidney J 2017; 10:679-687. [PMID: 28979780 PMCID: PMC5622894 DOI: 10.1093/ckj/sfx036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/06/2023] Open
Abstract
Lesinurad is an oral inhibitor of the monocarboxylic/urate transporter URAT1 encoded by the SLC22A12 gene. Market authorization was granted in February 2016 in Europe and December 2015 in the USA. As a potentially nephrotoxic uricosuric drug acting on the kidney, nephrologists should become familiar with its indications and safety profile. The approved indication is treatment of gout in combination with a xanthine oxidase (XO) inhibitor in adult patients who have not achieved target serum uric acid levels with an XO inhibitor alone. It is not indicated for asymptomatic hyperuricaemia or for patients with estimated creatinine clearance <45 mL/min. The only authorized daily dose is 200 mg and cannot be exceeded because of the nephrotoxicity risk. Nephrotoxicity is thought to be related to uricosuria. At the 200 mg/day dose, serum creatinine more than doubled in 1.8% of lesinurad patients (versus 0% in placebo) and in 11% of these it was not reversible. In addition, it is subject to a risk management plan given the potential association with cardiovascular events. In randomized clinical trials, the association of lesinurad with either allopurinol or febuxostat achieved a greater reduction in serum uric acid (∼1 mg/dL lower) than the XO inhibitors alone, and this allowed the serum uric acid target to be met in a higher proportion of patients, which was the primary endpoint. However, no clinical differences were observed in gout flares or tophi, although these were not the primary endpoints.
Collapse
Affiliation(s)
- Maria Dolores Sanchez-Niño
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
- REDINREN, Madrid, Spain
| | - Binbin Zheng-Lin
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
| | - Lara Valiño-Rivas
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ana Belen Sanz
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian Mario Ramos
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
- REDINREN, Madrid, Spain
| | - Jose Luño
- REDINREN, Madrid, Spain
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marian Goicoechea
- REDINREN, Madrid, Spain
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Fundacion Renal Iñigo Alvarez de Toledo (FRIAT), Madrid, Spain
- REDINREN, Madrid, Spain
| |
Collapse
|