1
|
Huang M, Hou C, Zhang Q, Yao D, Hu S, Wang G, Gao S. Tissue-specific accumulation, depuration and histopathological effects of 3,6-dichlorocarbazole and 2,7-dibromocarbazole in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106803. [PMID: 38103395 DOI: 10.1016/j.aquatox.2023.106803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Although polyhalogenated carbazoles have been detected with increasing frequency in aquatic ecosystems, their bioaccumulation in fish and corresponding pathological effects related to bioaccumulation are still unclear. Here, we investigated the tissue-specific accumulation, depuration, and histopathological effects of two typical PHCZs, 3,6-dichlorocarbazole (36-CCZ) and 2,7-dibromocarbazole (27-BCZ), in adult zebrafish at three levels (0, 0.15 μg/L (5 × environmentally relevant level), and 50 μg/L (1/10 LC50). The lowest concentrations of 36-CCZ (1.2 μg/g ww) and 27-BCZ (1.4 μg/g ww) were observed in muscle, and the greatest concentrations of 36-CCZ (3.6 μg/g ww) and 27-BCZ (4 μg/g ww) were detected in intestine among the tested tissues. BCFww of 36-CCZ and 27-BCZ in zebrafish ranged from 172.9 (muscle) to 606.6 (intestine) and 285.2 (muscle) to 987.5 (intestine), respectively, indicating that both 36-CCZ and 27-BCZ have high potential of bioaccumulation in aquatic system. The 0.15 μg/L level of 36-CCZ or 27-BCZ caused lipid accumulation in liver, while 50 μg/L of 36-CCZ or 27-BCZ induced liver lesions such as fibrous septa, cytolysis, and nuclear dissolution. Brain damage such as multinucleated cells and nuclear solidification were only observed at 50 μg/L of 27-BCZ. This study provided valuable information in assessing the health and ecological risks of 36-CCZ and 27-BCZ.
Collapse
Affiliation(s)
- Mengyao Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunchuang Hou
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qiaoyun Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dunfan Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shengchao Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Guowei Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Sex Dependent Action of Aroclor 1254 on Basal and sGnRHa-Stimulated Secretion of LH from the Pituitary Cells of Common Carp, Cyprinus carpio L. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Polychlorinated biphenyls (PCBs) affect the hypothalamic-pituitary-gonadal axis in many vertebrates, changing the hormonal regulation of reproduction. To identify one of the possible sites of action of PCBs on gonadotropin release in common carp, the direct effects of Aroclor 1254 on luteinizing hormone (LH) secretion from dispersed pituitary cells were investigated. Pituitary cells were obtained from sexually mature male and female common carp (Cyprinus carpio L.) at the time of natural spawning. The cells were incubated with different concentrations of Aroclor 1254 (5, 10, 50 and 100 ng mL–1 medium) and/or salmon gonadotropin-releasing hormone analogue (sGnRHa) at a concentration of 10−8 M. LH levels were measured in the cultured medium by the ELISA method after 10 hours of cell incubation. Incubation of male pituitary cells in the presence of tested concentrations of Aroclor did not change the basal LH secretion to the media. In the female pituitary cell incubations Aroclor (5, 10 and 100 ng mL–1 medium) caused a significant increase in LH concentrations in comparison to control incubations. In the case of sGnRHastimulated LH secretion in incubations of cells of both sexes, all the concentrations of Aroclor significantly stimulated LH release and potentiated stimulatory effects of sGnRH analogue. These results indicate that endocrine disrupters, such as Aroclor 1254, may affect reproduction in fish, acting also directly on gonadotrophs at the level of the pituitary gland, changing LH secretion.
Collapse
|
3
|
Karlsson O, Svanholm S, Eriksson A, Chidiac J, Eriksson J, Jernerén F, Berg C. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145771. [PMID: 33621874 PMCID: PMC7615066 DOI: 10.1016/j.scitotenv.2021.145771] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Underlying drivers of species extinctions need to be better understood for effective conservation of biodiversity. Nearly half of all amphibian species are at risk of extinction, and pollution may be a significant threat as seasonal high-level agrochemical use overlaps with critical windows of larval development. The potential of environmental chemicals to reduce the fitness of future generations may have profound ecological and evolutionary implications. This study characterized effects of male developmental exposure to environmentally relevant concentrations of the anti-androgenic pesticide linuron over two generations of offspring in Xenopus tropicalis frogs. The adult male offspring of pesticide-exposed fathers (F1) showed reduced body size, decreased fertility, and signs of endocrine system disruption. Impacts were further propagated to the grand-offspring (F2), providing evidence of transgenerational effects in amphibians. The adult F2 males demonstrated increased weight and fat body palmitoleic-to-palmitic acid ratio, and decreased plasma glucose levels. The study provides important cross-species evidence of paternal epigenetic inheritance and pollutant-induced transgenerational toxicity, supporting a causal and complex role of environmental contamination in the ongoing species extinctions, particularly of amphibians.
Collapse
Affiliation(s)
- Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm 114 18, Sweden.
| | - Sofie Svanholm
- Department of Environmental Toxicology, Evolutionary Biology Centre (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Andreas Eriksson
- Department of Environmental Toxicology, Evolutionary Biology Centre (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Joseph Chidiac
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Johanna Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Fredrik Jernerén
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Evolutionary Biology Centre (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
4
|
Curtean-Bănăduc A, Burcea A, Mihuţ CM, Berg V, Lyche JL, Bănăduc D. Bioaccumulation of persistent organic pollutants in the gonads of Barbus barbus (Linnaeus, 1758). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110852. [PMID: 32554204 DOI: 10.1016/j.ecoenv.2020.110852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Maps with grey or even white spaces are still present in spite of the fact that persistent organic pollutants (POPs) are at the forefront of research in aquatic toxicology and environmental safety. This is also the case for the Mureș River basin. The intensive use of industrial substances such as polychlorinated biphenyls (PCBs) and pesticides such as organochlorine compounds (OCPs) has caused global contamination of the aquatic environment. In our study we have found very high concentrations of both PCBs (2110-169,000 ng/g lipid weight ΣPCB, 1950-166,000 ng/g lipid weight ΣPCB7) and OCPs (1130-7830 ng/g lipid weight ΣDDT, 47.6-2790 ng/g lipid weight ΣHCH, 5.53-35.6 ng/g lipid weight ΣChlordane, and 6.74-158 ng/g lipid weight HCB) in the gonad tissue of Barbus barbus (Linnaeus, 1758) males and females. Contrary to most studies where the weight, length, and lipid percentage are positively correlated with the concentration of POPs from different tissue types, we observed a downward trend for the lipid normalized concentrations of some pollutants in gonads while these indices were actually increasing. The decrease of lipid normalized POPs with the increase of CF and lipid percentage may be due to the fact that individuals are eliminating hard and soft roes every year during reproduction which could mean that some quantities of pollutants are also eliminated along with the hard and soft roes. The high POPs concentrations found in our study should be a needed wakeup call for environmentalists and a starting point in developing monitoring and management measures for these pollutants.
Collapse
Affiliation(s)
- Angela Curtean-Bănăduc
- "Lucian Blaga" University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, Sibiu, Romania.
| | - Alexandru Burcea
- "Lucian Blaga" University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, Sibiu, Romania.
| | - Claudia-Maria Mihuţ
- "Lucian Blaga" University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, Sibiu, Romania.
| | - Vidar Berg
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Department of Food Safety and Infection Biology, Oslo, Norway.
| | - Jan Ludvig Lyche
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Department of Food Safety and Infection Biology, Oslo, Norway.
| | - Doru Bănăduc
- "Lucian Blaga" University of Sibiu, Faculty of Sciences, Applied Ecology Research Center, Sibiu, Romania.
| |
Collapse
|
5
|
Rojas-Hucks S, Gutleb AC, González CM, Contal S, Mehennaoui K, Jacobs A, Witters HE, Pulgar J. Xenopus laevis as a Bioindicator of Endocrine Disruptors in the Region of Central Chile. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:390-408. [PMID: 31422435 DOI: 10.1007/s00244-019-00661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
One of the direct causes of biodiversity loss is environmental pollution resulting from the use of chemicals. Different kinds of chemicals, such as persistent organic pollutants and some heavy metals, can be endocrine disruptors, which act at low doses over a long period of time and have a negative effect on the reproductive and thyroid system in vertebrates worldwide. Research on the effects of endocrine disruptors and the use of bioindicators in neotropical ecosystems where pressure on biodiversity is high is scarce. In Chile, although endocrine disruptors have been detected at different concentrations in the environments of some ecosystems, few studies have been performed on their biological effects in the field. In this work, Xenopus laevis (African clawed frog), an introduced species, is used as a bioindicator for the presence of endocrine disruptors in aquatic systems with different degrees of contamination in a Mediterranean zone in central Chile. For the first time for Chile, alterations are described that can be linked to exposure to endocrine disruptors, such as vitellogenin induction, decreased testosterone in male frogs, and histological changes in gonads. Dioxin-like and oestrogenic activity was detected in sediments at locations where it seem to be related to alterations found in the frogs. In addition, an analysis of land use/cover use revealed that urban soil was the best model to explain the variations in frog health indicators. This study points to the usefulness of an invasive species as a bioindicator for the presence of endocrine-disruptive chemicals.
Collapse
Affiliation(s)
- Sylvia Rojas-Hucks
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile.
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carlos M González
- Escuela de Medicina Veterinaria, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg
| | - An Jacobs
- Department Environmental Health and Risk, Team Applied Bio and Molecular Sciences (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Hilda E Witters
- Department Environmental Health and Risk, Team Applied Bio and Molecular Sciences (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| |
Collapse
|
6
|
Espinosa Ruiz C, Manuguerra S, Cuesta A, Esteban MA, Santulli A, Messina CM. Sub-lethal doses of polybrominated diphenyl ethers affect some biomarkers involved in energy balance and cell cycle, via oxidative stress in the marine fish cell line SAF-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:1-10. [PMID: 30797971 DOI: 10.1016/j.aquatox.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent contaminants which are found all over the world in the marine environment. Sparus aurata fibroblast cell line (SAF-1) was exposed to increasing concentrations of PBDEs 47 and 99, until 72 h to evaluate the cytotoxicity, reactive oxygen species (ROS) production and the expression of some selected molecular markers related to cell cycle, cell signaling, energetic balance and oxidative stress (p53, erk-1, hif-1α and nrf-2), by real-time PCR. Furthermore, SAF-1 cells were exposed for 7 and 15 days to sub-lethal concentrations, in order to evaluate the response of some biomarkers by immunoblotting (p53, ERK-1, AMPK, HIF-1α and NRF-2). After 48 and 72 h, the cells showed a significant decrease of cell vitality as well as an increase of intracellular ROS production. Gene expression analysis showed that sub-lethal concentrations of BDE-99 and 47, after 72 h, up-regulated cell cycle and oxidative stress biomarkers, although exposure to 100 μmol L-1 down-regulated the selected markers related to cell cycle, cell signaling, energetic balance. After 7 and 15 days of sub-lethal doses exposure, all the analyzed markers resulted affected by the contaminants. Our results suggest that PBDEs influence the cells homeostasis first of all via oxidative stress, reducing the cell response and defense capacity and affecting its energetic levels. This situation of stress and energy imbalance could represents a condition that, modifying some of the analyzed biochemical pathways, would predispose to cellular transformation.
Collapse
Affiliation(s)
- Cristobal Espinosa Ruiz
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Andrea Santulli
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| | - Concetta M Messina
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy.
| |
Collapse
|
7
|
Li DL, Huang YJ, Gao S, Chen LQ, Zhang ML, Du ZY. Sex-specific alterations of lipid metabolism in zebrafish exposed to polychlorinated biphenyls. CHEMOSPHERE 2019; 221:768-777. [PMID: 30684774 DOI: 10.1016/j.chemosphere.2019.01.094] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 05/20/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) mixtures exerting environmental health risk. In mammals, PCBs have been shown to disrupt metabolic state, especially lipid metabolism, and energy balance, but their effects on lipid metabolism in fish are largely unknown. The zebrafish were selected as model and both male and female adult zebrafish were exposed to different concentrations of PCBs at gradient concentrations of 0.2, 2.0 and 20.0 μg/L for 6 weeks. PCB exposure did not affect survival, but a significant inhibition of growth was observed in the males after exposure to 20.0 μg/L. The lower concentrations of 0.2 and 2.0 μg/L increased hepatic lipid accumulation to a greater extent in male fish, but the higher concentration of 20.0 μg/L did not cause significant fat accumulation in either male or female fish. In males, the expression of genes related to lipogenesis and lipid catabolism was upregulated in a concentration-dependent manner in the liver and visceral mass without liver and gonad; the effects of exposure on lipid metabolism-related genes in female fish were less pronounced. PCB exposure did not induce significant oxidative stress, but did upregulate the expression of stress- and apoptosis-related genes, mostly in male fish. The low concentrations of PCBs (0.2 μg/L and 2.0 μg/L) exerted sex-specific effects on zebrafish lipid metabolism, and male fish were more sensitive to the exposure. This study provides new mechanistic insights into the complex interactions between PCBs, lipid metabolism, and sex in zebrafish, and may contribute to a future systematic assessment of the effects of PCBs on aquatic ecosystems.
Collapse
Affiliation(s)
- Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yu-Juan Huang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Shuang Gao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
8
|
Qiu X, Iwasaki N, Chen K, Shimasaki Y, Oshima Y. Tributyltin and perfluorooctane sulfonate play a synergistic role in promoting excess fat accumulation in Japanese medaka (Oryzias latipes) via in ovo exposure. CHEMOSPHERE 2019; 220:687-695. [PMID: 30605811 DOI: 10.1016/j.chemosphere.2018.12.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The ubiquitous environmental obesogens tributyltin (TBT) and perfluorooctane sulfonate (PFOS) may accumulate in parent and be transferred to their offspring, resulting in trans-generational adverse effects. In this study, we investigated the combined toxic and obesogenic effects of TBT and PFOS on the early life stages of Japanese medaka (Oryzias latipes). In ovo nanoinjection was used to simulate the maternal transfer process. Doses were controlled at 0, 0.05, 0.5, and 2.5 ng/egg (TBT) and at 0, 0.05, 0.5, and 5.0 ng/egg (PFOS), with a full factorial design for mixture formulations. Relatively high doses of agents in mixtures were needed to induce significant mortality (TBT ≥ 0.5 ng/egg) or delayed hatching (PFOS = 5.0 ng/egg) of embryos. The interaction between TBT and PFOS in mixtures had significant effects on the observed hatching delay, but not on acute mortality. Compared with controls, separate exposure to TBT (or PFOS) notably elevated adipose areas at the doses of 0.05 and 0.5 ng/egg, but not at the highest doses. Combined exposure significantly promoted the fat accumulation in newly hatched larvae, even when the doses of TBT and PFOS were both at the levels that did not show obesogenic effect. The interactive effect of TBT and PFOS could aggravate the total obesogenic effect of their mixtures, indicating a synergistic interaction. These results highlight the importance of paying close attention to interaction effects when addressing the impacts of mixtures of environmental obesogens.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Naoto Iwasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
9
|
Oxidative Stress, Induced by Sub-Lethal Doses of BDE 209, Promotes Energy Management and Cell Cycle Modulation in the Marine Fish Cell Line SAF-1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030474. [PMID: 30736298 PMCID: PMC6388118 DOI: 10.3390/ijerph16030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022]
Abstract
The effects of sub-lethal doses of polybrominated diphenyl ether (PBDE)-209 in terms of toxicity, oxidative stress, and biomarkers were evaluated in the Sparus aurata fibroblast cell line (SAF-1). Vitality and oxidative stress status were studied after incubation with PBDE for 72 h. Concomitantly, the quantification of proteins related to cell cycle and DNA repair (p53), cell proliferation (extracellular signal–regulated kinase 1 (ERK1)), energetic restriction (hypoxia-inducible factor 1 (HIF1)), and redox status (Nuclear factor erythroid 2–related factor 2 (NRF2)) was also determined after prolonged exposure (7–15 days) by immunoblotting. Our results demonstrated that rising concentrations of PBDEs exposure-induced oxidative stress, and that this event modulates different cell pathways related to cell cycle, cell signaling, and energetic balance in the long term, indicating the negative impact of sub-lethal dose exposure to cell homeostasis.
Collapse
|
10
|
Horri K, Alfonso S, Cousin X, Munschy C, Loizeau V, Aroua S, Bégout ML, Ernande B. Fish life-history traits are affected after chronic dietary exposure to an environmentally realistic marine mixture of PCBs and PBDEs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:531-545. [PMID: 28830046 DOI: 10.1016/j.scitotenv.2017.08.083] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that have been shown to affect fish life-history traits such as reproductive success, growth and survival. At the individual level, their toxicity and underlying mechanisms of action have been studied through experimental exposure. However, the number of experimental studies approaching marine environmental situations is scarce, i.e., in most cases, individuals are exposed to either single congeners, or single types of molecules, or high concentrations, so that results can hardly be transposed to natural populations. In the present study, we evaluated the effect of chronic dietary exposure to an environmentally realistic marine mixture of PCB and PBDE congeners on zebrafish life-history traits from larval to adult stage. Exposure was conducted through diet from the first meal and throughout the life cycle of the fish. The mixture was composed so as to approach environmentally relevant marine conditions in terms of both congener composition and concentrations. Life-history traits of exposed fish were compared to those of control individuals using several replicate populations in each treatment. We found evidence of slower body growth, but to a larger asymptotic length, and delayed spawning probability in exposed fish. In addition, offspring issued from early spawning events of exposed fish exhibited a lower larval survival under starvation condition. Given their strong dependency on life-history traits, marine fish population dynamics and associated fisheries productivity for commercial species could be affected by such individual-level effects of PCBs and PBDEs on somatic growth, spawning probability and larval survival.
Collapse
Affiliation(s)
- Khaled Horri
- Ifremer, Laboratoire Ressources Halieutiques, Centre Manche Mer du Nord, 150 quai Gambetta, F-62200 Boulogne-sur-mer, France; UMR-I 02 SEBIO, INERIS, URCA, ULH, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063 Le Havre Cedex, France.
| | - Sébastien Alfonso
- Ifremer, Laboratoire Ressources Halieutiques, Station de La Rochelle, Place Gaby Coll, BP7, F-17137 L'Houmeau, France
| | - Xavier Cousin
- UMR MARBEC, IFREMER, IRD, UM2, CNRS, Laboratoire Adaptation et Adaptabilités des Animaux et des Systèmes, Route de Maguelone, F-34250 Palavas, France; INRA, UMR GABI, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Catherine Munschy
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes Cedex 3, France
| | - Véronique Loizeau
- Ifremer, Laboratoire Biogéochimie des Contaminants Organiques, Centre Bretagne, ZI Pointe du Diable, CS 10070, F-29280 Plouzané, France
| | - Salima Aroua
- UMR-I 02 SEBIO, INERIS, URCA, ULH, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063 Le Havre Cedex, France
| | - Marie-Laure Bégout
- Ifremer, Laboratoire Ressources Halieutiques, Station de La Rochelle, Place Gaby Coll, BP7, F-17137 L'Houmeau, France
| | - Bruno Ernande
- Ifremer, Laboratoire Ressources Halieutiques, Centre Manche Mer du Nord, 150 quai Gambetta, F-62200 Boulogne-sur-mer, France
| |
Collapse
|
11
|
Capitão A, Lyssimachou A, Castro LFC, Santos MM. Obesogens in the aquatic environment: an evolutionary and toxicological perspective. ENVIRONMENT INTERNATIONAL 2017; 106:153-169. [PMID: 28662399 DOI: 10.1016/j.envint.2017.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 05/24/2023]
Abstract
The rise of obesity in humans is a major health concern of our times, affecting an increasing proportion of the population worldwide. It is now evident that this phenomenon is not only associated with the lack of exercise and a balanced diet, but also due to environmental factors, such as exposure to environmental chemicals that interfere with lipid homeostasis. These chemicals, also known as obesogens, are present in a wide range of products of our daily life, such as cosmetics, paints, plastics, food cans and pesticide-treated food, among others. A growing body of evidences indicates that their action is not limited to mammals. Obesogens also end up in the aquatic environment, potentially affecting its ecosystems. In fact, reports show that some environmental chemicals are able to alter lipid homeostasis, impacting weight, lipid profile, signaling pathways and/or protein activity, of several taxa of aquatic animals. Such perturbations may give rise to physiological disorders and disease. Although largely unexplored from a comparative perspective, the key molecular components implicated in lipid homeostasis have likely appeared early in animal evolution. Therefore, it is not surprising that the obesogen effects are found in other animal groups beyond mammals. Collectively, data indicates that suspected obesogens impact lipid metabolism across phyla that have diverged over 600 million years ago. Thus, a consistent link between environmental chemical exposure and the obesity epidemic has emerged. This review aims to summarize the available information on the effects of putative obesogens in aquatic organisms, considering the similarities and differences of lipid homeostasis pathways among metazoans, thus contributing to a better understanding of the etiology of obesity in human populations. Finally, we identify the knowledge gaps in this field and we set future research priorities.
Collapse
Affiliation(s)
- Ana Capitão
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal..
| | - Angeliki Lyssimachou
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal..
| | - Miguel M Santos
- CIMAR/CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal..
| |
Collapse
|
12
|
Lyche JL, Grześ IM, Karlsson C, Nourizadeh-Lillabadi R, Aleström P, Ropstad E. Parental exposure to natural mixtures of persistent organic pollutants (POP) induced changes in transcription of apoptosis-related genes in offspring zebrafish embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:602-611. [PMID: 27484141 DOI: 10.1080/15287394.2016.1171991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Apoptosis is an integral element of development that may also be initiated by environmental contaminants. The aim of the present study was to assess potential changes in the regulation of apoptotic genes in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POP). The mixture from Lake Mjøsa contained exceptionally high concentrations of polybrominated diphenyl ethers (PBDE), as well as relatively high levels of polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT). The mixture from Lake Losna contained background concentrations of POP. Genes involved in the apoptotic machinery were screened for their expression profile at four time points during embryonic development. Thirteen and 15 genes involved in apoptosis were found to be significantly upregulated in the high-exposure and background exposure groups, respectively, compared with controls. Modulation of apoptotic genes was restricted only to the first time point, which corresponds with the blastula stage. Although there were substantial differences in POP concentrations between mixtures, genes underlying the apoptosis process showed almost similar responses to the two mixtures. In both exposure groups the main executors of apoptosis p53, casp 2, casp 6, cassp 8, and BAX displayed upregulation compared to controls, suggesting that these POP induce apoptosis via a p53-dependent mechanism. Upregulation of genes that play a critical role in apoptosis suggests that disturbance of normal apoptotic signaling during gametogenesis and embryogenesis may be one of the central mechanisms involved in adverse reproductive effects produced by POP in zebrafish.
Collapse
Affiliation(s)
- Jan L Lyche
- a Department of Food Safety and Infection Biology , Norwegian University of Life Science , Oslo , Norway
| | - Irena M Grześ
- b Institute of Environmental Sciences , Jagiellonian Uniwersity , Kraków , Poland
- c Department of Zoology and Ecology , University of Agriculture , Kraków , Poland
| | - Camilla Karlsson
- d Department of Production Animal Clinical Science , Norwegian University of Life Science , Oslo , Norway
| | - Rasoul Nourizadeh-Lillabadi
- e Department of Basic Sciences and Aquatic Medicine , Norwegian School of Veterinary Science , Oslo , Norway
| | - Peter Aleström
- e Department of Basic Sciences and Aquatic Medicine , Norwegian School of Veterinary Science , Oslo , Norway
| | - Erik Ropstad
- d Department of Production Animal Clinical Science , Norwegian University of Life Science , Oslo , Norway
| |
Collapse
|
13
|
Berg V, Kraugerud M, Nourizadeh-Lillabadi R, Olsvik PA, Skåre JU, Alestrøm P, Ropstad E, Zimmer KE, Lyche JL. Endocrine effects of real-life mixtures of persistent organic pollutants (POP) in experimental models and wild fish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:538-548. [PMID: 27484136 DOI: 10.1080/15287394.2016.1171980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of studies have assessed the occurrence, levels, and potential adverse effects of persistent organic pollutants (POP) in fish from Lake Mjøsa. In this lake, high levels of various POP were detected in biota. Fish from the nearby Lake Losna contain background levels of POP and served as reference (controls) in these studies. Significantly higher prevalence of mycobacteriosis and pathological changes were documented in burbot (Lota lota) from Mjøsa compared to burbot from Losna. Further, transcriptional profiling identified changes in gene expression in burbot from Mjøsa compared to burbot from Losna associated with drug metabolism enzymes and oxidative stress. POP extracted from burbot liver oil from the two lakes was used to expose zebrafish (Danio rerio) during two consecutive generations. During both generations, POP mixtures from both lakes increased the rate of mortality, induced earlier onset of puberty, and skewed sex ratio toward males. However, opposite effects on weight gain were found in exposure groups compared to controls during the two generations. Exposure to POP from both lakes was associated with suppression of ovarian follicle development. Analyses of genome-wide transcription profiling identified functional networks of genes associated with weight homeostasis, steroid hormone functions, and insulin signaling. In human cell studies using adrenocortical H295R and primary porcine theca and granulosa cells, exposure to lake extracts from both populations modulated steroid hormone production with significant difference from controls. The results suggest that POP from both lakes may possess the potential to induce endocrine disruption and may adversely affect health in wild fish.
Collapse
Affiliation(s)
- Vidar Berg
- a Department of Food Safety and Infection Biology , Norwegian University of Life Sciences , Oslo , Norway
| | - Marianne Kraugerud
- b Department of Basic Sciences and Aquatic Medicine , Norwegian University of Life Sciences , Oslo , Norway
| | | | - Pål A Olsvik
- c National Institute of Nutrition and Seafood Research , Bergen , Norway
| | | | - Peter Alestrøm
- b Department of Basic Sciences and Aquatic Medicine , Norwegian University of Life Sciences , Oslo , Norway
| | - Erik Ropstad
- e Department of Production Animal Clinical Sciences , Norwegian University of Life Sciences , Oslo , Norway
| | - Karin Elisabeth Zimmer
- b Department of Basic Sciences and Aquatic Medicine , Norwegian University of Life Sciences , Oslo , Norway
| | - Jan L Lyche
- a Department of Food Safety and Infection Biology , Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
14
|
Manciocco A, Calamandrei G, Alleva E. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach. CHEMOSPHERE 2014; 100:1-7. [PMID: 24480426 DOI: 10.1016/j.chemosphere.2013.12.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 05/28/2023]
Abstract
Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions.
Collapse
Affiliation(s)
- Arianna Manciocco
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche, Via Ulisse Aldrovandi 16/b, 00197 Rome, Italy.
| | - Gemma Calamandrei
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Enrico Alleva
- Behavioural Neuroscience Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
15
|
Corrales J, Thornton C, White M, Willett KL. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:16-26. [PMID: 24440964 PMCID: PMC3940271 DOI: 10.1016/j.aquatox.2013.12.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 05/06/2023]
Abstract
In the aquatic environment, adverse outcomes from dietary polycyclic aromatic hydrocarbon (PAH) exposure are poorly understood, and multigenerational developmental effects following exposure to PAHs are in need of exploration. Benzo[a]pyrene (BaP), a model PAH, is a recognized carcinogen and endocrine disruptor. Here adult zebrafish (F0) were fed 0, 10, 114, or 1,012 μg BaP/g diet at a feed rate of 1% body weight twice/day for 21 days. Eggs were collected and embryos (F1) were raised to assess mortality and time to hatch at 24, 32, 48, 56, 72, 80, and 96 h post fertilization (hpf) before scoring developmental deformities at 96 hpf. F1 generation fish were raised to produce the F2 generation followed by the F3 and F4 generations. Mortality significantly increased in the higher dose groups of BaP (2.3 and 20 μg BaP/g fish) in the F1 generation while there were no differences in the F2, F3, or F4 generations. In addition, premature hatching was observed among the surviving fish in the higher dose of the F1 generation, but no differences were found in the F2 and F3 generations. While only the adult F0 generation was BaP-treated, this exposure resulted in multigenerational phenotypic impacts on at least two generations (F1 and F2). Body morphology deformities (shape of body, tail, and pectoral fins) were the most severe abnormality observed, and these were most extreme in the F1 generation but still present in the F2 but not F3 generations. Craniofacial structures (length of brain regions, size of optic and otic vesicles, and jaw deformities), although not significantly affected in the F1 generation, emerged as significant deformities in the F2 generation. Future work will attempt to molecularly anchor the persistent multigenerational phenotypic deformities noted in this study caused by BaP exposure.
Collapse
Affiliation(s)
- Jone Corrales
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mallory White
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Kristine L Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
16
|
Nunes E, Cavaco A, Carvalho C. Exposure assessment of pregnant Portuguese women to methylmercury through the ingestion of fish: cross-sectional survey and biomarker validation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:133-142. [PMID: 24555654 DOI: 10.1080/15287394.2014.867200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Methylmercury (MeHg) contamination is a critical public health problem in Portugal, where fish is an important component of the daily diet. The Portuguese are the third largest consumers in the world (after Japan and Iceland) but first in Europe. Prenatal exposure to MeHg is believed to be linked to fetal/child neurodevelopment and behavioral impairments due to the neurotoxicity of the compound. The objective of this study was to assess the exposure of pregnant Portuguese women to mercury (Hg) due to fish consumption, calculating the indices of risk and confirming exposure through analyses of a biomarker of exposure. The study consisted of a cross-sectional evaluation of 343 pregnant women recruited at their visit to two antenatal care units in Lisbon, Portugal. A food frequency questionnaire was used to estimate prenatal exposure. Total Hg levels in hair were analyzed by atomic absorption, in samples from 186 women. The average fish consumption was 3.1 meals per week. Median Hg level in the hair was 1.26 μg/g (range: 0.07-5.3 μg/g). The mean calculated risk index was 0.81; however, 28% of the pregnant women ingested levels above the provisional tolerable weekly intake (PTWI) level recommended by the World Health Organization (WHO; 1.6 mg/kg per body weight), indicating the possibility of risk due to MeHg exposure. Multiple linear regression analysis showed the risk index was reliably predicted from predatory fish species and number of fish meals consumed per week. Ingestion of black and silver scabbard fish as well as mixed predatory fish cooked in traditional dishes enhanced the toxicity risk. In conclusion, some exposure levels exceeded the reference value; therefore, nutritional counseling needs to be provided to populations at risk.
Collapse
Affiliation(s)
- Elisabete Nunes
- a Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa Av. Prof. Gama Pinto , 1649-003 , Lisboa , Portugal
| | | | | |
Collapse
|
17
|
Péan S, Daouk T, Vignet C, Lyphout L, Leguay D, Loizeau V, Bégout ML, Cousin X. Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring. Neurotoxicol Teratol 2013; 39:45-56. [PMID: 23851001 DOI: 10.1016/j.ntt.2013.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The use of polychlorinated biphenyls (PCBs) has been banned for several decades. PCBs have a long biological half-life and high liposolubility which leads to their bioaccumulation and biomagnification through food chains over a wide range of trophic levels. Exposure can lead to changes in animal physiology and behavior and has been demonstrated in both experimental and field analyses. There are also potential risks to high trophic level predators, including humans. A maternal transfer has been demonstrated in fish as PCBs bind to lipids in eggs. In this study, behavioral traits (exploration and free swimming, with or without challenges) of contaminated zebrafish (Danio rerio) adults and their offspring (both as five-day-old larvae and as two-month-old fish reared under standard conditions) were measured using video-tracking. Long-term dietary exposure to a mixture of non-coplanar PCBs was used to mimic known environmental contamination levels and congener composition. Eight-week-old fish were exposed for eight months at 26-28 °C. Those exposed to an intermediate dose (equivalent to that found in the Loire Estuary, ∑(CB)=515 ng g⁻¹ dry weight in food) displayed behavioral disruption in exploration capacities. Fish exposed to the highest dose (equivalent to that found in the Seine Estuary, ∑(CB)=2302 ng g⁻¹ dry weight in food) displayed an increased swimming activity at the end of the night. In offspring, larval activity was increased and two-month-old fish occupied the bottom section of the tank less often. These findings call for more long-term experiments using the zebrafish model; the mechanisms underlying behavioral disruptions need to be understood due to their implications for both human health and their ecological relevance in terms of individual fitness and survival.
Collapse
Affiliation(s)
- Samuel Péan
- Ifremer, Laboratoire Ressources Halieutiques, Place Gaby Coll, BP 7, 17137 L'Houmeau, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Olsvik PA, Berg V, Lyche JL. Transcriptional profiling in burbot (Lota lota) from Lake Mjøsa--a Norwegian Lake contaminated by several organic pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:94-103. [PMID: 23582132 DOI: 10.1016/j.ecoenv.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 06/02/2023]
Abstract
Lake Mjøsa is the largest freshwater repository in Norway, receiving runoff from a wide surrounding region of urban country. As a result of industrial activity, large quantities of persistent organic pollutants (POPs) have been discharged into Lake Mjøsa during the last century. The levels of PCBs, DDTs and PBDEs in burbot from Lake Mjøsa (study population) exceed the corresponding levels in burbot from Lake Losna (reference) by a factor of 3, 6 and 113, respectively. We used shotgun and suppression subtraction hybridization (SSH) cDNA libraries followed by 454 FLX sequencing (957 303 reads sequenced in total) and RT-qPCR to study the effects of POPs in burbot from Lake Mjøsa. The gene list of putatively higher or lower expressed genes in liver of burbot from Lake Mjøsa compared to liver of burbot from Lake Losna, generated from the SSH cDNA libraries, suggest that mechanisms associated with drug metabolism and oxidative stress are enriched in burbot from Lake Mjøsa (Ingenuity Pathway Analysis (IPA) top networks). According to the IPA analyses, the top toxicity list ranking was "LXR/RXR activation", "Negative/Positive acute phase response proteins", "LPS/IL-1-mediated inhibition of RXR function" and "FXR/RXR activation". Functional analyses further identified PPAR, HNF4A, dexamethasone and β-estradiol as potential upstream key regulator factors. Overall, the study shows that SSH cDNA libraries coupled to next-generation sequencing (RNA-Seq) may be a valuable supplement or alternative to microarray technology in toxicogenomic discovery of environmental samples.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 1-2, N-5005 Bergen, Norway.
| | | | | |
Collapse
|
19
|
Berg V, Zerihun MA, Jørgensen A, Lie E, Dale OB, Skaare JU, Lyche JL. High prevalence of infections and pathological changes in burbot (Lota lota) from a polluted lake (Lake Mjøsa, Norway). CHEMOSPHERE 2013; 90:1711-1718. [PMID: 23149183 DOI: 10.1016/j.chemosphere.2012.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/24/2012] [Accepted: 10/17/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to investigate whether exposure to high levels of persistent organic pollutants (POPs) affected a fish population in Lake Mjøsa. Lake Mjøsa is known to be contaminated by polybrominated diphenyl ethers (PBDEs), a subgroup of brominated flame retardants from local industrial activities. Fish from Lake Losna, a less contaminated lake located close to Lake Mjøsa, was used as reference (control). The sampling of burbot (Lota lota) was carried out between 2005 and 2008. Hepatic levels of POPs were analysed in burbot from the two lakes, and the fish were examined for bacterial- and parasite infection and histopathological changes. The levels of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs), and PBDEs were about 10, 15 and 300 times higher in fish from Lake Mjøsa compared to fish from Lake Losna. Mycobacterium salmoniphilum was present in 7% and 35% of the fish from Lake Losna and Lake Mjøsa respectively. Significantly higher number of external and visceral macroscopic lesions, histopathological diffuse changes and granulomas were seen in fish from Lake Mjøsa compared to Lake Losna. Furthermore the parasite infection was higher and the hepatic lipid content was significantly lower in burbot from Lake Mjøsa. The results of the present study suggest that the high level of contamination in Lake Mjøsa could have a negative impact on the health status of wild fish inhabiting the lake.
Collapse
Affiliation(s)
- Vidar Berg
- Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lyche JL, Grześ IM, Karlsson C, Nourizadeh-Lillabadi R, Berg V, Kristoffersen AB, Skåre JU, Alestrøm P, Ropstad E. Parental exposure to natural mixtures of POPs reduced embryo production and altered gene transcription in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:424-434. [PMID: 23063069 DOI: 10.1016/j.aquatox.2012.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 06/01/2023]
Abstract
Determination of toxicity of complex mixtures has been proposed to be one of the most important challenges for modern toxicology. In this study we performed genome wide transcriptome profiling to assess potential toxicant induced changes in gene regulation in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POPs). The mixtures used were extracted from burbot (Lota lota) liver originating from two lakes (Lake Mjøsa and Lake Losna) belonging to the same freshwater system in Norway. The dominating groups of contaminants were polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane metabolites (DDTs). Because both mixtures used in the present study induced similar effects, it is likely that the same toxicants are involved. The Mjøsa mixture contains high levels of PBDEs while this group of pollutants is low in the Losna mixture. However, both mixtures contain substantial concentrations of PCB and DDT suggesting these contaminants as the predominant contributors to the toxicity observed. The observed effects included phenotypic traits, like embryo production and survival, and gene transcription changes corresponding with disease and biological functions such as cancer, reproductive system disease, cardiovascular disease, lipid and protein metabolism, small molecule biochemistry and cell cycle. The changes in gene transcription included genes regulated by HNF4A, insulin, LH, FSH and NF-κB which are known to be central regulators of endocrine signaling, metabolism, metabolic homeostasis, immune functions, cancer development and reproduction. The results suggest that relative low concentrations of the natural mixtures of POPs used in the present study might pose a threat to wild freshwater fish living in the lakes from which the POPs mixtures originated.
Collapse
Affiliation(s)
- Jan L Lyche
- Dept. Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnson LL, Anulacion BF, Arkoosh MR, Burrows DG, da Silva DA, Dietrich JP, Myers MS, Spromberg J, Ylitalo GM. Effects of Legacy Persistent Organic Pollutants (POPs) in Fish—Current and Future Challenges. FISH PHYSIOLOGY 2013. [DOI: 10.1016/b978-0-12-398254-4.00002-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
22
|
Brown-Peterson NJ, Manning CS, Brouwer M, Griffitt RJ. Effects of pyrene exposure on sheepshead minnow (Cyprinodon variegatus) reproduction. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:842-852. [PMID: 24053361 DOI: 10.1080/15287394.2013.826565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons are known to adversely affect survival, growth, and reproduction in many aquatic species. Adult female sheepshead minnow, Cyprinodon varietagus (SHM), were exposed to chronic, low levels of pyrene (12.5, 25, or 50 μg/L nominal concentrations) and the impact on reproductive ability and larval survival was assessed. Viable egg production was significantly reduced in a dose-dependent manner following a 28-d exposure of SHM to pyrene, confirming reproductive dysfunction. Gonadosomatic index (GSI) values were unchanged with pyrene exposure, but histological assessment of ovarian development showed significant differences in reproductive phases in SHM exposed to pyrene for 28 d, with a greater percentage of prespawning and nonspawning females observed in the two highest pyrene concentrations. The percentage of embryos successfully hatching varied significantly among treatments, with lowest hatch occurring at 25 μg/L, but survival of larval fish to 14 d was not significantly different. These results suggest that chronic maternal exposure to low concentrations of pyrene has the potential to affect population structures by altering reproductive development and output as well as embryo/larval survival rates.
Collapse
Affiliation(s)
- Nancy J Brown-Peterson
- a Department of Coastal Sciences , University of Southern Mississippi , Ocean Springs , Mississippi , USA
| | | | | | | |
Collapse
|
23
|
Kraugerud M, Doughty RW, Lyche JL, Berg V, Tremoen NH, Alestrøm P, Aleksandersen M, Ropstad E. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 116-117:16-23. [PMID: 22459409 DOI: 10.1016/j.aquatox.2012.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 02/25/2012] [Indexed: 05/31/2023]
Abstract
Persistent organic pollutants such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dichlorodiphenyltrichloroethane (DDT) are present in high concentrations in livers of burbot (Lota lota) in Lake Mjøsa, Norway. In order to assess effects of such pollutants on fish gonadal morphology, female zebrafish were exposed in two generations by food to mixtures of pollutants extracted from livers of burbot from Lake Mjøsa (high and low dose) and Lake Losna, which represents background pollution, and compared to a control group. Ovarian follicle counts detected a significant decrease in late vitellogenic follicle stages in fish exposed to the Losna and the high concentrations of Mjøsa mixtures in fish from the first generation. In addition, proliferation of granulosa cells, visualized by immunohistochemistry against proliferating cell nuclear antigen (PCNA), was decreased in all exposure groups in either early or late vitellogenic follicle stages compared to control. This was accompanied by increased apoptosis of granulosa cells. There was a decrease in proliferation of liver hepatocytes with exposure to both Mjøsa mixtures. In addition, immunopositivity for vitellogenin in the liver was significantly lower in the Mjøsa high group than in the control group. When analysing effects of parental exposure, fish with parents exposed to Mjøsa high mixture had significantly higher numbers of perinucleolar follicles than fish with control parents. We conclude that long-term exposure of a real-life mixture of pollutants containing high- and background levels of chemicals supress ovarian follicle development, liver vitellogenin immunostaining intensity and hepatocyte proliferation in the zebrafish model.
Collapse
Affiliation(s)
- Marianne Kraugerud
- Dept. of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Foekema EM, Fischer A, Lopez Parron M, Kwadijk C, de Vries P, Murk AJ. Toxic concentrations in fish early life stages peak at a critical moment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1381-1390. [PMID: 22505329 DOI: 10.1002/etc.1836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/08/2011] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
During the development of an embryo into a juvenile, the physiology and behavior of a fish change greatly, affecting exposure to and uptake of environmental pollutants. Based on experimental data with sole (Solea solea), an existing bioaccumulation model was adapted and validated to calculate the development of concentrations of persistent organic pollutants in the tissue of developing fish. Simulation revealed that toxic tissue concentrations of pollutants with log octanol-water partition ratio (K(OW)) > 5 peak at the moment when the larvae become free-feeding, when the lipid reserves are depleted. This may explain the delayed effects observed in fish early-life-stage experiments with exposed eggs. In the field, eggs can be exposed through maternal transfer to adult pollutant tissue concentrations, which will increase in the larva to peak tissue concentrations, exceeding those of the adult fish. The results demonstrate the risk of underestimating the effects of lipophilic persistent organic pollutants with log K(OW) > 5 in short-term, early-life-stage fish tests and underscore the importance of maternal transfer as an exposure route in the field situation.
Collapse
Affiliation(s)
- E M Foekema
- Institute for Marine Resources and Ecosystem Studies, Den Helder, The Netherlands.
| | | | | | | | | | | |
Collapse
|