1
|
Huang Y, Ju Y, Chen H. Probabilistic risk assessment of dietary exposure to benzophenone derivatives in cereals in Taiwan. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:5-13. [PMID: 38923029 PMCID: PMC11735342 DOI: 10.1111/risa.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/28/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
Benzophenone (BP) and BP derivatives (BPDs) are widely used as ultraviolet (UV) stabilizers in food packaging materials and as photoinitiators in UV-curable inks for printing on food-contact materials. However, our knowledge regarding the sources and risks of dietary exposure to BP and BPDs in cereals remains limited, which prompted us to conduct this study. We measured the levels of BP and nine BPDs-BP-1, BP-2, BP-3, BP-8, 2-hydroxybenzophenone, 4-hydroxybenzophenone, 4-methylbenzophenone (4-MBP), methyl-2-benzoylbenzoate, and 4-benzoylbiphenyl-in three types of cereals (rice flour, oatmeal, and cornflakes; 180 samples in total). A Bayesian Markov-chain Monte Carlo (MC) simulation approach was used for deriving the posterior distributions of BP and BPD residues. This approach helped in addressing the uncertainty in probabilistic distribution for the sampled data under the detection limit. Through an MC simulation, we calculated the daily exposure levels of dietary BP and BPDs and corresponding health risks. The results revealed the ubiquitous presence of BP, BP-3, and 4-MBP in cereals. Older adults (aged >65 years) had the highest (97.5 percentile) lifetime carcinogenic risk for BP exposure through cereals (9.41 × 10-7), whereas children aged 0-3 years had the highest (97.5 percentile) hazard indices for BPD exposure through cereals (2.5 × 10-2). Nevertheless, across age groups, the lifetime carcinogenic risks of BP exposure through cereals were acceptable, and the hazard indices for BPD exposure through cereals were <1. Therefore, BPD exposure through cereals may not be a health concern for individuals in Taiwan.
Collapse
Affiliation(s)
- Yu‐Fang Huang
- Institute of Environmental and Occupational Health SciencesSchool of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yun‐Ru Ju
- Department of SafetyHealth and Environmental EngineeringNational United UniversityMiaoliTaiwan
| | - Hsin‐Chang Chen
- Department of ChemistryCollege of ScienceTunghai UniversityTaichungTaiwan
| |
Collapse
|
2
|
Shen J, Liu J, Ji X, Liang J, Feng X, Liu X, Wang Y, Zhang Q, Zhang Q, Qu G, Yan B, Liu R. Nail salon dust reveals alarmingly high photoinitiator levels: Assessing occupational risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134913. [PMID: 38880048 DOI: 10.1016/j.jhazmat.2024.134913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Photoinitiators (PIs) are chemical additives that generate active substances, such as free radicals to initiate photopolymerization. Traditionally, polymerization has been considered a green technique that seldomly generates contaminants. However, many researches have confirmed toxicity effects of PIs, such as carcinogenicity, cytotoxicity, endocrine disrupting effects. Surprisingly, we found high levels of PIs in indoor dust. Our analysis revealed comparable levels of PIs in dust from printing shops (geometric mean, GM: 1.33 ×103 ng/g) and control environments (GM: 874 ng/g), underscoring the widespread presence of PIs across various settings. Alarmingly, in dust samples from nail salons, PIs were detected at total concentrations ranging from 610 to 1.04 × 107 ng/g (GM: 1.87 ×105 ng/g), significantly exceeding those in the control environments (GM: 1.43 ×103 ng/g). Nail salon workers' occupational exposure to PIs through dust ingestion was estimated at 4.86 ng/kg body weight/day. Additionally, an in vitro simulated digestion test suggested that between 10 % and 42 % of PIs present in ingested dust could become bioaccessible to humans. This is the first study to report on PIs in the specific environments of nail salons and printing shops. This study highlights the urgent need for public awareness regarding the potential health risks posed by PIs to occupational workers, marking an important step towards our understanding of environmental pollution caused by PIs.
Collapse
Affiliation(s)
- Jie Shen
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiale Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qiu Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Liu Y, Ling S, Chen Z, Xu J. Ionic Polymerization-Based Synthesis of Bioinspired Adhesive Hydrogel Microparticles with Tunable Morphologies from Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37028-37040. [PMID: 38963006 DOI: 10.1021/acsami.4c06578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Shape-anisotropic hydrogel microparticles have attracted considerable attention for drug-delivery applications. Particularly, nonspherical hydrogel microcarriers with enhanced adhesive and circulatory abilities have demonstrated value in gastrointestinal drug administration. Herein, inspired by the structures of natural suckers, we demonstrate an ionic polymerization-based production of calcium (Ca)-alginate microparticles with tunable shapes from Janus emulsion for the first time. Monodispersed Janus droplets composed of sodium alginate and nongelable segments were generated using a coflow droplet generator. The interfacial curvatures, sizes, and production frequencies of Janus droplets can be flexibly controlled by varying the flow conditions and surfactant concentrations in the multiphase system. Janus droplets were ionically solidified on a chip, and hydrogel beads of different shapes were obtained. The in vitro and in vivo adhesion abilities of the hydrogel beads to the mouse colon were investigated. The anisotropic beads showed prominent adhesive properties compared with the spherical particles owing to their sticky hydrogel components and unique shapes. Finally, a novel computational fluid dynamics and discrete element method (CFD-DEM) coupling simulation was used to evaluate particle migration and contact forces theoretically. This review presents a simple strategy to synthesize Ca-alginate particles with tunable structures that could be ideal materials for constructing gastrointestinal drug delivery systems.
Collapse
Affiliation(s)
- Yingzhe Liu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Sida Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Ji X, Liang J, Liu J, Shen J, Li Y, Wang Y, Jing C, Mabury SA, Liu R. Occurrence, Fate, Human Exposure, and Toxicity of Commercial Photoinitiators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11704-11717. [PMID: 37515552 DOI: 10.1021/acs.est.3c02857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Photoinitiators (PIs) are a family of anthropogenic chemicals used in polymerization systems that generate active substances to initiate polymerization reactions under certain radiations. Although polymerization is considered a green method, its wide application in various commercial products, such as UV-curable inks, paints, and varnishes, has led to ubiquitous environmental issues caused by PIs. In this study, we present an overview of the current knowledge on the environmental occurrence, human exposure, and toxicity of PIs and provide suggestions for future research based on numerous available studies. The residual concentrations of PIs in commercial products, such as food packaging materials, are at microgram per gram levels. The migration of PIs from food packaging materials to foodstuffs has been confirmed by more than 100 reports of food contamination caused by PIs. Furthermore, more than 20 PIs have been detected in water, sediment, sewage sludge, and indoor dust collected from Asia, the United States, and Europe. Human internal exposure was also confirmed by the detection of PIs in serum. In addition, PIs were present in human breast milk, indicating that breastfeeding is an exposure pathway for infants. Among the most available studies, benzophenone is the dominant congener detected in the environment and humans. Toxicity studies of PIs reveal multiple toxic end points, such as carcinogenicity and endocrine-disrupting effects. Future investigations should focus on synergistic/antagonistic toxicity effects caused by PIs coexposure and metabolism/transformation pathways of newly identified PIs. Furthermore, future research should aim to develop "greener" PIs with high efficiency, low migration, and low toxicity.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiale Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jie Shen
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
He Y, Pan Z, Liang X, Xie R, Sun Y, Li J, Wang Y, Zeng L. Distribution characteristics of photoinitiators and their flux estimation from the Pearl River Delta to the coastal waters of the South China Sea. J Environ Sci (China) 2023; 128:71-80. [PMID: 36801043 DOI: 10.1016/j.jes.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/18/2023]
Abstract
Photoinitiators (PIs) are widely used in industrial polymerization processes. It has been reported that PIs are ubiquitous in indoor environments and that humans are exposed to PIs, but the occurrence of PIs in natural environments are rarely known. In the present study, 25 PIs, including 9 benzophenones (BZPs), 8 amine co-initiators (ACIs), 4 thioxanthones (TXs) and 4 phosphine oxides (POs), were analyzed in water and sediment samples collected from eight riverine outlets of the Pearl River Delta (PRD). Eighteen, 14, and 14 of the 25 target PIs were detected in water, suspended particulate matter (SPM) and sediment samples, respectively. The total concentrations of PIs in water, SPM, and sediment were in the ranges of 2.88‒96.1 ng/L, 9.25‒923 ng/g dry weight (dw), and 3.79‒56.9 ng/g dw, with geometric mean concentration (GM) of 10.8 ng/L, 48.6 ng/g dw, and 17.1 ng/g dw, respectively. A significant linear regression was observed between the log partitioning coefficients (Kd) values of PIs and their log octanol water partition coefficient (Kow) values (R2 = 0.535, p < 0.05). The annual riverine input of PIs to the coastal waters of the South China Sea via eight main outlets of the PRD was estimated to be 4.12 × 103 kg/year, and the ∑BZPs, ∑ACIs, ∑TXs and ∑POs contributed to 1.96 × 103, 1.24 × 103, 89.6 and 830 kg/year, respectively. This is the first report of a systematic description of the occurrence characteristics of PIs exposure in water, SPM, and sediment. The environmental fate and risks of PIs in aquatic environments need further investigations.
Collapse
Affiliation(s)
- Yuqing He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Zibin Pan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Xinxin Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Ruiman Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Yuying Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
6
|
Evich MG, Mosley JD, Ntai I, Cavallin JE, Villeneuve DL, Ankley GT, Collette TW, Ekman DR. Untargeted MS n-Based Monitoring of Glucuronides in Fish: Screening Complex Mixtures for Contaminants with Biological Relevance. ACS ES&T WATER 2022; 2:2481-2490. [PMID: 37288388 PMCID: PMC10243500 DOI: 10.1021/acsestwater.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The complexity of contaminant mixtures in surface waters has presented long-standing challenges to the assessment of risks to human health and the environment. As a result, novel strategies for both identifying contaminants that have not been routinely monitored through targeted methods and prioritizing detected compounds with respect to their biological relevance are needed. Tracking biotransformation products in biofluids and tissues in an untargeted fashion facilitates the identification of chemicals taken up by the resident species (e.g., fish), so by default ensuring that detected compounds are biologically relevant in terms of exposure. In this study, we investigated xenobiotic glucuronidation, which is arguably the most important phase II metabolism pathway for many pharmaceuticals, pesticides, and other environmental contaminants. The application of an untargeted high-resolution mass spectrometry-based approach tentatively revealed the presence of over 70 biologically relevant xenobiotics in bile collected from male and female fathead minnows exposed to wastewater treatment plant effluents. The majority of these were not targets of conventional contaminant monitoring. These results highlight the utility of biologically based untargeted screening methods when evaluating chemical contaminants in complex environmental mixtures.
Collapse
Affiliation(s)
- Marina G. Evich
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Jonathan D. Mosley
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Ioanna Ntai
- 2. Thermo Fisher Scientific, San Jose, California 95134, United States; Present Address: BioMarin Pharmaceutical Inc, San Rafael, CA 94901, USA
| | - Jenna E. Cavallin
- 3. Center for Computational Toxicology and Exposure, Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Daniel L. Villeneuve
- 3. Center for Computational Toxicology and Exposure, Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Gerald T. Ankley
- 3. Center for Computational Toxicology and Exposure, Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Timothy W. Collette
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Drew R. Ekman
- 1. Center for Environmental Measurement and Modeling, Environmental Protection Agency, Athens, Georgia 30605, United States
| |
Collapse
|
7
|
Determining the trace-level photoinitiators in juices and milk from various types of packages in Taiwan by a micro-QuEChERS-based UPLC-MS/MS. Food Chem 2022; 388:132929. [PMID: 35447581 DOI: 10.1016/j.foodchem.2022.132929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
The distribution of 16 photoinitiators (PIs)-benzophenone (BP) and its five derivatives, 4-methylbenzophenone (4-MBP), methyl-2-benzoylbenzoate (M2BB), 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB), and the other 7 PIs-in packaged juice and milk was assessed using an UPLC-MS/MS with micro-QuEChERS. The validated method demonstrated robust linearity (≥0.9908), LOQs (juice: 0.006-7.26 ng/mL; milk: 0.004-7.14 ng/mL), intra- and inter-day accuracy (93.1%-110.1% for juice and 66.8%-114.6% for milk with relative standard deviations (RSDs) of ≤16.8%), and matrix effect with RSDs of ≤14.8%. BP exceeded the LOQ in 100% of 136 packaged juice (14.22 ± 7.60 ng/mL) and 51 milk (8.45 ± 3.25 ng/mL) samples, and the quantitation rates for M2BB and EHDAB in packaged juice were 100%. Notably, the 4-MBP in both juice and milk was significantly related to the packaging material. The method has been successfully applied to evaluate the occurrence and distribution of PIs in packaged juice and milk.
Collapse
|
8
|
Yoon KS, Kwack SJ. In vitro and in vivo estrogenic activity of triclosan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:800-809. [PMID: 34193021 DOI: 10.1080/15287394.2021.1944940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is an antibacterial and antifungal agent used in many consumer products and exhibits a chemical structure similar to non-steroidal estrogen, which is known to induce endocrine disruption. Triclosan has been found in human plasma, urine, and breast milk, and the safety of TCS-containing products has been disputed. Although studies attempted to determine the estrogenic activity of TCS, no clear results have emerged. The aim of the present study was to examine estrogenic activity of TCS using an in vitro E-screen assay and an in vivo uterotrophic assay. The in vitro E-screen assay demonstrated that TCS significantly enhanced proliferation of MCF-7 breast cancer cells, although not in a concentration-dependent manner. The in vivo uterotrophic results showed no significant change in the weight of uteri obtained from TCS-administered Sprague-Dawley rats. Further, to understand the estrogenic activity attributed to TCS at the molecular level, gene-expression profiling of uterus samples was performed from both TCS- or estrogen-treated rats and the genes and cellular processes affected by TCS or estrogen were compared. Data demonstrated that both the genes and cellular processes affected by TCS or estrogen were significantly similar, indicating the possibility that TCS-mediated estrogenic activity occurred at the global transcriptome level. In conclusion, in vitro and gene-profiling results suggested that TCS exhibited estrogenic activity.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| |
Collapse
|
9
|
Kawasaki Y, Sendo T. Three photoinitiators induce breast tumor growth in mouse xenografts with MCF-7 breast cancer cells. Curr Res Toxicol 2021; 2:322-328. [PMID: 34522900 PMCID: PMC8426503 DOI: 10.1016/j.crtox.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Photoinitiators are utilized in the production of a wide range of commonly used products. However, some photoinitiators exert toxic effects. We previously demonstrated the endocrine-disrupting effects of photoinitiators in vitro. The present study investigated the estrogenic activities of three photoinitiators: 1-hydroxycyclohexyl phenyl ketone (1-HCHPK), methyl 2-benzoylbenzoate (MBB), and 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP), which were subcutaneously injected into mouse xenografts with MCF-7 breast cancer cells. The results obtained showed that 1-HCHPK, MBB, and MTMP promoted breast tumor growth in these xenografts. A pretreatment with the estrogen receptor antagonist tamoxifen blocked the tumor growth-promoting effects of each photoinitiator. Collectively, the present results suggest that the three photoinitiators exhibit estrogenic agonist activities in vivo. Furthermore, as a factor for breast tumor growth, these photoinitiators potentially have estrogenic properties in vivo.
Collapse
|
10
|
Zeng B, Cai Z, Lalevée J, Yang Q, Lai H, Xiao P, Liu J, Xing F. Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells. Toxicol In Vitro 2021; 72:105103. [PMID: 33516932 DOI: 10.1016/j.tiv.2021.105103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Photoinitiators (PIs) are widely used for photopolymerization in industrial area and recently paid close attention to in biomedical field. However, there are few reports on their toxicity to human health. Here we explored cytotoxicity and cytocompatibilty of seven commercial and industrial-used PIs for developing their potential clinical application. Phenylbis(acyl) phosphine oxides (BAPO), 2-Benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone (369), 4,4'-Bis(diethylamino) benzophenone (EMK), Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO), and 2-Isopropylthioxanthone (ITX) caused different extent cytotoxicities to four tissue types of cells at the concentrations of 1 to 50 μM under a non-irradiation condition, of which the BAPO cytotoxicity was the highest, whereas Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (TPOL) and Methyl benzoylformate (MBF) displayed the lowest cellular toxicity. The cell lines and primary cells appeared highly sensitive to BAPO toxicity, the primary lymphocytes relatively to photoinitiator 369 (369) and EMK toxicities, LO2 cells to EMK and TPO toxicities, the primary lymphocytes and HUVEC-12 cells to MBF toxicity, but only HEK293T cells not to 369 toxicity. Furthermore, these PIs led to increasing cytotoxicity to different extents after exposure to 455 nm blue light, which is consistent with non-irradiation tendency. All the cells presented low sensitivity to TPOL and MBF, of which TPOL-triggered polymer is dramatically superior in its cytocompatibility to MBF, and in its transparency to clinically exclusively-used camphorquinone (CQ). The novel findings indicate that BAPO is the most toxic among the seven PIs, but TPOL and MBF are the least toxic, directing their development and application. Combined their triggered polymer cytocompatibility and color with reported deep curing efficiency, TPOL is more promising to be applied especially to clinical practice.
Collapse
Affiliation(s)
- Boning Zeng
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China
| | - Zhenlong Cai
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France
| | - Qizhi Yang
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Haiwang Lai
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China
| | - Pu Xiao
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Jing Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China.
| | - Feiyue Xing
- Institute of Tissue Transplantation and Immunology, Department of Immunobiology, Jinan University, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Li J, Zhang X, Mu Y, He Y, Qiu T, Li W, Zeng L. Determination of 21 photoinitiators in human plasma by using high-performance liquid chromatography coupled with tandem mass spectrometry: A systemically validation and application in healthy volunteers. J Chromatogr A 2021; 1643:462079. [PMID: 33780878 DOI: 10.1016/j.chroma.2021.462079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
In the present study, a comprehensive and sensitive method for simultaneous determination of 21 PIs (nine benzophenones, eight amine co-initiators, and four thioxanthones) in human plasma using high-performance liquid chromatography coupled with tandem mass spectrometry was developed and validated. Two different pre-treatment approaches (liquid-liquid extraction (LLE) and LLE coupled with solid-phase extraction (SPE)) and eight extraction solvents were studied to optimize sample treatment to obtain good recoveries and reduce any matrix effects. The procedure of LLE+SPE was selected as final sample treatment procedure because it obtained higher recoveries as well as lower matrix effects than that performed by LLE alone. The recoveries of 21 target analytes at three spiked concentrations (0.05, 0.5, and 5 ng/mL) ranged from 81% to 109%. The intra- and inter-day relative standard deviations were between 2.5% and 13%. Accuracy and precision data indicated that the detection method was accurate and precise for most of the PIs. The linearities of the labeled dilution calibration curves at 10 concentration levels (iLOQ to 100 ng/mL or iLOQ to 200 ng/mL) were good with correlation coefficients ranged from 0.995 to 0.999. The method quantification limits were in the range of 1.7-16 pg/mL. The analytical method was applied to the analysis of PIs in 14 human plasma samples collected from pregnant women in Guangdong Province, China. Fifteen PIs were detected with total concentrations ranging from 318 to 2772 pg/mL. The ubiquitous contamination of human plasma with PIs suggests that there is widespread exposure to these compounds. Consequently, there should be increased awareness of these pollutants in the environment.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yunsong Mu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yuqing He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Tian Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wenzheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
12
|
Li J, Li W, Gao X, Liu L, Shen M, Chen H, Zhu M, Zeng L, Zeng EY. Occurrence of multiple classes of emerging photoinitiators in indoor dust from E-waste recycling facilities and adjacent communities in South China and implications for human exposure. ENVIRONMENT INTERNATIONAL 2020; 136:105462. [PMID: 31924579 DOI: 10.1016/j.envint.2020.105462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Photoinitiators (PIs) are indispensable additives in photopolymerization. PI-containing consumables, such as adhesives, coatings, UV-cured inks and light-sensitive materials, are widely used in various electronic products. Nevertheless, there is no information concerning the identification of PIs as emerging contaminants from e-waste recycling. In this study, 25 PIs, including 9 benzophenones (BZPs), 8 amine coinitiators (ACIs), 4 thioxanthones (TXs) and 4 phosphine oxides (POs), were analyzed in indoor dust from typical e-waste recycling facilities and adjacent rural communities, as well as from control urban communities. All 25 target PIs were detected in e-waste dust, while only 17 and 15 of the 25 target PIs were detected in local home dust and urban home dust, respectively. The PIs detected in all dust samples were dominated by BZPs and POs, followed by ACIs and TXs. Most PIs exhibited significantly higher levels in e-waste dust than local or urban home dust. The influence of PI contamination on the local household environment by dust diffusion and transport from near e-waste recycling facilities may be lower due to the low volatility of most PIs. Characteristic composition profiles of PIs for indoor dust from the e-waste recycling area were identified and compared to those from the control area. Significant correlations were found among almost all the frequently detected PIs in the e-waste dust, indicating their similar application in electronic products and common emission from e-waste recycling. The estimated daily intakes of PIs via dust ingestion for the e-waste dismantling workers, as determined by using Monte Carlo analysis, were several times higher than those for the local adult residents and the general urban adult residents, which should be an emerging concern. To the best of our knowledge, this is the first report showing that e-waste dismantling/recycling activities lead to largely common releases of a wide range of multiple classes of PIs.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wenzheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiaoming Gao
- Quality Management Center, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Liangying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Mingjie Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
13
|
Vavrouš A, Ševčík V, Dvořáková M, Čabala R, Moulisová A, Vrbík K. Easy and Inexpensive Method for Multiclass Analysis of 41 Food Contact Related Contaminants in Fatty Food by Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10968-10976. [PMID: 31487165 DOI: 10.1021/acs.jafc.9b02544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food contact materials (FCMs) may release their chemical components into food and thus raise safety concerns. This paper attempted to study the presence of four major groups of FCM-related endocrine disruptors in fatty food: dialkyl phthalates, bisphenols, printing ink photoinitiators, and polyfluoroalkyl substances. All 41 target compounds were analyzed simultaneously by means of liquid chromatography coupled to tandem mass spectrometry. The sample preparation was significantly streamlined to reduce analysis costs by employing acetonitrile extraction, extract modification by water, and refrigeration at 5 °C. The new method was validated and applied to 60 real samples, including edible oils, butter, and chocolate, where 16 target compounds were measured at levels ≤13000 ng/g. The study also described the blank level increase and sensitivity loss caused by impurities present in the HPLC methanol solvent.
Collapse
Affiliation(s)
- Adam Vavrouš
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
- Department of Analytical Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , 128 43 Praha 2 , Czech Republic
| | - Václav Ševčík
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
- Department of Analytical Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , 128 43 Praha 2 , Czech Republic
| | - Markéta Dvořáková
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
- Third Faculty of Medicine , Charles University in Prague , Ruska 87 , 100 00 Prague 10 , Czech Republic
| | - Radomír Čabala
- Department of Analytical Chemistry, Faculty of Science , Charles University in Prague , Hlavova 8 , 128 43 Praha 2 , Czech Republic
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine , Charles University in Prague and General University Hospital , 121 08 Prague 2 , Czech Republic
| | - Alena Moulisová
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
| | - Karel Vrbík
- Centre of Toxicology and Health Safety , National Institute of Public Health , Srobarova 48 , 100 00 Praha 10 , Czech Republic
| |
Collapse
|
14
|
Li J, Lam JCW, Li W, Du B, Chen H, Zeng L. Occurrence and Distribution of Photoinitiator Additives in Paired Maternal and Cord Plasma in a South China Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10969-10977. [PMID: 31411872 DOI: 10.1021/acs.est.9b03127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photoinitiators (PIs) are widely used in industrial polymerization and have been detected as emerging contaminants in environmental matrixes. It has been reported that humans are exposed to PIs, but the maternal-fetal transmission of PIs has not been documented. In this study, we analyzed 21 PIs (9 benzophenones, BZPs; 8 amine co-initiators, ACIs; and 4 thioxanthones, TXs) in matched maternal-cord plasma samples from 49 pregnant women in South China. Sixteen of the 21 target PIs were found in maternal plasma at concentrations of ∑PIs (sum of the detected PIs) from 303 to 3500 pg/mL. Meanwhile, 12 PIs were detected in cord plasma with ∑PIs from 104 to 988 pg/mL. The PIs detected in both maternal and cord plasma samples were dominated by BZPs, followed by ACIs and TXs. Different groups of PIs showed structure-dependent placental transfer efficiencies (PTEs). The PTEs were generally less than 100% for BZPs but greater than 100% for ACIs and TXs. By further theoretical calculation, we revealed the critical structural features of PIs that affect PTEs. This is the first study to investigate the occurrence and distribution of PIs in paired maternal and cord plasma, and it sheds light on the potential mechanism of structure-dependent placental transfer.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - James C W Lam
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR , China
| | - Wenzheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| |
Collapse
|
15
|
Walpitagama M, Carve M, Douek AM, Trestrail C, Bai Y, Kaslin J, Wlodkowic D. Additives migrating from 3D-printed plastic induce developmental toxicity and neuro-behavioural alterations in early life zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105227. [PMID: 31226596 DOI: 10.1016/j.aquatox.2019.105227] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The environmental impact of exposure to 3D-printed plastics as well as potential migration of toxic chemicals from 3D-printed plastics remains largely unexplored. In this work we applied leachates from plastics fabricated using a stereolithography (SLA) process to early developmental stages of zebrafish (Danio rerio) to investigate developmental toxicity and neurotoxicity. Migration of unpolymerized photoinitiator, 1-hydroxycyclohexyl phenyl ketone (1-HCHPK) from a plastic solid phase to aqueous media at up to 200 mg/L in the first 24 h was detected using gas chromatography-mass spectrometry. Both plastic extracts (LC50 22.25% v/v) and 1-HCHPK (LC50 60 mg/L) induced mortality and teratogenicity within 48 h of exposure. Developmental toxicity correlated with in situ generation of reactive oxygen species (ROS), an increase in lipid peroxidation and protein carbonylation markers and enhanced activity of superoxide dismutase (SOD) and glutathione-S-transferase (GST) in embryos exposed to concentrations as low as 20% v/v for plastic extracts and 16 mg/L for 1-HCHPK. ROS-induced cellular damage led to induction of caspase-dependent apoptosis which could be pharmacologically inhibited with both antioxidant ascorbic acid and a pan-caspase inhibitor. Neuro-behavioral analysis showed that exposure to plastic leachates reduced spontaneous embryonic movement in 24-36 hpf embryos. Plastic extracts in concentrations above 20% v/v induced rapid retardation of locomotion, changes in photomotor response and habituation to photic stimuli with progressive paralysis in 120 hpf larvae. Significantly decreased acetylcholinesterase (AChE) activity with lack of any CNS-specific apoptotic phenotypes as well as lack of changes in motor neuron density, axonal growth, muscle segment integrity or presence of myoseptal defects were detected upon exposure to plastic extracts during embryogenesis. Considering implications of the results for environmental risk assessment and the growing usage of 3D-printing technologies, we speculate that some 3D-printed plastic waste may represent a significant and yet very poorly uncharacterized environmental hazard that merits further investigation on a range of aquatic and terrestrial species.
Collapse
Affiliation(s)
- Milanga Walpitagama
- The Phenomics Laboratory, School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Megan Carve
- The Phenomics Laboratory, School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Alon M Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Charlene Trestrail
- The Phenomics Laboratory, School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Yutao Bai
- The Phenomics Laboratory, School of Science, RMIT University, Melbourne, VIC, 3083, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Donald Wlodkowic
- The Phenomics Laboratory, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| |
Collapse
|
16
|
Liu R, Mabury SA. First Detection of Photoinitiators and Metabolites in Human Sera from United States Donors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10089-10096. [PMID: 30063130 DOI: 10.1021/acs.est.8b02457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photoinitiators (PIs), including benzophenones (BZPs), thioxanthones (TXs), and amine co-initiators (ACIs), are commonly used in photopolymerization systems, and their contamination in foodstuffs and the environment is attracting attention. Although humans are likely exposed to PIs, no data on human burdens of these chemicals are available. In this study, 18 PIs were detected in 50 individual human serum samples with concentrations of ΣPIs (sum of the detected PIs) from 423 to 2870 pg/mL (geometric mean, GM: 836 pg/mL). ΣBZPs (231-1240 ng/g,; GM: 593 pg/mL) were the dominant components, while ΣTXs (21.0-1431 ng/g; GM: 145 pg/mL) and ΣACIs (11.3-976 ng/g; GM: 48.5 pg/mL) were much lower. Data analysis found significantly higher concentrations of most PIs in the male sera than in the female ( p < 0.05). ΣPIs (2921-4139 ng/g; GM: 3621 pg/mL) were also detected in five pooled serum samples, each from at least 1000 donors, indicating the prevalent human burdens of PIs in a large population. Human liver S9 biodegradations of representative PIs, 2-isopropylthioxanthone (2-ITX) and 2,4-diethylthioxanthone (DETX), were conducted. Hydroxylation, sulfoxide, and sulfone metabolites of DETX and 2-ITX were identified by high resolution mass spectrometry in human liver S9 incubation systems. With synthesized standards, the sulfoxide and sulfone metabolites were successfully detected in the human serum samples, which contributed substantially to total human burdens. The ubiquitous presence of PIs in human sera indicates significant human exposure to PIs, although photopolymerization reaction has been generally considered a green technology.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Scott A Mabury
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
17
|
Takai M, Kawasaki Y, Arimoto S, Tanimoto Y, Kitamura Y, Sendo T. UV-irradiated 2-methyl-4'-(methylthio)-2-morpholinopropiophenone-containing injection solution produced frameshift mutations in the Ames mutagenicity assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10135-10140. [PMID: 29488202 DOI: 10.1007/s11356-018-1539-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
In previous studies, we detected the photoinitiators 1-hydroxycyclohexyl phenyl ketone (1-HCHPK), methyl 2-benzoylbenzoate (MBB), and 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP) in intravenous injection solutions. In addition, we reported that 1-HCHPK, MBB, and MTMP exhibited cytotoxicity towards normal human peripheral blood mononuclear cells. A previous in vitro study reported that a free-radical photoinitiator introduced covalently bound purine residues into DNA. However, little is known about the in vitro mutagenicity of 1-HCHPK, MBB, and MTMP. In the present in vitro study, we evaluated the mutagenicity of 1-HCHPK, MBB, and MTMP using the Ames test. We found that untreated 1-HCHPK, MBB, and MTMP were not mutagenic in S. typhimurium strain TA97, TA98, TA100, TA102, or TA1535, regardless of the presence/absence of S9 activation. However, ultraviolet (UV) light-irradiated MTMP exhibited mutagenicity in S. typhimurium strain TA97 in the absence of S9 activation. In conclusion, we suggest that exposure to UV-irradiated MTMP, including in intravenous injection solutions, can result in frameshift mutations.
Collapse
Affiliation(s)
- Mariko Takai
- Department of Clinical Pharmacy, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoichi Kawasaki
- Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Sakae Arimoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka; Kita-ku, Okayama, 700-8530, Japan
| | - Yusuke Tanimoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka; Kita-ku, Okayama, 700-8530, Japan
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|