1
|
Liu L, Li X, Hao X, Xu Z, Wang Q, Ren C, Li M, Liu X. Endocrine disruptors and bladder function: the role of phthalates in overactive bladder. Front Public Health 2024; 12:1493794. [PMID: 39722714 PMCID: PMC11668814 DOI: 10.3389/fpubh.2024.1493794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Phthalates, widely used as plasticizers, are pervasive environmental contaminants and endocrine disruptors. Their potential role in overactive bladder (OAB) pathogenesis is underexplored, necessitating further investigation into their impact on OAB using large-scale epidemiological data. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2011 to 2018. A weighted multivariable logistic regression model was employed to examine the relationship between urinary phthalate concentrations and OAB. Subgroup analyses were conducted to explore differences in associations across various subgroups. Restricted cubic spline (RCS) analysis was used to investigate the potential non-linear relationship between urinary phthalate concentrations and OAB. Additionally, Bayesian Kernel Machine Regression (BKMR) analysis was performed to explore the overall effects and interactions of phthalate mixtures. Results In the multivariable logistic regression model fully adjusted for confounding variables, higher concentrations of MBzP and MiBP were associated with an increased risk of OAB, particularly in the highest tertiles (MBzP: OR = 1.401, 95% CI: 1.108-1.771; MiBP: OR = 1.050, 95% CI: 1.045-1.056). Subgroup analysis found that subgroup characteristics did not have a significant moderating effect on the association between phthalates and OAB. RCS analysis revealed a linear relationship between both MBzP and MiBP and OAB. BKMR analysis confirmed a positive overall effect of phthalate mixtures on OAB risk, with MBzP identified as the major contributing factor. Conclusion In our study cohort, a positive correlation between urinary phthalate concentrations and OAB was observed, necessitating further research to validate and refine this conclusion.
Collapse
|
2
|
Verma CR, Khare T, Chakraborty P, Gosavi SM, Petrtýl M, Kalous L, Kumkar P. Impact of diethyl phthalate on freshwater planarian behaviour, regeneration, and antioxidant defence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107110. [PMID: 39378734 DOI: 10.1016/j.aquatox.2024.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Diethyl phthalate (DEP) has been widely used as a plasticiser in various consumer products, including cosmetics, personal care items, and pharmaceuticals, and recent studies reported a higher abundance of this priority phthalate in the aquatic environment. DEP is a potential endocrine disruptor, affecting immune systems in humans and wildlife even at low-level chronic exposure. As concern over phthalates increases globally, regulatory bodies focus more on their environmental impact. However, limited research is available, particularly using model organisms like planarians. Planarians are ideal for toxicological studies and may provide insightful information on pollutants' neurotoxic, developmental, and ecological effects, especially in freshwater environments where planarians play a vital role in ecosystem balance. Therefore, the objective of the current study was to examine the toxicity of DEP using the freshwater Dugesia sp., as an experimental animal. The LC50 for the test organism was calculated using DEP concentrations of 800, 400, 200, 100, and 50 µM, with an estimated LC50 of 357.24 µM. Furthermore, planarians were exposed to sub-lethal DEP concentration (178.62 µM) for one day as well as eight days to evaluate the impact of DEP on planarian locomotion, feeding behaviour, and regeneration ability. At sub-lethal concentration, locomotion and feeding ability were decreased, and regeneration was delayed. Furthermore, neuro-transmittance in planaria was altered by sub-lethal DEP concentration, as indicated by a reduced acetylcholinesterase (AChE) activity. DEP exposure induced oxidative damage in the tested planarians as shown by a marked increase in stress biomarkers, including lipid peroxidation levels and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and glutathione S-transferase (GST). Our study revealed that DEP exposure may prove fatal to freshwater organisms, such as planarians. The observed alterations in behaviour and regeneration ability demonstrate the severity of the effects exerted by DEP as a toxicant in aquatic ecosystems, thereby indicating the need to restrict its usage to protect aquatic environments.
Collapse
Affiliation(s)
- Chandani R Verma
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Tushar Khare
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic; Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, Mumbai, Maharashtra, India
| | - Miloslav Petrtýl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Pradeep Kumkar
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic.
| |
Collapse
|
3
|
Kiran NS, Yashaswini C, Chatterjee A. Noxious ramifications of cosmetic pollutants on gastrointestinal microbiome: A pathway to neurological disorders. Life Sci 2024; 336:122311. [PMID: 38043908 DOI: 10.1016/j.lfs.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
On exposure to cosmetic pollutants, gastrointestinal dysbiosis, which is characterised by a disturbance in the gut microbiota, has come into focus as a possible contributor to the occurrence of neurotoxic consequences. It is normal practice to use personal care products that include parabens, phthalates, sulphates, triclosans/triclocarbans and micro/nano plastics. These substances have been found in a variety of bodily fluids and tissues, demonstrating their systemic dispersion. Being exposed to these cosmetic pollutants has been linked in recent research to neurotoxicity, including cognitive decline and neurodevelopmental problems. A vital part of sustaining gut health and general well-being is the gut flora. Increased intestinal permeability, persistent inflammation, and impaired metabolism may result from disruption of the gut microbial environment, which may in turn contribute to neurotoxicity. The link between gastrointestinal dysbiosis and the neurotoxic effects brought on by cosmetic pollutants may be explained by a number of processes, primarily the gut-brain axis. For the purpose of creating preventative and therapeutic measures, it is crucial to comprehend the intricate interactions involving cosmetic pollutants, gastrointestinal dysbiosis, and neurotoxicity. This review provides an in-depth understanding of the various hazardous cosmetic pollutants and its potential role in the occurrence of neurological disorders via gastrointestinal dysbiosis, providing insights into various described and hypothetical mechanisms regarding the complex toxic effects of these industrial pollutants.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India.
| |
Collapse
|
4
|
Wang Z, Ma J, Wang T, Qin C, Hu X, Mosa A, Ling W. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: A review. CHEMOSPHERE 2023; 328:138578. [PMID: 37023900 DOI: 10.1016/j.chemosphere.2023.138578] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Gao H, Zhang Y, Chen LW, Gan H, Lu MJ, Huang B, Tong J, Geng ML, Huang K, Zhang C, Zhu BB, Shao SS, Zhu P, Tao FB. Associating phthalate exposure during pregnancy with preschooler's FMI, ABSI and BRI trajectories via putative mechanism pathways. CHEMOSPHERE 2023:139300. [PMID: 37391081 DOI: 10.1016/j.chemosphere.2023.139300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Phthalates are well-known obesogens, but a few studies have explored their impacts on the childhood fat mass index (FMI), body shape index (ABSI) and body roundness index (BRI). Information from 2950 participants recruited in the Ma'anshan Birth Cohort was analyzed. The relationships between six maternal phthalate metabolites and their mixture and childhood FMI, ABSI and BRI were investigated. FMI, ABSI and BRI in children aged 3.5 y, 4.0 y, 4.5 y, 5.0 y, 5.5 y and 6.0 y were calculated. The latent class trajectory modeling categorized the FMI trajectories into "rapidly increasing FMI" (4.71%) and "stable FMI" (95.29%) groups; ABSI trajectories were categorized as "decreasing ABSI" (32.74%), "stable ABSI" (46.55%), "slowly increasing ABSI" (13.26%), "moderately increasing ABSI" (5.27%) and "rapidly increasing ABSI" (2.18%) groups; BRI trajectories were categorized as "increasing BRI" (2.82%), "stable BRI" (19.85%), and "decreasing BRI" (77.34%) groups. Prenatal MEP exposure was associated with repeated measurements of FMI (β = 0.111, 95% CI = 0.002-0.221), ABSI (β = 0.145, 95% CI = 0.023-0.268) and BRI (β = 0.046, 95% CI = -0.005-0.097). Compared with each stable trajectory group, prenatal MEP (OR = 0.650, 95% CI = 0.502-0.844) and MBP (OR = 0.717, 95% CI = 0.984-1.015) were linked to a decreased risk of "decreasing BRI" in children; there was a negative relationship between MBP and the "decreasing ABSI" group (OR = 0.667, 95% CI = 0.487-0.914), and MEP increased the risks of "slowly increasing ABSI" (OR = 1.668, 95% CI = 1.210-2.299) and "rapidly increasing ABSI" (OR = 2.522, 95% CI = 1.266-5.024) in children. Phthalate mixture during pregnancy showed significant relationships with all anthropometric indicator trajectories, with MEP and MBP always being of the largest importance. In conclusion, this study suggested that prenatal phthalate coexposure increased the childhood probability of being in higher ABSI and BRI trajectory groups. That is, children were more likely to be obese when they were exposed to higher levels of some phthalate metabolites and their mixture. The low-molecular weight phthalates, including MEP and MBP, contributed the greatest weights.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yi Zhang
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Wen Chen
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hong Gan
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Meng-Juan Lu
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Binbin Huang
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Meng-Long Geng
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Zhang
- Anhui Provincial Cancer Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 30022, China
| | - Bei-Bei Zhu
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shan-Shan Shao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhu
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Vitamin C mitigates hematological and biochemical alterations caused by di(2-ethylhexyl) phthalate toxicity in female albino mice, Mus musculus. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:1005-1016. [PMID: 36247333 PMCID: PMC9540055 DOI: 10.1007/s00580-022-03400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is ubiquitous environmental contaminant and identified as endocrine-disrupting chemical (EDC), present in plastics as plasticizer. Due to its versatile use, human exposure level reaches to danger limit. The main focus of our study is to see the effect of vitamin C on hematological and biochemical alterations caused by Di(2-ethylhexyl) Phthalate toxicity in female albino mice, Mus musculus. It is found to cause defects of the liver, kidney, and lungs. Its anti-androgenic nature brings the main focus on its toxicity associated with reproductive and endocrine system. In this experimental study, 18 young female Swiss albino mice, Mus musculus, were used and divided into 3 groups of 6 animals each as control (corn oil vehicle), DEHP group (100 mg/kg body weight dissolved in corn oil), and DEHP + vitamin-C group (100 mg/kg body weight each, dissolved in corn oil and double distilled water, respectively) for 90 days. In this research, serum metabolites were evaluated to study the effect of DEHP on glucose, total protein, and lipid profile along with some hematological, enzymological, and oxidative stress parameters. Simultaneously, we compared the effectiveness of vitamin-C against DEHP toxicity to mitigate the serum homeostasis disturbance. In present study, we observed, in DEHP-treated animals, glucose, triglycerides, very-low-density lipoprotein (VLDL), total protein, alkaline phosphatase (ALP), acid phosphatase (ACP), and alanine aminotransferase (ALT) levels increased remarkably, whereas total cholesterol, high-density lipoproteins (HDL), aspartate aminotransferase (AST), total RBC count, total WBC count, and hemoglobin (Hb) level significantly decreased as compared to control group. In addition, we noticed there was a decrease in superoxide dismutase (SOD) and increase in levels of lipid peroxidation (MDA) and interleukin-6 (IL-6) in DEHP treatment group as compared to control group. The results indicated vitamin C had a better improving effect against DEHP toxicity on balancing metabolic abnormalities and inflammation-related comorbidities.
Collapse
|
7
|
de-Carvalho RR, Gomes-Carneiro MR, Geraldino BR, Lopes GDS, Paumgartten FJR. Evaluation of the developmental toxicity of solvents, metals, drugs, and industrial chemicals using a freshwater snail ( Biomphalaria glabrata) assay. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:798-814. [PMID: 35723169 DOI: 10.1080/15287394.2022.2089413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A freshwater snail assay was employed to assess the embryotoxicity of solvents including acetone, methanol, ethanol, isopropanol, dimethyl-sulfoxide, glycerin, metals/metalloids including mercuric chloride (HgCl2), cadmium chloride (CdCl2,), antimony salts Sb+3 and Sb+5, drugs including colchicine, hydroxyurea, cyclophosphamide, an industrial chemical sodium azide (SA), an anionic surfactant dodecyl sodium sulfate-(DSS), H2O2 and sodium chloride (NaCl). The assay consists of exposing Biomphalaria glabrata egg masses (EM) to the substances for 96-hr and following up embryo/snail development for lethality, abnormal morphology (teratogenicity), and day of hatching up to day 10 or 14 after spawning. Based upon concentration-response relationships, LC50%s (embryolethality), EC50%s (teratogenicity) and IC50%s (hatching retardation) and 95%CIs were determined for tested chemicals. The LOECs indicated that HgCl2 (37 nM) and CdCl2 (140 nM) are potent embryotoxic agents in snails. Teratogenic indices (TI = LC50/EC50) for almost all tested chemicals were lower than or close to unity suggesting that these compounds were not teratogenic in this assay. The snail assay may be adequately performed in a cost-effective standardized protocol which enables testing a number of environmental chemicals over a broad concentration range. The snail assay needs to undergo further validation to be recognized for an internationally harmonized hazard identification in ecotoxicity risk assessment.
Collapse
Affiliation(s)
- Rosângela Ribeiro de-Carvalho
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Regina Gomes-Carneiro
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Barbara Rodrigues Geraldino
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabrielle da Silveira Lopes
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Feng JR, Deng QX, Ni HG. Photodegradation of phthalic acid esters under simulated sunlight: Mechanism, kinetics, and toxicity change. CHEMOSPHERE 2022; 299:134475. [PMID: 35381265 DOI: 10.1016/j.chemosphere.2022.134475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The photodegradation of two phthalic acid esters (PAEs), dimethyl phthalate (DMP) and di-n-octyl phthalate (DOP), under simulated sunlight in aqueous or organic phases (n-hexane (HEX) and dichloromethane (DCM)) was investigated. The mean photodegradation rates were ranked by half-lives as follows: DOP in DCM (3.77 h) < DMP in DCM (9.62 h) < DOP in H2O (3.99 days) < DMP in H2O (19.2 days) < DOP in HEX (21.0 days) < DMP in HEX (>30 days). Compound-specific stable isotope analysis (CSIA) combined with intermediate analysis was employed to explore the involved initial photoreaction mechanism. C-O bond cleavage, chlorine radical adduction to the aromatic ring, competing reactions of chlorine radical adduction to the aromatic ring and side chain, and a singlet oxygen-mediated pathway were mainly responsible for initial photodegradation mechanism of PAEs in H2O, DMP in DCM, DOP in DCM, and DOP in HEX, respectively. Furthermore, distinct isotope fractionation patterns of PAEs photodegradation open the possibility of using CSIA to differentiate the involved solvents in the field. More toxic and recalcitrant intermediates emerged during the photodegradation of DMP in DCM, while the risk to human health was reduced during the photochemical transformation of DOP in organic solvents.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Xu Y, Jang J, Gye MC. The Xenopus laevis teratogenesis assay for developmental toxicity of phthalate plasticizers and alternatives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118985. [PMID: 35167930 DOI: 10.1016/j.envpol.2022.118985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Contamination of phthalate ester plasticizers threatens the wildlife as well as human health. To evaluate the developmental toxicity of commonly used phthalate esters and emerging alternatives, the frog embryo teratogenesis assay-Xenopus (FETAX) was conducted for dibutyl-phthalate (DBP), benzyl-butyl-phthalate (BBP), dioctyl-terephthalate (DOTP), di(2-propylheptyl)-phthalate (DPHP), diisononyl-phthalate (DINP), diisodecyl-phthalate (DIDP), diethyl hexyl cyclohexane (DEHCH), and diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). The 96-hrs LC50 for DBP, BBP, DOTP, DIDP, DINCH, DINP, DPHP, and DEHCH were 18.3, 20.1, 588.7, 718.0, 837.5, 859.3, 899.0, and 899.0 mg/L, respectively. The 96-hrs EC50 of developmental abnormality of DBP, BBP, DPHP, DOTP, DINP, DEHCH, DINCH, and DIDP were 7.5, 18.2, 645.1, 653.6, 664.4, 745.6, 813.7, and 944.5 mg/L, respectively. The lowest observed effective concentration for embryonic survival, malformation, and growth was DINP, DBP, BBP, DIDP, DPHP, DINCH, DEHCH, and DOTP in increasing order. In tadpoles, DBP, BBP, DEHCH, DINP, and DIDP caused inositol-requiring enzyme 1 or protein kinase R-like endoplasmic reticulum kinase pathway endoplasmic reticulum stress (ERS) in order, and BBP, DBP, DOTP, DPHP, DINP, and DIDP caused long term ERS-related apoptosis or mitochondrial apoptosis in order. Together, in Xenopus embryos, the developmental toxicity and the cellular stress-inducing potential of tested plasticizers were DEHCH, DINCH, DPHP, DIDP, DINP, DOTP, BBP, and DBP in increasing order. In consideration of public as well as environmental health this information would be helpful for industrial choice of phthalate ester plasticizers and their alternatives.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jihyun Jang
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
10
|
Barbagallo S, Baldauf C, Orosco E, Roy NM. Di-butyl phthalate (DBP) induces defects during embryonic eye development in zebrafish. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:178-185. [PMID: 34773557 DOI: 10.1007/s10646-021-02468-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Di-butyl phthalate (DBP) is a phthalate ester (PAEs) added during the manufacturing of plastics to make them stronger, yet more pliable. DBP is noncovalently bound to plastics resulting in leaching into the environment. Concerning concentrations of DBP have been noted in surface and groundwater, aquatic ecosystems, soil and atmospheric environments globally. Global production of phthalates and thus concomitant exposure has increased over the years making studies on the ecological and environmental safety needed. Most of the literature on DBP focuses on the endocrine disrupting properties of phthalate esters, but the developmental toxicity of DBP is an understudied area. Here, we treat gastrula staged zebrafish embryos with environmentally relevant concentrations of DBP (2.5 µM). We find defects in eye development at 96 h post fertilization including a decrease in the size of the lens and retina in DBP-treated embryos. Defects in eye vascularization as well as loss of the optic nerve and optic tectum were also noted. Here we conclude that exposure to environmentally relevant doses of DBP during early embryonic development is toxic to eye development.
Collapse
Affiliation(s)
| | - Cassidy Baldauf
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Emily Orosco
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT, USA.
| |
Collapse
|
11
|
Wang J, Zhang X, Li Y, Liu Y, Tao L. Exposure to Dibutyl Phthalate and Reproductive-Related Outcomes in Animal Models: Evidence From Rodents Study. Front Physiol 2021; 12:684532. [PMID: 34955869 PMCID: PMC8692859 DOI: 10.3389/fphys.2021.684532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Dibutyl phthalate (DBP) was an endocrine disruptor, which may lead to cancer and affects reproductive function when accumulated in the body. But the precise role of DBP in the reproductive system remained controversial. Objective: We employed the meta-analysis to explore the relationship between DBP and reproductive-related outcomes. Methods: We searched relevant literature in PubMed, EMBASE, and Web of Science databases. The standardized mean differences (SMDs) and their 95% CIs were measured by random-effects models. Funnel plots and Egger’s regression test were applied to assess publication bias. Results: Finally, 19 literatures were included in this research. The outcomes revealed that DBP was negatively correlated with reproductive organs weight (testis weight: SMD: −0.59; 95% Cl: −1.23, −0.23; seminal vesicles weight: SMD: −0.74; 95% Cl: −1.21, −0.27; prostate weight: SMD: −0.46; 95% Cl: −0.76, −0.16) and sperm parameters (sperm morphology: SMD: 1.29; 95% Cl: 0.63, 1.94; sperm count: SMD: −1.81; 95% Cl: −2.39, −1.23; sperm motility: SMD: −1.92; 95% Cl: −2.62, −1.23). Conclusion: Our research demonstrated that DBP may be negatively associated with reproductive-related indicators, especially at Gestation exposure period and middle dose (100–500 mg/kg/day).
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, China
| | - Xi Zhang
- The State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yingqing Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, China
| | - Lingsong Tao
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, China
| |
Collapse
|
12
|
Lv C, Wei Z, Yue B, Xia N, Huang W, Yue Y, Li Z, Li T, Zhang X, Wang Y. Characterization of diphenyl phthalate as an agonist for estrogen receptor: an in vitro and in silico study. Toxicol Mech Methods 2021; 32:280-287. [PMID: 34697989 DOI: 10.1080/15376516.2021.1998276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phthalate esters (PAEs) are important pollutants in the environment, which can interfere with the endocrine system by mimicking estrogen. However, limited information is available on modulating the estrogen receptor (ER) of five PAEs including di (2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), benzyl butyl phthalate (BBP), diphenyl phthalate (DPhP) and dicyclohexyl phthalate (DCHP). This study evaluated the agonistic effects of PAEs on human ER. The cytotoxicity assay showed that there were a significant inhibition of the cell proliferation with treatment of five PAEs. Moreover, DPhP does-dependently enhanced ER-mediated transcriptional activity in the reporter gene assay. The increased expression of estrogen-responsive genes (TFF1, CTSD, and GREB1) was also observed in MCF-7 cells treated with DPhP. The result of molecular docking showed that DPhP tended to bind to the agonist conformation of ER compared with the antagonist conformation of ER, demonstrating its agonist characteristic that has been confirmed in the reporter gene assay. Thus, we found that DPhP may be evaluated as an ER agonist in vitro and it can interfere with the normal function of human ER.
Collapse
Affiliation(s)
- Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengyi Wei
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Benjie Yue
- College of Foreign Languages, Jilin Agricultural University, Changchun, China
| | - Ning Xia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yulan Yue
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuolin Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tiezhu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiuxia Zhang
- Office of Retirement Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
13
|
Wang L, Duan W, Zhao Y, Sun G, Lin Y, Gao Y. The exposure levels of phthalates in pregnant women and impact factors of fetal malformation. Hum Exp Toxicol 2021; 40:S622-S631. [PMID: 34766523 DOI: 10.1177/09603271211049551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
METHODS Urine samples were collected from 157 women with fetal malformations (case group) and 147 women with normal fetuses (control group). High-performance liquid chromatography-mass spectrometry (HPLC-MS) was used to detect the content of eight metabolites of phthalate compounds in urine, including monoethyl phthalate (MEP), mononbutyl phthalate (MBP), monoisobutyl phthalate (MiBP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-benzyl phthalate (MBzP). Demographic data were collected from questionnaires administered in specimen collection. RESULTS The exposure level of MEOHP and MEHP in the case group was higher than the others. And there were significant differences between structural malformations and chromosomal malformations in the levels of MEHHP and MEOHP. Pregnant women with low income, high body mass index (BMI), frequent plastic contact, and low nutrients intake were at risk of suffering from fetal malformation. CONCLUSION This study provides evidence for the correlation between the concentration of phthalates and fetal malformation. In addition, decreasing plastic exposure and supplementing nutrients may reduce the incidence of fetal malformations.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics, 477167Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Wei Duan
- Department of Obstetrics, 477167Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yun Zhao
- Department of Obstetrics, 477167Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guoqiang Sun
- Department of Obstetrics, 477167Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Ying Lin
- Nursing Department, 477167Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Ying Gao
- Department of Obstetrics, 477167Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
14
|
Lulamba TE, Green E, Serepa-Dlamini MH. Photorhabdus sp. ETL Antimicrobial Properties and Characterization of Its Secondary Metabolites by Gas Chromatography-Mass Spectrometry. Life (Basel) 2021; 11:life11080787. [PMID: 34440531 PMCID: PMC8401408 DOI: 10.3390/life11080787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Entomopathogenic nematodes (EPNs) are known to be highly pathogenic to insect pests, due to their associated symbiotic bacteria, which produce virulence factors, exo-enzymes and other harmful secondary metabolites to conquer, kill, and degrade their insect hosts. However, these properties are not fully characterized. This study reports on the antimicrobial activities of Photorhabdus sp. strain ETL, symbiotically associated to an insect pathogenic nematode, Heterorhabditis zealandica, against human pathogenic bacteria and toxigenic fungi, as well as the non-targeted profiling of its secondary metabolites (SMs) using gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Fatty acids including 3-eicosene, (E)-; 5-eicosene, (E)-; eicosene; 9-octadecenamide; undecanoic acid with shown antimicrobial activities were detected. This provided more insight on the composition and bioactivities of SMs produced by the Photorhabdus sp.
Collapse
|
15
|
Luo X, Shu S, Feng H, Zou H, Zhang Y. Seasonal distribution and ecological risks of phthalic acid esters in surface water of Taihu Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144517. [PMID: 33454488 DOI: 10.1016/j.scitotenv.2020.144517] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phthalic acid esters (PAEs) are endocrine-disrupting compounds that are ubiquitous in surface water. However, early studies on PAEs only focused on six species on the priority contaminant list, and the seasonal variation in the PAE distribution in Taihu Lake, China is unclear. The present study investigated the occurrence, spatial distribution, and ecological risks of 16 PAEs in Taihu Lake during the dry, normal, and wet seasons. The results showed that dibutyl phthalate, diethylhexyl phthalate (DEHP), and diisobutyl phthalate (DIBP) were the major species detected in the surface water of Taihu Lake. The summed concentration of the six priority PAEs accounted for less than 50% of the total, indicating that the contamination of the other PAE congeners was non-negligible. Significant seasonal effects were observed that the total PAE concentration was higher in the wet season than in the dry season, and there were significant positive correlations between the total PAE concentration and rainfall, the water reserve, and the water level. In the dry season, a relatively high PAE level was detected in the area close to the inflow river estuary and the tourist island in the lake. The concentrations of PAEs in the lakeshore area were higher than those in the lake center in the normal season, and were generally high in the wet season. DEHP posed high risks for fish regardless of the season, while butyl benzyl phthalate, DIBP, dihexyl phthalate, and diphenyl phthalate also showed high risks in the normal and wet seasons. These results suggest that the contamination and risks of congeners other than the priority PAEs are also of necessary concern, and seasonal variation should be considered for a comprehensive understanding of PAE contamination in surface water.
Collapse
Affiliation(s)
- Xin Luo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shu Shu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Feng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Yun Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Li Z, Zhou H, Liu Y, Zhan J, Li W, Yang K, Yi X. Acute and chronic combined effect of polystyrene microplastics and dibutyl phthalate on the marine copepod Tigriopus japonicus. CHEMOSPHERE 2020; 261:127711. [PMID: 32731021 DOI: 10.1016/j.chemosphere.2020.127711] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Dibutyl phthalate (DBP) is a commonly used additive in plastic products, so it may potentially coexist with microplastics (MPs) in marine environment. The ingestion of MPs might affect the accumulation of DBP in marine organisms. In this study, the marine copepod Tigriopus japonicus was applied to study the combined effect of DBP and polystyrene microplastics (mPS) on the copepod through both acute mortality tests and chronic reproduction tests. The LC50 of DBP was 1.23 mg L-1 (95% CI: 1.11-1.35 mg L-1), while exposure to mPS didn't have significant lethal effect on the copepods. Adsorption to MPs led to decreased bioavailability of DBP, resulting in decreased toxicity of DBP. In contrast to the results of acute toxicity tests, DBP didn't affect the reproduction of the copepods at lower exposure concentrations, while mPS reduced the number of nauplii and extended the time to hatch. Similar as acute toxicity tests, antagonistic interaction was observed for mPS and DBP in chronic reproduction tests, which might be attributed to promoted aggregation of mPS at presence of DBP. Overall, antagonistic toxicity effect between the two pollutants was observed for both acute and chronic tests, but the mechanisms of the interaction between DBP and mPS were different. Results of the present study highlighted the importance of long-term exposure when evaluating the toxic effect of MPs and their combined effect with other chemicals.
Collapse
Affiliation(s)
- Zhaochuan Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Wentao Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Kaiming Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
17
|
Leng Y, Sun Y, Huang W, Lv C, Cui J, Li T, Wang Y. Phthalate esters and dexamethasone synergistically activate glucocorticoid receptor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1581-1588. [PMID: 32998617 DOI: 10.1080/10934529.2020.1826775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to determine the endocrine-disrupting effects of phthalate esters (PAEs) on the glucocorticoid receptor (GR) signaling. Potential (anti)glucocorticoid activities of six typical PAEs including di (2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), diethyl phthalate (DEP) and dimethyl phthalate (DMP) were evaluated on human GR using cell viability assessment, reporter gene expression analysis, mRNA analysis, and molecular docking and simulation. For all tested chemicals, co-treatment of DEHP and DINP with dexamethasone (DEX) exhibited a synergistic effect on GR transactivity in the reporter assays. Such co-treatment also synergistically enhanced DEX-induced upregulation of GR mediated gene (PEPCK, FAS and MKP-1) mRNA expression in HepG2 cells and A549 cells. Molecular docking and dynamics simulations showed that hydrophobic interactions may stabilize the binding between molecules and GR. In summary, DEHP and DINP may be involved in synergistic effects via human GR, which highlight the potential endocrine-disrupting activities of PAEs as contaminants.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, People's Republic of China
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, People's Republic of China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Jingyan Cui
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, People's Republic of China
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Jilin, People's Republic of China
| |
Collapse
|
18
|
Qian L, Liu J, Lin Z, Chen X, Yuan L, Shen G, Yang W, Wang D, Huang Y, Pang S, Mu X, Wang C, Li Y. Evaluation of the spinal effects of phthalates in a zebrafish embryo assay. CHEMOSPHERE 2020; 249:126144. [PMID: 32086060 DOI: 10.1016/j.chemosphere.2020.126144] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Phthalates (phthalate esters, PAEs) are commonly used as plasticizers and are emerging concerns worldwide for their potential influence on the environment and general public health. Thus, identification of the negative effects and involved mechanisms of PAEs is necessary. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) significantly induced spinal defects, such as inhibited spontaneous movement at 24 h post-fertilization (hpf), spine curvature and body length decrease at 96 hpf. The transcriptional level of the genes that are related to the development of the notochord (col8a1a and ngs), muscle (stac3, klhl41a and smyd2b) and skeleton (bmp2, spp1) were significantly altered by DEHP and DBP at 50 and 250 μg/L, which might be associated with the observed morphological changes. Notably, DBP and DEHP altered the locomotor activity of zebrafish larvae at 144 hpf, which might be due to the abnormal development of the spine and skeletal system. In conclusion, phthalates caused spinal birth defects in zebrafish embryos, induced transcriptional alterations of the spinal developmental genes, and led to abnormal behavior.
Collapse
Affiliation(s)
- Le Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China; College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Zhipeng Lin
- College of Resources and Environmental Sciences, Nanjing Agricultural University, People's Republic of China
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
Cromwell B, Dubnicka M, Dubrawski S, Levine M. Identification of 15 Phthalate Esters in Commercial Cheese Powder via Cyclodextrin-Promoted Fluorescence Detection. ACS OMEGA 2019; 4:17009-17015. [PMID: 31646248 PMCID: PMC6796234 DOI: 10.1021/acsomega.9b02585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
A challenge for detecting phthalates in commercial products such as cheese powders is that the composition of the products is highly complex, and current methods for detection rely on gas chromatography-mass spectrometry, which is not portable and cannot be used by individual consumers at a time and place of their choosing. Herein, we report the development of a new method for phthalate detection in cheese powder using cyclodextrin-promoted fluorescence detection, in which the presence of the phthalate analytes leads to highly analyte-specific changes in the fluorescence emission signal of a fluorophore bound in a cyclodextrin cavity. This method relies on subtle changes in the analyte affinity for the fluorophore and the cyclodextrin cavity and provides for markedly more straightforward sample preparation procedures and an extremely rapid read-out signal, with potential for the development of portable fluorescence sensors. Using this method, we were able to detect 15 phthalate esters with highly analyte-specific responses and at concentrations as low as 0.12 μM, which is well below regulatory levels of concern. Computational investigations strongly support the observed experimental trends.
Collapse
Affiliation(s)
- Benjamin Cromwell
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mara Dubnicka
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Sage Dubrawski
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | | |
Collapse
|
20
|
Zhang D, Wu L, Yao J, Vogt C, Richnow HH. Carbon and hydrogen isotopic fractionation during abiotic hydrolysis and aerobic biodegradation of phthalate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:559-566. [PMID: 30641383 DOI: 10.1016/j.scitotenv.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
We systematically investigated the changes of carbon and hydrogen isotope signatures of three phthalate esters (PAEs) during (i) abiotic hydrolysis over the pH range of 2, 7 and 10, and (ii) aerobic biodegradation initiated by hydrolysis by Rhodococcus opacus strain DSM 43250. Significant carbon isotopic fractionation was exhibited under all investigated conditions. Hydrogen isotopic fractionation was observed in some experiments and is hypothesized to be a secondary isotope effect due to the absence of a hydrogen bond cleavage during hydrolysis. Dual stable isotope analysis (Λ = Δδ2H/Δδ13C) resulting from abiotic hydrolysis and aerobic biodegradation showed similar magnitudes for dimethyl phthalate (DMP) and diethyl phthalate (DEP). The calculated carbon apparent kinetic isotope effects (AKIEC) for the hydrolytic pathway (CO bond cleavage) of PAEs fall within an expected range of 1.03-1.09, with the exception of lower AKIEC values for dibutyl phthalate (DBP) during hydrolysis at pH 2 and aerobic biodegradation. The lower AKIEC of DBP at pH 2 and aerobic biodegradation is likely related to a transition state from reactant-like to tetrahedral intermediate-like structure. Abiotic and biotic hydrolysis of PAEs resulted in similar AKIEC and Λ values due to the CO bond cleavage pathway, indicating the potential of dual isotope analysis to detect and quantify hydrolytic processes of PAEs in the environment. The pronounced primary carbon and typically low secondary or absent hydrogen isotopic fractionation might form a typical pattern to identify the hydrolytic reaction of PAEs in the environment. The characteristic Λ values of the hydrolytic reaction were different from Λ values of chemical oxidation of PAEs and showed diagnostic potential of dual HC isotope analysis to analyze reactions.
Collapse
Affiliation(s)
- Dan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Jun Yao
- Research Center of Environmental Science and Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Xueyuan Road No.29, Haidian District, Beijing 100083, PR China.
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany; Research Center of Environmental Science and Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Xueyuan Road No.29, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
21
|
Shen C, Wei J, Wang T, Wang Y. Acute toxicity and responses of antioxidant systems to dibutyl phthalate in neonate and adult Daphnia magna. PeerJ 2019; 7:e6584. [PMID: 30886775 PMCID: PMC6421057 DOI: 10.7717/peerj.6584] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Dibutyl phthalate (DBP) poses a severe threat to aquatic ecosystems, introducing hazards to both aquatic species and human health. The ecotoxic effects of DBP on aquatic organisms have not been fully investigated. This study investigates acute toxicity, oxidative damage, and antioxidant enzyme parameters in neonate and adult Daphnia magna exposed to DBP. The obtained results show comparable DBP toxic responses in neonates and adults. The median lethal concentrations (LC50) of DBP in neonates exposed for 24 and 48 h were 3.48 and 2.83 mg/L, respectively. The LC50 of adults for the same DBP exposure durations were 4.92 and 4.31 mg/L, respectively. Increased hydrogen peroxide and malondialdehyde were found in neonates and adults at both 24 and 48 h, while the total antioxidant capacity decreased. Superoxide dismutase activity increased significantly in neonates and adults exposed to 0.5 mg/L DBP, and subsequently diminished at higher DBP concentrations and prolonged exposure. Catalase and glutathione S-transferases activities both decreased markedly in neonates and adults. The changes observed were found to be time and concentration dependent. Overall, these data indicated that the acute toxic effects of DBP exposure on neonates were more pronounced than in adults, and oxidative injury may be the main mechanism of DBP toxicity. These results provide a functional link for lipid peroxidation, antioxidant capacity, and antioxidant enzyme levels in the Daphnia magna response to DBP exposure.
Collapse
Affiliation(s)
- Chenchen Shen
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Jie Wei
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Tianyi Wang
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Yuan Wang
- Key Laboratory of Hydrobiology in Liaoning Province, Dalian Ocean University, Dalian, China
| |
Collapse
|
22
|
Sutuyeva LR, Trudeau VL, Shalakhmetova TM. Mortality of embryos, developmental disorders and changes in biochemical parameters in marsh frog (Rana ridibunda) tadpoles exposed to the water-soluble fraction of Kazakhstan crude oil and O-Xylene. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:200-215. [PMID: 30829145 DOI: 10.1080/15287394.2019.1576562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of different concentrations of water-soluble fraction of crude oil (WSFO) from the Zhanazhol oil field (Aktobe region, Kazakhstan) and compared to o-xylene, prevalent in this oil, on growth and development of marsh frog (Rana ridibunda) were assessed. In subchronic experiments (7 d), a dose-related increase in mortality and incidence of deformities in embryos were observed. In chronic experiments (60 d; starting from the Gosner stage 26), a dose-dependent decrease in body weight, size and developmental delay by 3-4 stages were also detected. In addition, the content of lipid hyperoxide (LHO) and malondialdehyde (MDA), as well as activities of superoxide dismutase (SOD) and catalase (CAT) enzymes in liver of the tadpoles were determined at the end of chronic experiment. Exposure to 0.5 mg/L or 1.5 mg/L WSFO elevated the content of LHO by 76% and 86%, and MDA by 47% and 58% but decreased SOD activity by 26% and 49%, and CAT by 35% and 46%, respectively. A less pronounced adverse effect was found after chronic exposure to the same concentrations of o-xylene. In tadpole liver exposed to o-xylene levels of LHO was increased by 40% and 51%, MDA by 11% and 29%, while the activity of SOD was lowered by 18% and 41%, and CAT - by 13% and 37% in the 0.5 mg/L and 1.5 mg/L treatment groups, respectively. Data demonstrated the embryotoxic and teratogenic effects attributed to WSFO and o-xylene exposure which may involve oxidative stress mechanisms.
Collapse
|
23
|
The Effects of Epoxidized Acrylated Castor Oil (EACO) on Soft Poly (vinyl chloride) Films as a Main Plasticizer. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2019. [DOI: 10.2478/pjct-2018-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
In this work, an environmentally friendly type plasticizer was introduced. The synthesis consisted of two steps. In the first step, castor oil (CO) was acrylated and then the acrylated castor oil (ACO) was epoxidized with the presence of formic acid and hydrogen peroxide in the second step. The epoxidized acrylated castor oil (EACO) was characterized by FTIR and 1H-NMR techniques. The EACO was used as a main plasticizer to obtain plasticized PVC materials and compared with DOP. The results showed that EACO improved polyvinyl-chloride (PVC) plasticization performance and reduced Tg from 81.06°C to 1.40°C. Plasticized PVC materials with EACO showed similar mechanical properties and better thermal stability than DOP. EACO had better volatility stabilities, migration and solvent extraction in PVC than DOP. EACO can be used to replace DOP to prepare soft films.
Collapse
|
24
|
Arancio AL, Cole KD, Dominguez AR, Cohenour ER, Kadie J, Maloney WC, Cilliers C, Schuh SM. Bisphenol A, Bisphenol AF, di-n-butyl phthalate, and 17β-estradiol have shared and unique dose-dependent effects on early embryo cleavage divisions and development in Xenopus laevis. Reprod Toxicol 2018; 84:65-74. [PMID: 30579998 DOI: 10.1016/j.reprotox.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA), Bisphenol AF (BPAF), and di-n-butyl phthalate (DBP) are widespread compounds used in the production of plastics. We used Xenopus laevis to compare their effects on early embryo cell division and development. Directly after in vitro fertilizations, embryos were exposed to BPA, BPAF, DBP, or 17β-estradiol (E2) for up to 96 h. BPA (1-50 μM) and BPAF (0.003-25 μM) caused disrupted cleavage divisions, slowed cytokinesis, and cellular dissociation within 1-6 h. Flexures of the spinal cord, shorter body axis/tail, craniofacial malformations, and significant mortality occurred with environmentally relevant doses of BPAF (LC50 = 0.013 μM). DBP (10-200 μM) showed similar effects, but with severe ventral edema. There were both shared and unique effects of all compounds, with BPAF having the greatest potency and toxicity (BPAF > BPA > estradiol > DBP). These findings underscore the pleiotropic effects of widespread toxicants on early development and highlight the need for better toxicological characterization.
Collapse
Affiliation(s)
- Ashley L Arancio
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Kyla D Cole
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Anyssa R Dominguez
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Emry R Cohenour
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Julia Kadie
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - William C Maloney
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Chane Cilliers
- Department of Biology, School of Science, Saint Mary's College of California, United States
| | - Sonya M Schuh
- Department of Biology, School of Science, Saint Mary's College of California, United States.
| |
Collapse
|
25
|
Momplaisir N, Turgeon A, Flaws J, Yang J. The Effect of an Environmentally Relevant Phthalate Mixture on Primordial Germ Cells of Xenopus laevis Embryos. MICROPUBLICATION BIOLOGY 2018; 2018. [PMID: 32550375 PMCID: PMC7255810 DOI: 10.17912/micropub.biology.000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Aurora Turgeon
- University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61802
| | - Jodi Flaws
- University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61802
| | - Jing Yang
- University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61802
| |
Collapse
|
26
|
Hyun Kim D, Min Choi S, Soo Lim D, Roh T, Jun Kwack S, Yoon S, Kook Kim M, Sil Yoon K, Sik Kim H, Wook Kim D, Lee BM. Risk assessment of endocrine disrupting phthalates and hormonal alterations in children and adolescents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1150-1164. [PMID: 30415604 DOI: 10.1080/15287394.2018.1543231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Risk assessment and hormone evaluation were carried out for di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), endocrine disrupting chemicals (EDCs), in 302 Korean children (n = 223) and adolescents (n = 79) (< age 19). Urinary and serum concentrations of DEHP, MEHP (mono(2-ethylhexyl) phthalate), DBP, MBP (monobutyl phthalate), and PA (phthalic acid, a common final metabolite of phthalates) were detected in children and adolescents. Daily exposure levels were estimated to be 16.45 ± 36.50 μg/kg b.w./day for DEHP, which is one-third of the tolerable daily intake (TDI) value (50 μg/kg b.w./day), but 14 out of 302 participants had a hazard index (HI = intake/TDI) value >1. The mean daily exposure level of DBP was 1.23 ± 1.45 μg/kg b.w./day, which is one-eighth of the TDI value (10 μg/kg b.w./day), but 1 out of 302 participants had a HI value > 1. Positive correlations were observed between serum DBP or MEHP, and serum estradiol (E2) and/or luteinizing hormone (LH) in prepubescent children. In addition, serum MBP levels were found to be negatively correlated with serum triiodothyronine (T3) or thyroxine (T4) in male participants, and serum DEHP levels with serum thyroid stimulating hormone (TSH) in female adolescents. Low-density lipoprotein (LDL) levels were positively correlated with serum PA levels in children and adolescents. DEHP, DBP or its metabolites may be associated with altered hormone levels in children and adolescents. Data suggest that exposure levels of DEHP and DBP in Korean children need to be reduced to levels below TDI to protect them from EDC-mediated toxicities. Abbreviations: DBP: dibutyl phthalate; DEHP: di(2-ethylhexyl) phthalate; E2: estradiol; EDC: endocrine disrupting chemical; EFSA: European Food Safety Authority; FSH: follicle stimulating hormone; HDL: high density lipoprotein; HI: hazard index; LDL: low density lipoprotein; LH: luteinizing hormone; MEHP: mono(2-ethylhexyl) phthalate; MBP: monobutyl phthalate; PA: phthalic acid; PPAR: peroxisome proliferator-activated receptor gamma; PVC: polyvinyl chloride; T3: triiodothyronine; T4: thyroxine; TDI: tolerable daily intake; TG: triglyceride; TSH: thyroid stimulating hormone; UPLC/MS/MS: Ultra Performance Liquid Chromatography/Tandem Mass Spectrometry; WWF: World Wildlife Fund.
Collapse
Affiliation(s)
- Dong Hyun Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Seul Min Choi
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Duck Soo Lim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Taehyun Roh
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Seung Jun Kwack
- b College of Natural Science , Changwon National University , Changwon , Gyeongnam , Korea
| | - Sungpil Yoon
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Min Kook Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyung Sil Yoon
- c Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Dong Wook Kim
- d College of Statistics , Sungkyunkwan University , Seoul , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
27
|
Bissegger S, Pineda Castro MA, Yargeau V, Langlois VS. Phthalates modulate steroid 5-reductase transcripts in the Western clawed frog embryo. Comp Biochem Physiol C Toxicol Pharmacol 2018; 213:39-46. [PMID: 30055282 DOI: 10.1016/j.cbpc.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022]
Abstract
Phthalates are used worldwide in the manufacturing of plastics, added to cosmetic products, personal care products, pharmaceuticals, medical devices, and paints; and are widely detected in soil, surface water, and organism tissues. Phthalate esters have been previously shown to interfere with the endocrine system in vertebrates. However, few studies have investigated the effects of phthalates on testosterone-converting enzymes that affect hormone levels and reproduction. In the present study, we exposed the Western clawed frog (Silurana tropicalis) to 0.1, 1, and 10 μM diethylhexyl phthalate (DEHP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) during early amphibian embryonic development. Additional DBP exposures were conducted ex vivo using mature frog testes. Malformations and mRNA levels of genes associated to reproduction and oxidative stress were evaluated. 0.1 μM DEHP, DBP, and DEP induced an array of malformations, including incomplete gut coiling, edemas, and eye malformations. Moreover, all three phthalates increased the expression of androgen-related genes, such as steroid-5α-reductase 1, 2, 3, steroid-5β-reductase, and androgen receptor at concentrations ranging from 0.1 to 10 μM depending on the phthalate and gene. Data suggest that the phthalate esters tested are teratogens to the amphibian embryo and that these phthalates exhibit an androgenic activity in amphibians.
Collapse
Affiliation(s)
- Sonja Bissegger
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | | | - Viviane Yargeau
- Chemical Engineering Department, McGill University, Montreal, QC, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada; Institut de la recherche scientifique - Centre Eau Terre Environnement (INRS-ETE), Québec, QC, Canada.
| |
Collapse
|
28
|
Xu Y, Gye MC. Developmental toxicity of dibutyl phthalate and citrate ester plasticizers in Xenopus laevis embryos. CHEMOSPHERE 2018; 204:523-534. [PMID: 29684872 DOI: 10.1016/j.chemosphere.2018.04.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Citrate esters have been considered as alternatives to phthalate plasticizers. Being considered to have low toxicity in mammals, their toxicological information for aquatic animals remains poorly understood. We examined the developmental toxicity of citrate esters including tributyl O-acetylcitrate (ATBC), triethyl 2-acetylcitrate (ATEC), and trihexyl O-acetylcitrate (ATHC) together with dibutyl phthalate (DBP) based on the frog embryo teratogenesis assay-Xenopus (FETAX). ATBC has the lowest 96 h LC50 and 96 h EC50 values. In RT-qPCR, the ratio of bax and bcl-2 mRNA was significantly increased by DBP, but not by ATBC, ATEC and ATHC. DNA fragmentation was obvious in DBP-treated tadpoles, but not in those treated with ATBC and ATEC, whereas ATHC caused necrotic DNA degradation. Lipid hydroperoxide levels in tadpoles were significantly increased by DBP and ATHC, but not by ATBC and ATEC, suggesting that induction of oxidative stress by DBP and ATHC in embryos. In tadpoles with head abnormalities, basihyal bone, ceratohyal bone and Meckel's cartilage were frequently missed together with reduction in branchial gill bones. Col2a1 mRNA in the head of tadpoles was significantly decreased by low concentration of DBP, ATHC, and high concentration of ATEC. In stage 25 embryos FoxN3 mRNA, a master regulator for differentiation of neural crest cells to chondrocytes in head, was significantly decreased by DBP and ATHC, but not by ATBC and ATEC. In conclusion, ATEC was recommended as the alternative to phthalate plasticizer having the lowest developmental toxicity in amphibian embryos.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
29
|
Choi SM, Lim DS, Kim MK, Yoon S, Kacew S, Kim HS, Lee BM. Inhibition of di(2-ethylhexyl) phthalate (DEHP)-induced endocrine disruption by co-treatment of vitamins C and E and their mechanism of action. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:748-760. [PMID: 29842840 DOI: 10.1080/15287394.2018.1473262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The endocrine disrupting actions of di(2-ethylhexyl) phthalate (DEHP) on testicular functions are postulated to involve excess free radical generation. Thus the aim of this study was to examine the ability of antioxidant vitamins C and E to prevent DEHP-induced testicular disruption in male Sprague-Dawley (SD) rats. SD male rats were administered DEHP alone or DEHP with vitamin C and/or vitamin E for 30 days. DEHP alone increased the levels of testosterone (T) and reduced estradiol (E2) concentrations. Supplementation with antioxidant vitamins diminished or restored serum T levels noted in DEHP-treated rats to control values. In contrast vitamins C and E increased E2 levels to control in rats administered DEHP. Antioxidants significantly improved the decreased testicular levels of reduced glutathione and activity of superoxide dismutase compared to DEHP-treatment alone. Co-treatment of vitamins C and E also markedly improved the reduced epididymal sperm head counts and elevated levels of malondialdehyde (MDA) or 8-hydroxydeoxyguanosine (8-OHdG) induced by DEHP treatment. These results support the concept that the adverse actions of DEHP may be related to increased free radical generation while co-treatment with vitamins C and E significantly blocked the actions of DEHP on male testicular functions.
Collapse
Affiliation(s)
- Seul Min Choi
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Duck Soo Lim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Sungpil Yoon
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Sam Kacew
- b McLaughlin Centre for Population Health Risk Assessment , University of Ottawa , Ottawa , ON , Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|
30
|
Gardner S, Cline G, Mwebi N, Rayburn J. Natural tissue concentrations in adult Ambystoma maculatum and larval DNA damage from exposure to arsenic and chromium. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:512-524. [PMID: 29617195 DOI: 10.1080/15287394.2018.1455611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Arsenic (As) and chromium (Cr) are two contaminants that are detected in aquatic and terrestrial habitats. Using the spotted salamander, Ambystoma maculatum, to assess impacts from these contaminants may be advantageous as adults live and breed in such environments. Adult amphibians typically exhibit elevated tissue concentrations of contaminants present in their environment, while larval stages were found to exhibit increased sensitivity to pollutants. From January through March of 2015, during the spring breeding season, 5 adults and approximately 32 egg masses were collected from a local breeding site. Field levels of As and Cr ranged from 5.99 to 8.88 µg/L and 1.45 to 2 µg/L, respectively, while mean adult As tissue concentrations were 56.74 µg/g dry weight for heart, 0.92 µg/g for liver, and 1.21 µg/g for tail tissue. Mean tissue concentrations for Cr were 87.64 µg/g for heart, 1.47 µg/g for liver, and 6.92 µg/g for tail. Developing larvae that were collected from the field and exposed in a lab setting for 12 d to 0.2 or 20 mg/L of either As or Cr displayed little DNA damage attributed to As, but marked damage due to exposure to 20 mg/L Cr when assessed using the comet assay. Exposure to a mixture of either 0.25:0.1 or 25:10 mg/L As and Cr resulted in significant DNA damage at the lower concentration of 0.25:0.1 mg/L. As adult spotted salamanders were found to possess high concentrations of these contaminants in cardiac tissue, and larvae were shown to be susceptible to DNA damage from increased exposures, assessing impacts and potential declines of amphibian populations exposed to As and Cr is needed.
Collapse
Affiliation(s)
- Steven Gardner
- a Department of Biology , Jacksonville State University , Jacksonville , AL , USA
| | - George Cline
- a Department of Biology , Jacksonville State University , Jacksonville , AL , USA
| | - Nixon Mwebi
- b Department of Chemistry and Geosciences , Jacksonville State University , Jacksonville , AL , USA
| | - James Rayburn
- a Department of Biology , Jacksonville State University , Jacksonville , AL , USA
| |
Collapse
|
31
|
Zhang H, Hua Y, Chen J, Li X, Bai X, Wang H. Organism-derived phthalate derivatives as bioactive natural products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:125-144. [PMID: 30444179 DOI: 10.1080/10590501.2018.1490512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalates are widely used in polymer materials as a plasticizer. These compounds possess potent toxic variations depending on their chemical structures. However, a growing body of evidence indicates that phthalate compounds are undoubtedly discovered in secondary metabolites of organisms, including plants, animals and microorganisms. This review firstly summarizes biological sources of various phthalates and their bioactivities reported during the past few decades as well as their environmental toxicities and public health risks. It suggests that these organisms are one of important sources of natural phthalates with diverse profiles of bioactivity and toxicity.
Collapse
Affiliation(s)
- Huawei Zhang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Yi Hua
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Jianwei Chen
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| | - Xiuting Li
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing , China
| | - Xuelian Bai
- c College of Life and Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Hong Wang
- a School of Pharmaceutical Sciences , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|
32
|
Cao YF, Du Z, Zhu ZT, Sun HZ, Fu ZW, Yang K, Liu YZ, Hu CM, Dong PP, Gonzalez FJ, Fang ZZ. Inhibitory effects of fifteen phthalate esters in human cDNA-expressed UDP-glucuronosyltransferase supersomes. CHEMOSPHERE 2017; 185:983-990. [PMID: 28753904 PMCID: PMC6331009 DOI: 10.1016/j.chemosphere.2017.07.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 05/06/2023]
Abstract
Phthalate esters (PAEs) have been extensively used in industry as plasticizers and there remains concerns about their safety. The present study aimed to determine the inhibition of phthalate esters (PAEs) on the activity of the phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone was used to investigate the inhibition potentials of PAEs towards various s UGTs. PAEs exhibited no significant inhibition of UGT1A1, UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17, and limited inhibition of UGT1A6, UGT1A7 and UGT2B4. However, UGT1A9 was strongly inhibited by PAEs. In silico docking demonstrated a significant contribution of hydrogen bonds and hydrophobic interactions contributing to the inhibition of UGT by PAEs. The Ki values were 15.5, 52.3, 23.6, 12.2, 5.61, 2.79, 1.07, 22.8, 0.84, 73.7, 4.51, 1.74, 0.58, 6.79, 4.93, 6.73, and 7.23 μM for BBOP-UGT1A6, BBZP-UGT1A6, BBOP-UGT1A7, BBZP-UGT1A7, DiPP-UGT1A9, DiBP-UGT1A9, DCHP-UGT1A9, DBP-UGT1A9, BBZP-UGT1A9, BBOP-UGT1A9, DMEP-UGT1A9, DPP-UGT1A9, DHP-UGT1A9, DiBP-UGT2B4, DBP-UGT2B4, DAP-UGT2B4, and BBZP-UGT2B4, respectively. In conclusion, exposure to PAEs might influence the metabolic elimination of endogenous compounds and xenobiotics through inhibiting UGTs.
Collapse
Affiliation(s)
- Yun-Feng Cao
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zuo Du
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Zhi-Tu Zhu
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Hong-Zhi Sun
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Zhi-Wei Fu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China; Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Kun Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China
| | - Cui-Min Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pei-Pei Dong
- Institute (college) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, China.
| |
Collapse
|
33
|
Gardner S, Cline G, Mwebi N, Rayburn J. Developmental and interactive effects of arsenic and chromium to developing Ambystoma maculatum embryos: Toxicity, teratogenicity, and whole-body concentrations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:91-104. [PMID: 28085642 DOI: 10.1080/15287394.2016.1253514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Anthropogenic activity has contributed to elevated environmental concentrations of arsenic (As) and chromium (Cr). The spotted salamander, Ambystoma maculatum, may be useful for identifying developmental effects produced by exposure to these contaminants as adults breed and larvae develop in water that may contain As or Cr. Three sample sets among 700 developing larvae were exposed to a range of As, Cr, or 2.5:1 mixture of As:Cr concentrations, respectively. From these 700 larvae, samples containing approximately 24 larvae showed different patterns of whole-body As and Cr from individual and mixture exposure. Whole-body As concentrations were 20.27 and 45.4 µg/g dry weight for larvae exposed to 20 mg/L As and 25:10 mg/L As:Cr, respectively, while whole-body Cr concentrations were 24.8 and 22 µg/g dry weight for larvae exposed to 20 mg/L Cr and 25:10 As:Cr, respectively. Observed malformations included edema, tail kinking, facial deformities, and abnormal bending. Twelve-day lethal concentrations for As and Cr in Ambystoma maculatum larvae were 261.17 mg/L and 71.93 mg/L, respectively, while 12-d effective concentrations to induce malformations were 158.82 and 26.05 mg/L, giving teratogenic indices of 1.64 and 2.76 for individual metal exposure. Exposure to a mixture of As and Cr resulted in a response addition and yielded lower lethal and effective concentration values with a teratogenic index of 2.78, indicating that these contaminants are developmentally toxic at lower concentrations when exposed as a mixture. Data demonstrate that As and Cr affect development of amphibian larvae, and that Ambystoma maculatum may be a useful indicator of environmental toxicity for these metals.
Collapse
Affiliation(s)
- Steven Gardner
- a Department of Biology , Jacksonville State University , Jacksonville , Alabama , USA
| | - George Cline
- a Department of Biology , Jacksonville State University , Jacksonville , Alabama , USA
| | - Nixon Mwebi
- b Department of Physical and Earth Science , Jacksonville State University , Jacksonville , Alabama , USA
| | - James Rayburn
- a Department of Biology , Jacksonville State University , Jacksonville , Alabama , USA
| |
Collapse
|
34
|
Aalders J, Ali S, de Jong TJ, Richardson MK. Assessing Teratogenicity from the Clustering of Abnormal Phenotypes in Individual Zebrafish Larvae. Zebrafish 2016; 13:511-522. [PMID: 27560445 DOI: 10.1089/zeb.2016.1284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In previous publications, we described the population incidence of abnormalities in zebrafish larvae exposed to toxicants. Here, we examine the phenomenon of clustering or co-occurrence of abnormalities in individual larva. Our aim is to see how this clustering can be used to assess the specificity and severity of teratogenic effect. A total of 11,214 surviving larvae, exposed continuously from 1 day postfertilization (dpf) to one of 60 toxicants, were scored at 5 dpf for the presence of eight different abnormal phenotypes. These were as follows: pericardial edema, yolk sac edema, dispersed melanocytes, bent tail, bent trunk, hypoplasia of Meckel's cartilage, hypoplasia of branchial arches, and uninflated swim bladder. For 43/60 compounds tested, there was a concentration-dependent increase in the severity score (number of different abnormalities per larva). Statistical analysis showed that abnormalities tended to cluster (i.e., to occur in the same larva) more often than expected by chance alone. Yolk sac edema and dispersed melanocytes show a relatively strong association with one another and were typically the first abnormalities to appear in single larvae as the concentration of compound was increased. By contrast, hypoplastic branchial arches and hypoplastic Meckel's cartilage were only frequently observed in the most severely affected larvae. We developed a metric of teratogenicity (TC3/8), which represents the concentration of a compound that produces, on average, 3/8 abnormalities per larva. On this basis, the most teratogenic compounds tested here are amitriptyline, chlorpromazine hydrochloride, and sodium dodecyl sulfate; the least teratogenic is ethanol. We find a strong correlation between TC3/8 and LC50 of the 43 compounds that showed teratogenic effects. When we examined the ratio of TC3/8 to LC50, benserazide hydrochloride, copper (II) nitrate trihydrate, and nicotine had the highest specific teratogenicity, while aconitine, hesperidin, and ouabain octahydrate had the lowest. We conclude that analyzing the clustering of abnormalities per larva can provide an enriched teratogenic dataset compared with simple measurement of the population frequency of abnormalities.
Collapse
Affiliation(s)
- Jeffrey Aalders
- 1 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, the Netherlands
| | - Shaukat Ali
- 2 Department of Zoology, the University of Azad Jammu and Kashmir , Muzaffarabad, Pakistan
| | - Tom J de Jong
- 1 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, the Netherlands
| | - Michael K Richardson
- 1 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, the Netherlands
| |
Collapse
|