1
|
Oluyomi AO, Thrift AP, Olayode A, Symanski E, Roy H, El-Serag HB. Race/ethnicity and sex differences in the association between area-level arsenic exposure concentration and hepatocellular carcinoma (HCC) incidence rates in Texas. An ecological study. ENVIRONMENTAL RESEARCH 2024; 240:117538. [PMID: 37926230 DOI: 10.1016/j.envres.2023.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Texas has the highest rates of hepatocellular carcinoma (HCC) in the United States. Exposure to toxicants may play a role in liver disease. Several mechanisms of arsenic carcinogenesis have been proposed, however, the evidence in human populations is limited to associations between HCC and ingestion of arsenic-contaminated drinking water. Through an ecological study, we examined associations between ambient arsenic and HCC incidence rates. METHODS Primary outcome was HCC incidence rates based on Texas Cancer Registry (TCR) data. Primary exposure of interest was the simulated census-tract level estimate of arsenic exposure concentration (EC) from the U.S. Environmental Protection Agency 2011 National Air Toxics Assessment (NATA). We analyzed the association between the arsenic EC and HCC using the negative binomial Poisson regression model separately for six study groups that were based on race/ethnicity and sex. We adjusted the main analyses for selected characteristics. RESULTS Texas has 5265 census tracts and TCR reported 18,235 new ≥20 years old HCC diagnoses between 2007 and 2015. We observed significant differences along racial-ethnic and sex groups while accounting for socioeconomic deprivation, urban/rural residency, and senior residents' health insurance status. Census tracts with the highest arsenic EC had elevated rates of HCC among NH black men (Quintile 5 vs. Quintile 1: IRR = 2.18, 95% CI: 1.66-2.86), NH black women (Quintile 5 vs. Quintile 1: IRR = 1.72, 95% CI: 1.33-2.22) and NH white men (Quintile 5 vs. Quintile 1: IRR = 1.38, 95% CI: 1.24-1.54). The associations in the remaining study groups were either inconsistent or attenuated. CONCLUSIONS Our finding suggests a potential inhalation pathway for the Arsenic-HCC association; however, the ecological nature of our study precludes the interpretation of a causal link between exposure to aerial arsenic and HCC. This finding needs to be further examined in cohort studies.
Collapse
Affiliation(s)
- Abiodun O Oluyomi
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Adegboyega Olayode
- Division of Hospital Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Elaine Symanski
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Hemant Roy
- Section of Gastroenterology and Hepatology and Clinical Epidemiology and Comparative Effectiveness Program in the Health Services Research, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA.
| | - Hashem B El-Serag
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology and Hepatology and Clinical Epidemiology and Comparative Effectiveness Program in the Health Services Research, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA; Clinical Epidemiology and Comparative Effectiveness Program, Section of Health Services Research (IQuESt), Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA; Texas Medical Center Digestive Disease Center, Houston, TX, USA.
| |
Collapse
|
2
|
Magara G, Varello K, Pastorino P, Francese DR, Arsieni P, Pezzolato M, Masoero L, Messana E, Caldaroni B, Abete MC, Pederiva S, Squadrone S, Elia AC, Prearo M, Bozzetta E. Multi-Level System to Assess Toxicity in Water Distribution Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148469. [PMID: 35886313 PMCID: PMC9316929 DOI: 10.3390/ijerph19148469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
The toxicity of water samples from water distribution plants needs to be investigated further. Indeed, studies on the pro-oxidant effects driven by tap water are very limited. In this study, the water quality, pro-oxidant effects, and potential health risks driven by exposure to groundwater samples from two water plants (sites A and B) located in Northwestern Italy were investigated in a multi-level system. Physicochemical parameters and the absence of pathogens, cyanotoxins, and endocrine active substances indicated a good water quality for both sites. The 25 metals analyzed were found under the limit of quantification or compliant with the maximum limits set by national legislation. Water samples were concentrated by the solid-phase extraction system in order to assess the aquatic toxicity on Epithelioma papulosum cyprini (EPC) cell line. Levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase were evaluated through the Integrated Biomarkers Response (IBRv2) index. EPC cell line was found a sensible model for assessing the antioxidant responses driven by both water concentrates. A similar antioxidant response was shown by plots and IBRv2 suggesting a muted risk for the two sampling sites.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
- Correspondence: ; Tel.: +39-0112-686-251
| | | | - Paola Arsieni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Loretta Masoero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Erika Messana
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Sabina Pederiva
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (G.M.); (B.C.); (A.C.E.)
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (K.V.); (P.A.); (M.P.); (L.M.); (E.M.); (M.C.A.); (S.P.); (S.S.); (M.P.); (E.B.)
| |
Collapse
|
3
|
Ahmed T, Noman M, Ijaz M, Ali S, Rizwan M, Ijaz U, Hameed A, Ahmad U, Wang Y, Sun G, Li B. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112888. [PMID: 34649136 DOI: 10.1016/j.ecoenv.2021.112888] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 05/23/2023]
Abstract
Heavy metals (HMs) contamination in agricultural soils is a major concern for global food safety and human health. Although, various in-situ and ex-situ remediation methods have been used for the treatment of HMs contaminated soils, however, they also have many drawbacks viz., capital investment, toxicity, and environmental health hazards. Consequently, there is an urgent need to develop a novel method to ameliorate the toxicity of HMs in agricultural soils. In recent years, nanoparticles (NPs) have gained significant attention due to their potential applications in the environment and agriculture fields. Nanoremediation employs NPs that effectively reduce the contents of toxic HMs in the soil-plant system. Several studies have reported that the application of NPs in HMs-polluted soils, which reduced plant-available HMs concentration soils. However, the long-term efficiency of NPs immobilization is still unclear. Here, we provide details about the toxicity of HMs to environmental systems and potential applications NPs to alleviate the accumulation of HMs in agricultural soils. Finally, we present the mechanistic route of HMs-toxicity alleviation in plants by NPs application as well as their long-term efficiency and future prospects.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Amir Hameed
- Department of Biotechnology, Akhuwat-Faisalabad Institute of Research Science and Technology, Faisalabad, Pakistan
| | - Usama Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Magara G, Elia AC, Dörr AJM, Abete MC, Brizio P, Caldaroni B, Righetti M, Pastorino P, Scoparo M, Prearo M. Metal load and oxidative stress driven by organotin compounds on rainbow trout. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35012-35022. [PMID: 33665696 PMCID: PMC8275540 DOI: 10.1007/s11356-021-12984-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/11/2021] [Indexed: 05/17/2023]
Abstract
Tributyltin-based (TBT) antifouling paints, widely used for the treatment of flooded surfaces, have been banned in 2008 for their high environmental persistence and bioaccumulation in aquatic organisms. Although it is still present in aquatic ecosystems, oxidative stress driven by TBT has been still poorly investigated in fish. The aim of the study was to examine the time-course stress responses in liver of rainbow trout that received a single intraperitoneal injection of tributyltin chloride (TBTC) or tributyltin ethoxide (TBTE), both at a dose of 0.05 and 0.5 mg/kg. Levels of metallothioneins, total glutathione, malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase were evaluated at 3 and 6 days post-injection. Tin load was measured in the muscle of the same fish. Differences were observed in the time-course accumulation of tin with a clear dose-response relationship. Although individual oxidative stress biomarkers varied, the biomarker profile indicated different stress mechanisms caused by both TBTC and TBTE. The weak induction of metal-trapping metallothioneins and the changes of oxidative stress biomarkers suggested a stress-pressure in both TBT-treated trout, advising for an ecotoxicological risk for freshwater ecosystems.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Ambrosius Josef Martin Dörr
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Paola Brizio
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Marzia Righetti
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Melissa Scoparo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| |
Collapse
|
5
|
Ugbaja RN, Akinhanmi TF, James AS, Ugwor EI, Babalola AA, Ezenandu EO, Ugbaja VC, Emmanuel EA. Flavonoid-rich fractions from Clerodendrum volubile and Vernonia amygdalina extenuates arsenic-invoked hepato-renal toxicity via augmentation of the antioxidant system in rats. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Elia AC, Burioli E, Magara G, Pastorino P, Caldaroni B, Menconi V, Dörr AJM, Colombero G, Abete MC, Prearo M. Oxidative stress ecology on Pacific oyster Crassostrea gigas from lagoon and offshore Italian sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139886. [PMID: 32554117 DOI: 10.1016/j.scitotenv.2020.139886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 05/29/2023]
Abstract
Crassostrea gigas is a sentinel species along the Italian coast. In mussels, the levels of oxidative stress biomarkers can be modulated by several environmental pollutants or pathogens and also fluctuate in response to reproductive stages and seasonal changes. In this study, adult Crassostrea gigas were sampled during summer and autumn from two lagoon and two offshore sites along the Adriatic coast of Italy in order to investigate the influence of seasonality on oxidative stress biomarkers. Trace elements load of Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se and Zn suggests low contamination for lagoon and offshore sites. Levels of total glutathione, superoxide dismutase, catalase, glutathione peroxidases, glutathione reductase and glutathione S-transferase were analyzed in digestive gland and gills of the Pacific oysters in June, July, September and October. OsHV-1 and Vibrio aestuarianus were detected in lagoon sites, but both pathogens did not affect the biomarkers levels in both tissues. Although several biological responses were found different among the four sites in the same month, principal component analysis revealed similar trend in biomarkers levels between sites during the whole sampling period. On the other hand, a different biochemical pattern through the months emerged, suggesting that the level of oxidative stress biomarkers in both tissues may be related to seasonal progress and biological cycle of oysters sampled from the two lagoons and offshore sites along the Italian coasts of the Mediterranean Sea.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| | | | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Vasco Menconi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | | | - Giorgio Colombero
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| |
Collapse
|
7
|
Pastorino P, Elia AC, Caldaroni B, Menconi V, Abete MC, Brizio P, Bertoli M, Zaccaroni A, Gabriele M, Dörr AJM, Pizzul E, Prearo M. Oxidative stress ecology in brook trout (Salvelinus fontinalis) from a high-mountain lake (Cottian Alps). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136946. [PMID: 32007898 DOI: 10.1016/j.scitotenv.2020.136946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
High-mountain lakes are pristine ecosystems characterized by extreme environmental conditions. The atmospheric transport of pollutants from lowlands may add further stress to organisms inhabiting these environments. We investigated the environmental stress pressure on brook trout (Salvelinus fontinalis) from a high-mountain lake in the Cottian Alps (Piedmont, northwest Italy). To do this, males and females of brook trout were sampled from Balma Lake in summer (August) and autumn (October) 2017 in order to assess the influence of trace elements accumulation and environmental parameters (physicochemical parameters and nutrient characteristics of water) on oxidative stress biomarkers. Bioaccumulation of Al, As, Cd, Cr, Cu, Fe, Hg, Pb, Ni, Se, and Zn and metallothionein levels were measured in muscle tissue of males and females. Liver, gills, kidney, and spleen tissue samples were analyzed for superoxide dismutase, catalase, total glutathione peroxidase, selenium-dependent glutathione peroxidase, glutathione reductase, and glutathione S-transferase activity. Analysis of environmental parameters showed changes in biomarker levels with seasonal variations. Water temperature was significantly higher in summer than autumn (Wilcoxon test; p = .0078), while pH was significantly higher in autumn than in summer (Wilcoxon test; p = .0078). Sex-related differences in oxidative stress biomarkers in tissues were unremarkable, whereas seasonal variability of oxidative stress biomarkers was observed, with major differences occurred for liver in summer and for gills, kidney, spleen and muscle in autumn. Positive correlations between environmental parameters and biomarkers were noted. Major fluctuations in water temperature, pH, Cu, Pb and Hg produced changes in biomarker levels; however, increased food intake during the ice-free season was probably the main factor that influenced changes in oxidative stress biomarker levels in brook trout in this extreme ecosystem.
Collapse
Affiliation(s)
- Paolo Pastorino
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy; The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy.
| | - Antonia Concetta Elia
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Barbara Caldaroni
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Vasco Menconi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Paola Brizio
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Marco Bertoli
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Annalisa Zaccaroni
- Department of Veterinary Medical Science, University of Bologna, viale Vespucci 2, 47042 Cesenatico (FC), Italy
| | - Magara Gabriele
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Ambrosius Josef Martin Dörr
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Elisabetta Pizzul
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
8
|
Xin X, Wen T, Gong LB, Deng MM, Hou KZ, Xu L, Shi S, Qu XJ, Liu YP, Che XF, Teng YE. Inhibition of FEN1 Increases Arsenic Trioxide-Induced ROS Accumulation and Cell Death: Novel Therapeutic Potential for Triple Negative Breast Cancer. Front Oncol 2020; 10:425. [PMID: 32318339 PMCID: PMC7147381 DOI: 10.3389/fonc.2020.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, which is very difficult to treat and commonly develops resistance to chemotherapy. The following study investigated whether the inhibition of Flap Endonuclease 1 (FEN1) expression, the key enzyme in the base excision repair (BER) pathway, could improve the anti-tumor effect of arsenic trioxide (ATO), which is a reactive oxygen species (ROS) inducer. Our data showed that ATO could increase the expression of FEN1, and the knockdown of FEN1 could significantly enhance the sensitivity of TNBC cells to ATO both in vitro and in vivo. Further mechanism studies revealed that silencing FEN1 in combination with low doses of ATO might increase intracellular ROS and reduce glutathione (GSH) levels, by reducing the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2); elevating ROS leaded to apoptosis and p38 and JNK pathway activating. In conclusion, our study suggested the combination of FEN1 knockdown and ATO could induce TNBC cell death by promoting ROS production. FEN1 knockdown can effectively decrease the application concentrations of ATO, thus providing a possibility for the treatment of TNBC with ATO.
Collapse
Affiliation(s)
- Xing Xin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Li-Bao Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ming-Ming Deng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yue-E Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Goretti E, Pallottini M, Rossi R, La Porta G, Gardi T, Cenci Goga BT, Elia AC, Galletti M, Moroni B, Petroselli C, Selvaggi R, Cappelletti D. Heavy metal bioaccumulation in honey bee matrix, an indicator to assess the contamination level in terrestrial environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113388. [PMID: 31662258 DOI: 10.1016/j.envpol.2019.113388] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/10/2019] [Accepted: 10/11/2019] [Indexed: 05/13/2023]
Abstract
The most significant risk factor for organisms living in an environment contaminated by heavy metals is the metal bioavailability. Therefore, an efficient ecotoxicological approach to metal contamination is the measure of bioaccumulation level in target organisms. In this work, we characterized the heavy metal bioaccumulation in honey bees, Apis mellifera ligustica, collected at 35 sites from Umbria (Central Italy). The comparison of our data with selected Italian investigations revealed metal bioaccumulation in honey bee matrix of the same order of magnitude, with Cd showing a higher variability. To generalize the results, we developed a Honeybee Contamination Index (HCI) based on metal bioaccumulation in honey bees. An application of the HCI to the present dataset revealed cases of low (sixteen sites), intermediate (eighteen sites), and high (one site) metal contaminations. The comparison of HCI values from the Umbrian dataset with values calculated for other Italian and European metadata showed that most of the Umbrian sites fell in the portion of low and intermediate contamination conditions. HCI represented a reliable tool that provided a piece of concise information on metal contamination in terrestrial environments. Parallel to this effort, we have determined, the metal concentrations in the airborne particulate matter (PM10) at three regional background-monitoring stations in Umbria. These stations are representative of the average air quality of the areas of the investigated apiaries. A comparative analysis of metal enrichment factors in PM10, and honey bees suggested that the contamination in the bees was related to the PM10 values only to a minor extent. On the other side, a clear enrichment of metals such as Cd, Mn, Zn, and Cu in the honey bees appeared to depend on very local conditions and was probably related to the use of pesticides and fertilizers, and the resuspension of the locally contaminated soils and agriculture residues.
Collapse
Affiliation(s)
- E Goretti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy.
| | - M Pallottini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| | - R Rossi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| | - G La Porta
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| | - T Gardi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Borgo XX giugno 74, 06121 Perugia, Italy
| | - B T Cenci Goga
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - A C Elia
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| | - M Galletti
- ARPA Umbria, Unità Operativa Laboratorio Multisito Terni, 05022 Terni, Italy
| | - B Moroni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| | - C Petroselli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| | - R Selvaggi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| | - D Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce Di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
10
|
Alkurdi SSA, Herath I, Bundschuh J, Al-Juboori RA, Vithanage M, Mohan D. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? ENVIRONMENT INTERNATIONAL 2019; 127:52-69. [PMID: 30909094 DOI: 10.1016/j.envint.2019.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is an emerging contaminant on a global scale posing threat to environmental and human health. The relatively brief history of the applications of biochar and bone char has mapped the endeavors to remove As from water to a considerable extent. This critical review attempts to provide a comprehensive overview for the first time on the potential of bio- and bone-char in the immobilization of inorganic As in water. It seeks to offer a rational assessment of what is existing and what needs to be done in future research as an implication for As toxicity of human health risks through acute and chronic exposure to As contaminated water. Bio- and bone-char are recognized as promising alternatives to activated carbon due to their lower production and activation cost. The surface modification via chemical methods has been adopted to improve the adsorption capacity for anionic As species. Surface complexation, ion exchange, precipitation and electrostatic interactions are the main mechanisms involved in the adsorption of As onto the char surface. However, arsenic-bio-bone char interactions along with their chemical bonding for the removal of As in aqueous solution is still a subject of debate. Hence, the proposed mechanisms need to be scrutinized further using advanced analytical techniques such as synchrotron-based X-ray. Moving this technology from laboratory phase to field scale applications is an urgent necessity in order to establish a sustainable As mitigation in drinking water on a global scale.
Collapse
Affiliation(s)
- Susan S A Alkurdi
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; Northern Technical University, Engineering Technical College, Kirkuk, Iraq
| | - Indika Herath
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| | - Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; School of Science, Engineering and Information Technology, Federation University Australia, University Drive, Mt Helen, VIC 3350, Australia
| | - Meththika Vithanage
- Office of the Dean, Faculty of Applied Sciences, Jayewardenepura, Nugegoda, Sri Lanka; International Centre for Applied Climate Science, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Shi Q, Ju M, Zhu X, Gan H, Gu R, Wu Z, Meng Z, Dou G. Pharmacokinetic Properties of Arsenic Species after Intravenous and Intragastrical Administration of Arsenic Trioxide Solution in Cynomolgus Macaques Using HPLC-ICP-MS. Molecules 2019; 24:E241. [PMID: 30634677 PMCID: PMC6359110 DOI: 10.3390/molecules24020241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
A rapid and sensitive method was established for arsenic (As) speciation based on high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). This method was validated for the quantification of four arsenic species, including arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) in cynomolgus macaque plasma. Separation was achieved in just 3.7 min with an alkyl reverse phase column and highly aqueous mobile phase containing 20 mM citric acid and 5 mM sodium hexanesulfonate (pH = 4.3). The calibration curves were linear over the range of 5⁻500 ng·mL-1 (measured as As), with r > 0.99. The above method was validated for selectivity, precision, accuracy, matrix effect, recovery, carryover effect and stability, and applied in a comparative pharmacokinetic study of arsenic species in cynomolgus macaque samples following intravenous and intragastrical administration of arsenic trioxide solution (0.80 mg·kg-1; 0.61 mg·kg-1 of arsenic); in addition, the absolute oral bioavailability of the active ingredient AsIII of arsenic trioxide in cynomolgus macaque samples was derived as 60.9 ± 16.1%.
Collapse
Affiliation(s)
- Qiaoli Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Mingyan Ju
- Shanghai Yao Jian Medical Biotechnology Limited Company. National University of science and technology, University of Shanghai for Science and Technology, 128 Xiangyin Road, Yangpu District, Shanghai 200433, China.
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China.
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China.
| |
Collapse
|
12
|
Wei HJ, Liu L, Chen FL, Wang D, Wang L, Wang ZG, Jiang RC, Dong JF, Chen JL, Zhang JN. Decreased numbers of circulating endothelial progenitor cells are associated with hyperglycemia in patients with traumatic brain injury. Neural Regen Res 2019; 14:984-990. [PMID: 30762009 PMCID: PMC6404487 DOI: 10.4103/1673-5374.250577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia reduces the number of circulating endothelial progenitor cells, accelerates their senescence and impairs their function. However, the relationship between blood glucose levels and endothelial progenitor cells in peripheral blood of patients with traumatic brain injury is unclear. In this study, 101 traumatic brain injury patients admitted to the Department of Neurosurgery, Tianjin Medical University General Hospital or the Department of Neurosurgery, Tianjin Huanhu Hospital, China, were enrolled from April 2005 to March 2007. The number of circulating endothelial progenitor cells and blood glucose levels were measured at 1, 4, 7, 14 and 21 days after traumatic brain injury by flow cytometry and automatic biochemical analysis, respectively. The number of circulating endothelial progenitor cells and blood sugar levels in 37 healthy control subjects were also examined. Compared with controls, the number of circulating endothelial progenitor cells in traumatic brain injury patients was decreased at 1 day after injury, and then increased at 4 days after injury, and reached a peak at 7 days after injury. Compared with controls, blood glucose levels in traumatic brain injury patients peaked at 1 day and then decreased until 7 days and then remained stable. At 1, 4, and 7 days after injury, the number of circulating endothelial progenitor cells was negatively correlated with blood sugar levels (r = −0.147, P < 0.05). Our results verify that hyperglycemia in patients with traumatic brain injury is associated with decreased numbers of circulating endothelial progenitor cells. This study was approved by the Ethical Committee of Tianjin Medical University General Hospital, China (approval No. 200501) in January 2015.
Collapse
Affiliation(s)
- Hui-Jie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang-Lian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Liang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin; Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Zeng-Guang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jing-Fei Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jie-Li Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
13
|
Magara G, Khan FR, Pinti M, Syberg K, Inzirillo A, Elia AC. Effects of combined exposures of fluoranthene and polyethylene or polyhydroxybutyrate microplastics on oxidative stress biomarkers in the blue mussel ( Mytilus edulis). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:616-625. [PMID: 31232673 DOI: 10.1080/15287394.2019.1633451] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A growing interest in developing and commercialization of new eco-friendly plastic polymers is occurring attributed to the impact of marine plastics debris and microplastics that result from the degradation of oil-based polymers as these substances adversely affect ecosystem health. Recently, polyhydroxybutyrate (PHB) has become of interest due to its biodegradability and physicochemical properties. However, biological consequences resulting from bioplastics exposure remain to be determined. Further, few data are apparently available regarding the potential for bioplastics to act as a vector for exogenous chemicals in the environment. The aim of the study was to compare the effects of polyethylene (PE MPs) and polyhydroxybutyrate (PHB MPs) microplastics administered alone or in combination with fluoranthene (Flu) on detoxifying enzymes in digestive glands and gills of Mytilus edulis. Blue mussels were exposed for 96h to eight experimental groups: control, Flu-only, PE MPs-only, PHB MPs-only, PE MPs-Flu co-exposure, PHB MPs-Flu co-exposure, Flu-incubated PE MPs, and Flu-incubated PHB MPs. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione S-transferase (GST), and glutathione reductase (GR) were found to be significantly susceptible to Flu and plastics in both tissues. Interestingly, a single exposure to PHB MPs led to decreased activity levels of CAT and GST in gills, SOD in digestive glands and SeGPx in both tissues. In co-exposure and incubation treatments, biochemical responses were generally comparable with those exerted by PE MPs or PHB MPs only, suggesting an apparent absence of combined effects of microplastics with the pollutant. Data demonstrated the ecotoxicological impact of bioplastics materials on digestive glands and gills of Mytilus edulis.
Collapse
Affiliation(s)
- Gabriele Magara
- a Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Farhan R Khan
- b Department of Science and Environment, Roskilde University , Roskilde , Denmark
| | - Marika Pinti
- a Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Kristian Syberg
- b Department of Science and Environment, Roskilde University , Roskilde , Denmark
| | - Angelo Inzirillo
- a Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| | - Antonia Concetta Elia
- a Department of Chemistry, Biology and Biotechnology, University of Perugia , Perugia , Italy
| |
Collapse
|