1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Shen L, Zhang C, Zhu G. Low-density lipoprotein receptor-related protein 5/6 promotes endometrial cancer progression and cancer cell immune escape. J Biochem Mol Toxicol 2024; 38:e23677. [PMID: 38528715 DOI: 10.1002/jbt.23677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
The study investigated the potential association of the low-density lipoprotein (LDL) genome with endometrial cancer progression based on the Gene Expression Omnibus data set and The Cancer Genome Atlas data set. Differential and weighted gene coexpression network analysis was performed on endometrial cancer transcriptome datasets GSE9750 and GSE106191. The protein-protein interaction network was built using LDL-receptor proteins and the top 50 tumor-associated genes. Low-density lipoprotein-related receptors 5/6 (LRP5/6) in endometrial cancer tissues were correlated with oncogenes, cell cycle-related genes, and immunological checkpoints using Spearman correlation. MethPrimer predicted the LRP5/6 promoter CpG island. LRP2, LRP6, LRP8, LRP12, low-density lipoprotein receptor-related protein-associated protein, and LRP5 were major LDL-receptor-related genes associated with endometrial cancer. LRP5/6 was enriched in various cancer-related pathways and may be a key LDL-receptor-related gene in cancer progression. LRP5/6 may be involved in the proliferation process of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may be involved in the proliferation of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may promote the immune escape of cancer cells by promoting the expression of immune checkpoints, promoting endometrial cancer progression. The MethPrimer database predicted that the LRP5/6 promoter region contained many CpG islands, suggesting that DNA methylation can occur in the LRP5/6 promoter region. LRP5/6 may aggravate endometrial cancer by activating the phosphoinositide 3-kinase/protein kinase B pathway.
Collapse
Affiliation(s)
- Lifan Shen
- Department of Gynecology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Chen Zhang
- Department of Central Lab, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Genhai Zhu
- Department of Gynecology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| |
Collapse
|
3
|
Zhang H, Xie P. The mechanisms of microcystin-LR-induced genotoxicity and neurotoxicity in fish and mammals: Bibliometric analysis and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167018. [PMID: 37709090 DOI: 10.1016/j.scitotenv.2023.167018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a typical cyanobacterial toxin, and the threat of this toxin is increasing among organisms. Despite extensive toxicological studies on MC-LR, there is no comprehensive analysis based on previously published data. Therefore, we conducted bibliometric analysis and meta-analysis to identify research hotspots and to elucidate the key mechanism of the relationship between MC-LR and genotoxicity and neurotoxicity among fish and mammals. One of the hotspots is toxic mechanisms (indicated by the frequent appearance of oxidative stress, DNA damage, apoptosis, neurotoxicity, genotoxicity, ROS, comet assay, signalling pathway, and gene expression indicate as keywords). The density visualization shows a high frequency of "microcystin-LR" and "toxicology," and the overlay visualization emphasizes the prominence of "neurotoxicity" in recent years. These findings confirm the importance of studying MC-LR toxicity. Meta-analysis indicated that in both fish and mammals, MC-LR exposure increased ROS levels by 294 % and increased DNA damage biomarkers by 174 % but decreased neurotoxicity biomarkers by 9 %. Intergroup comparisons revealed that the exposure concentration of MC-LR was significantly correlated with genotoxicity and neurotoxicity levels in both fish and mammals (p < 0.05). Furthermore, the random forest (RF) model revealed that exposure concentration was the primary determinant associated with the induction of ROS, genotoxicity, and neurotoxicity induced by MC-LR. This is likely the dominant mechanism by which excessive ROS production induced by MC-LR causes oxidative stress, ultimately leading to genotoxicity and neurotoxicity in both fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
4
|
Liu X, Ye JC, Li F, Gao RJ, Wang XX, Cheng JL, Liu BL, Xiang L, Li YW, Cai QY, Zhao HM, Mo CH, Li QX. Revealing microcystin-LR ecotoxicity to earthworm (Eisenia fetida) at the intestinal cell level. CHEMOSPHERE 2023; 311:137046. [PMID: 36419272 DOI: 10.1016/j.chemosphere.2022.137046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Potential adverse effects of microcystin-LR (MC-LR) on soil invertebrates have not been studied. Here we investigated the mechanism of MC-LR toxicity to earthworm (Eisenia fetida) intestine at the individual level and at the cellular level. The results showed an inverse relationship between the bodyweight and survival rate of earthworms over exposure time- and MC-LR doses in soil. Dose-dependent intestinal lesions and disturbances of enzymatic activities (e.g., cellulase, Na+/K+-ATPase, and AChE) were observed, which resulted in intestinal dysfunction. Excessive reactive oxygen species generation led to DNA damage and lipid peroxidation of intestinal cells. The oxidative damage to DNA prolonged cell cycle arrest at the G2/M-phase transition in mitosis, thus stimulating and accelerating apoptosis in earthworm intestine. MC-LR target earthworm intestine tissue. MC-LR at low concentrations can damage earthworm intestine regardless of exposure routes (oral or contact). High toxicity of MC-LR to earthworms delineates its ecological risks to terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiang Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong-Jun Gao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiao-Xiao Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, 510642, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
5
|
Wang Y, Huang X, Su Z, He J, Zhao N, Nie L, Tang Y, Zhao H, Nong Q. The Glu69Asp Polymorphism of EME1 Gene is Associated with an Increased Risk of Hepatocellular Carcinoma in Guangxi Population, China. Int J Gen Med 2022; 15:7855-7866. [PMID: 36281338 PMCID: PMC9587733 DOI: 10.2147/ijgm.s383261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background The dysfunction of Essential meiotic endonuclease 1 homolog 1 (EME1) can lead to genomic instability and tumorigenesis. Single nucleotide polymorphisms (SNPs) in the EME1 gene have been reported to be associated with the risk of several cancers, but its association with hepatocellular carcinoma (HCC) has not been investigated. This study aimed to determine the association between EME1 SNPs and the risk of HCC. Methods This study included 645 HCC patients and 649 healthy controls from a Guangxi population of Southern China, and genotyped three functional SNPs (Glu69Asp: rs3760413A>C, Ile350Thr: rs12450550T>C, and rs11868055A>G) of the EME1 gene utilizing the Agena MassARRAY platform. Results The rs3760413C variant genotypes (AC+CC: Glu/Asp+Asp/Asp) conferred a 1.419-fold risk of HCC compared to the AA (Glu/Glu) genotype (adjusted OR = 1.419, 95% CI = 1.017–1.980), and the allele C increased the risk of HCC in a dose-dependent manner (Ptrend = 0.017). Moreover, the effects of the rs3760413C variant genotypes were more pronounced in individuals who drank pond/ditch water (adjusted OR = 3.956, 95% CI = 1.413–11.076) than in those who never drank (P = 0.033). We further observed that a potential carcinogen microcystin-LR induced more DNA oxidative damages in peripheral blood mononuclear cells from the carriers of rs3760413C variant genotypes than those from the subjects with AA genotype (P = 0.006). A nomogram was also constructed combining the rs3760413A>C polymorphism and environmental risk factors for predicting HCC risk with a good discriminatory ability (concordance index = 0.892, 95% CI: 0.874–0.911) and good calibration (mean absolute error = 0.005). Conclusion Our data suggest that the Glu69Asp missense polymorphism (rs3760413) of EME1 gene is associated with the risk of HCC, which may be a susceptible biomarker of HCC in the Guangxi population.
Collapse
Affiliation(s)
- Youxin Wang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xinglei Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Zhaohui Su
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Junquan He
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Na Zhao
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Liyun Nie
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yanmei Tang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Huiliu Zhao
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Qingqing Nong
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, People’s Republic of China,Correspondence: Qingqing Nong, Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China, Tel +86 771-5358146, Fax +86 771-5350823, Email
| |
Collapse
|
6
|
Yang Y, Wang H, Wang X, Chen L, Liu W, Cai D, Deng S, Chu H, Liu Y, Feng X, Chen J, Chen M, Wang C, Liu R, Pu Y, Ding Z, Cao D, Long D, Cao Y, Yang F. Long-term environmental levels of microcystin-LR exposure induces colorectal chronic inflammation, fibrosis and barrier disruption via CSF1R/Rap1b signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129793. [PMID: 36029734 DOI: 10.1016/j.jhazmat.2022.129793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023]
Abstract
Microcystin-LR (MC-LR) is a very common toxic cyanotoxins threating ecosystems and the public health. This study aims to explore the long-term effects and potential toxicity mechanisms of MC-LR exposure at environmental levels on colorectal injury. We performed histopathological, biochemical indicator and multi-omics analyses in mice with low-dose MC-LR exposure for 12 months. Long-term environmental levels of MC-LR exposure caused epithelial barrier disruption, inflammatory cell infiltration and an increase of collagen fibers in mouse colorectum. Integrated proteotranscriptomics revealed differential expression of genes/proteins, including CSF1R, which were mainly involved in oxidative stress-induced premature senescence and inflammatory response. MC-LR induced chronic inflammation and fibrosis through oxidative stress and CSF1R/Rap1b signaling pathway were confirmed in cell models. We found for the first time that long-term environmental levels of MC-LR exposure caused colorectal chronic inflammation, fibrosis and barrier disruption via a novel CSF1R/Rap1b signaling pathway. Moreover, MC-LR changed the gut microbiota and microbial-related metabolites in a vicious cycle aggravating colorectal injury. These findings provide novel insights into the effects and toxic mechanisms of MC-LR and suggest strategies for the prevention and treatment of MC-caused intestinal diseases.
Collapse
Affiliation(s)
- Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Chen
- First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Danping Cai
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuxiang Deng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Hanyu Chu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ying Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Chengkun Wang
- Department of Medical Pathology, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Zhen Ding
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Deliang Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Zhang H, Wang Z, Liu Y, Xie P. Exploring the direct effects of microcystin-LR on DNA via using cross-technical means. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113841. [PMID: 36068764 DOI: 10.1016/j.ecoenv.2022.113841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is the most toxic and abundant microcystin produced by cyanobacteria. Previous studies have demonstrated that MC-LR can lead to DNA damage by increasing intracellular reactive oxygen species content to induce oxidative stress. However, the direct effect of MC-LR on DNA has not been fully described. In this study, the direct effect of MC-LR on DNA was explored by using spectral analysis and molecular biology technology. First, the fluorescent probe Bptp-R2 was developed to monitor different types of DNA and explore the direct interaction between DNA and MC-LR. The significant differences in the fluorescence of probe-plasmid DNA and probe-ds DNA at various MC-LR concentrations (0, 5, 10, 20, and 30 μmol/L) and MC-LR exposure times (0, 6, 12, and 24 h) showed that the direct interaction between DNA and MC-LR was significant (P ≤ 0.01). Gel electrophoresis demonstrated that the direct interaction between DNA and MC-LR cannot cause DNA strand breaks or change DNA configuration. Then, PCR experiments revealed that the direct interaction between DNA and MC-LR cannot affect DNA replication in a PCR system (P ≤ 0.01). This study discovered that the effects of MC-LR on DNA originate mainly from the secondary effects of MC-LR rather than from the direct interaction between DNA and MC-LR.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Zhaomin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, P.R. China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P.R. China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P.R. China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.
| |
Collapse
|
8
|
Jafari N, Abdolahnejad A, Behnami A, Mohammadi A, Fanaei F, Ebrahimi A. Evaluation of microcystin-LR photocatalytic degradation in aqueous solutions by BiVO 4/NaY-Zeolite nanocomposite: determination of optimum conditions by response surface methodology (RSM). TOXIN REV 2022; 41:564-576. [DOI: 10.1080/15569543.2021.1916951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Negar Jafari
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Abdolahnejad
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Amir Mohammadi
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Farzad Fanaei
- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Ebrahimi
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. SUSTAINABILITY 2021. [DOI: 10.3390/su13105625] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitrogen (N) is a key input to food production. Nearly half of N fertilizer input is not used by crops and is lost into the environment via emission of gases or by polluting water bodies. It is essential to achieve production levels, which enable global food security, without compromising environmental security. The N pollution level expected by 2050 is projected to be 150% higher than in 2010, with the agricultural sector accounting for 60% of this increase. In this paper, we review the status of the pollution from N fertilizers worldwide and make recommendations to address the situation. The analysis reviews the relationship between N fertilizer use, N use efficiency, no-point pollution, the role of farmer management practices, and policy approaches to address diffuse pollution caused by N fertilization. Several studies show a lack of information as one of the main hurdles to achieve changes in habits. The objective of this study is to highlight the gravity of the current global non-point pollution as well as the need for a communication effort to make farmers aware of the relationship between their activity and N pollution and, therefore, the importance of their fertilizer management practices.
Collapse
|
10
|
Yilmaz S, Ülger TG, Göktaş B, Öztürk Ş, Karataş DÖ, Beyzi E. Cyanotoxin genotoxicity: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1922922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Serkan Yilmaz
- Department of Midwifery, Faculty of Nursing, University of Ankara, Institute for Forensic Sciences, Ankara, Turkey
| | - Taha Gökmen Ülger
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Bayram Göktaş
- Department of Health Management, Faculty of Health Sciences, University of Ankara, Ankara, Turkey
| | - Şahlan Öztürk
- Department of Environmental Engineering, Faculty of Engineering, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Duygu Öztaş Karataş
- Department of Midwifery, Faculty of Nursing, University of Ankara, Ankara, Turkey
| | - Ebru Beyzi
- Vocational School of Health Services, University of Gazi, Ankara, Turkey
| |
Collapse
|
11
|
|
12
|
Ebrahimi A, Jafari N, Ebrahimpour K, Karimi M, Rostamnia S, Behnami A, Ghanbari R, Mohammadi A, Rahimi B, Abdolahnejad A. A novel ternary heterogeneous TiO 2/BiVO 4/NaY-Zeolite nanocomposite for photocatalytic degradation of microcystin-leucine arginine (MC-LR) under visible light. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111862. [PMID: 33429321 DOI: 10.1016/j.ecoenv.2020.111862] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a carcinogenic toxin, produced by cyanobacteria. The release of this toxin into drinking water sources can threaten public health and environmental safety. Therefore, effective MC-LR removal from water resources is necessary. In the present study, the hydrothermal method was used to synthesize a novel ternary BiVO4/TiO2/NaY-Zeolite (B/T/N-Z) nanocomposite for MC-LR degradation under visible light. FESEM, FTIR, XRD, and DRS were performed for characterizing the nanocomposite structure. Also, the Response Surface Methodology (RSM) was applied to determine the impact of catalyst dosage, pH, and contact time on the MC-LR removal. High-performance liquid chromatography was performed to measure the MC-LR concentration. Based on the results, independent parameters, including contact time, catalyst dosage, and pH, significantly affected the MC-LR removal (P < 0.05). In other words, increasing the contact time, catalyst dosage, and acidic pH had positive effects on MC-LR removal. Among these variables, the catalyst dosage, with the mean square and F-value of 1041.37 and 162.84, respectively, had the greatest effect on the MC-LR removal efficiency. Apart from the interaction between the catalyst dosage and contact time, the interaction effects of other parameters were not significant. Also, the maximum MC-LR removal efficiency was 99.88% under optimal conditions (contact time = 120 min, catalyst dosage = 1 g/L, and pH = 5). According to the results, the B/T/N-Z nanocomposite, as a novel and effective photocatalyst could be used to degrade MC-LR from polluted water.
Collapse
Affiliation(s)
- Afshin Ebrahimi
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran and department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Jafari
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran and department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran and department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbobe Karimi
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), Tehran. Iran
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Ghanbari
- Department of Environmental Health Engineering, Faculty of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Mohammadi
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Behzad Rahimi
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran and department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Abdolahnejad
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
13
|
Sorlini S, Collivignarelli C, Carnevale Miino M, Caccamo FM, Collivignarelli MC. Kinetics of Microcystin-LR Removal in a Real Lake Water by UV/H 2O 2 Treatment and Analysis of Specific Energy Consumption. Toxins (Basel) 2020; 12:toxins12120810. [PMID: 33371280 PMCID: PMC7766062 DOI: 10.3390/toxins12120810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/27/2023] Open
Abstract
The hepatotoxin microcystin-LR (MC-LR) represents one of the most toxic cyanotoxins for human health. Considering its harmful effect, the World Health Organization recommended a limit in drinking water (DW) of 1 µg L−1. Due to the ineffectiveness of conventional treatments present in DW treatment plants against MC-LR, advanced oxidation processes (AOPs) are gaining interest due to the high redox potential of the OH• radicals. In this work UV/H2O2 was applied to a real lake water to remove MC-LR. The kinetics of the UV/H2O2 were compared with those of UV and H2O2 showing the following result: UV/H2O2 > UV > H2O2. Within the range of H2O2 tested (0–0.9 mM), the results showed that H2O2 concentration and the removal kinetics followed an increasing quadratic relation. By increasing the initial concentration of H2O2, the consumption of oxidant also increased but, in terms of MC-LR degraded for H2O2 dosed, the removal efficiency decreased. As the initial MC-LR initial concentration increased, the removal kinetics increased up to a limit concentration (80 µg L−1) in which the presence of high amounts of the toxin slowed down the process. Operating with UV fluence lower than 950 mJ cm−2, UV alone minimized the specific energy consumption required. UV/H2O2 (0.3 mM) and UV/H2O2 (0.9 mM) were the most advantageous combination when operating with UV fluence of 950–1400 mJ cm−2 and higher than 1400 mJ cm−2, respectively.
Collapse
Affiliation(s)
- Sabrina Sorlini
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy;
- Correspondence:
| | - Carlo Collivignarelli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy;
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
| | - Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy; (M.C.M.); (F.M.C.); (M.C.C.)
- Interdepartmental Centre for Water Research, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
14
|
Wang R, Liu X, Wu J, Liu H, Wang W, Chen X, Yuan L, Wang Y, Du X, Ma Y, Losiewicz MD, Zhang X, Zhang H. Role of microRNA-122 in microcystin-leucine arginine-induced dysregulation of hepatic iron homeostasis in mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:822-830. [PMID: 32170997 DOI: 10.1002/tox.22918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide hepatotoxin produced by cyanobacteria. MicroRNA-122 (miR-122) is specifically expressed in the liver. This study focuses on the role of miR-122 in MC-LR-induced dysregulation of hepatic iron homeostasis in C57BL/6 mice. The thirty mice were randomly divided into five groups (Control, 12.5 μg/kg·BW MC-LR, 25 μg/kg·BW MC-LR, Negative control agomir and 25 μg/kg·BW MC-LR + miR-122 agomir). The results show that MC-LR decreases the expressions of miR-122, Hamp, and its related regulators, while increasing the content of hepatic iron and the expressions of FPN1 and Tmprss6. Furthermore, miR-122 agomir pretreatment improves MC-LR induced dysregulation of hepatic iron homeostasis by arousing the related regulators and reducing the expression of Tmprss6. These results suggest that miR-122 agomir can prevent the accumulation of hepatic iron induced by MC-LR, which may be related to the regulation of hepcidin by BMP/SMAD and IL-6/STAT signaling pathways.
Collapse
Affiliation(s)
- Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wenjun Wang
- School of Public Health, Jining Medical University, Jining, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas, USA
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas, USA
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
15
|
Wang X, Li Y, Xiao H, Zhang M, Bao T, Luo X, Chen S. Genotoxicity of microcystin-LR in mammalian cells: Implication from peroxynitrite produced by mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110408. [PMID: 32179236 DOI: 10.1016/j.ecoenv.2020.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is a widely known hepatotoxin which could induce the occurrence and metastasis of hepatocellular carcinoma. In recent years, with the frequent outbreak of cyanobacteria, the harm of MC-LR has gradually attracted more attention. Hence, this study focused on the effect of MC-LR on DNA damage in HepG2 cells, identifying the types and sources of free radicals that make an important function on this issue. Our data suggested that MC-LR induced concentration- and time-dependent increasement of DNA double-strand breaks (DSBs). After exposure to 1 μM MC-LR for 3 days, the protein expression and immunofluorescence staining of γ-H2AX was significantly increased. Using a scavenger of mitochondrial O2.- (4-hydroxy-tempo), a inhibitor of mitochondrial NOS (7-nitroindazole), and a scavenger of ONOO- (uric acid), it was revealed that ONOO- originated from mitochondria made a significant contribution to the genotoxicity of MC-LR. Moreover, a significant decreasement of mitochondrial membrane potential (MMP) was observed. These findings suggested that peroxynitrite targeting mitochondria plays a vital role in the MC-LR-induced genotoxic response in mammalian cells.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Yintao Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Hourong Xiao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Teng Bao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xun Luo
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Shaopeng Chen
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
16
|
Zhong Y, Shen L, Ye X, Zhou D, He Y, Li Y, Ding Y, Zhu W, Ding J, Zhang H. Neurotoxic Anatoxin-a Can Also Exert Immunotoxicity by the Induction of Apoptosis on Carassius auratus Lymphocytes in vitro When Exposed to Environmentally Relevant Concentrations. Front Physiol 2020; 11:316. [PMID: 32351401 PMCID: PMC7174720 DOI: 10.3389/fphys.2020.00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of Carassius auratus in vitro by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria. DNA fragmentations clearly showed a ladder pattern in agarose gel electrophoresis, which demonstrated that the apoptosis of fish lymphocytes was caused by exposure to ANTX-a. Flow cytometry results showed that the apoptotic percentage of fish lymphocytes exposed to 0.01, 0.1, 1, and 10 mg/L of ANTX-a for 12 h reached 18.89, 22.89, 39.23, and 35.58%, respectively. ANTX-a exposure induced a significant increase in reactive oxygen species (ROS) and malonaldehyde (MDA) in lymphocytes. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and the glutathione (GSH) content of the 0.01 mg/L ANTX-a-treated group decreased significantly by about 41, 46, 67, and 54% compared with that of the control group (p < 0.01), respectively. Although these observations were dose-dependent, these results suggested that ANTX-a can induce lymphocyte apoptosis via intracellular oxidative stress and destroy the antioxidant system after a short exposure time of only 12 h. Besides neurotoxicity, ANTX-a may also be toxic to the immune system of fish, even when the fish are exposed to environmentally relevant concentrations, which clearly demonstrated that the potential health risks induced by ANTX-a in aquatic organisms requires attention.
Collapse
Affiliation(s)
- Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Dongren Zhou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yunyi He
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weiqin Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiafeng Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Feng H, Clara T, Huang F, Wei J, Yang F. Identification and characterization of the dominant Microcystis sp. cyanobacteria detected in Lake Dong Ting, China. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1143-1150. [PMID: 31872786 DOI: 10.1080/15287394.2019.1700604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The presence of cyanobacteria in drinking water, aquatic foods and bathing water has created a significant major problem to global public health as these toxins induce damage in various organ including liver, cardiovascular, intestinal and central nervous systems. Although the morphologic, phylogenetic and toxicogenetic characteristics of cyanobacteria were identified in several lakes in China, many freshwater sources such as Dong Ting Lake, Hunan Province, China remain to be determined. Since the presence of these cyanobacteria may potentially affect human health, the aim of this study was to isolate, identify and characterize the most frequent occurring bloom-forming cyanobacteria in Dong Ting Lake, Hunan Province, China, which can provide information on the safety of utilization of this water source for drinking water, agriculture and recreation. Samples collected from the surface water of Dong Ting Lake were subjected to serial dilution in the lab for morphological analysis. Data demonstrated the morphological features were 2-5 µm diameters with rounded shapes and green color resembling Microcystis sp. The isolated cyanobacterial strain obtained from surface water samples in Dong Ting Lake was termed Microcystis sp. YFM2. The MC concentration was detected by enzyme-linked immunosorbent assay (ELISA) and found to be 92.88 µg/107 cells in Microcystis sp. YFM2. By polymerase chain reaction (PCR) results indicated that Microcystis sp. YFM2 isolated from Dong Ting Lake contained synthetase genes (mcyA-C). Our findings indicated that the dominant cyanobacteria Microcystis sp. YFM2 isolated from the freshwater Dong Ting Lake demonstrated morphologic, phylogenetic and toxicogenetic properties resembling a toxin generating cyanobacterium. Based upon this knowledge, it is essential to monitor the use of this Lake for future domestic, agricultural and recreational purposes.
Collapse
Affiliation(s)
- Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tezi Clara
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Feiyu Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jia Wei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| |
Collapse
|
18
|
Yang Y, Wen C, Zheng S, Liu W, Chen J, Feng X, Wang X, Yang F, Ding Z. Influence of microcystins-LR (MC-LR) on autophagy in human neuroblastoma SK-N-SH cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1129-1136. [PMID: 31818223 DOI: 10.1080/15287394.2019.1699732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) variant exposure poses a potential health hazard to ecosystem, animals, and humans. Previously investigators showed that autophagy plays a key role in MC-LR induced cytotoxicity immortalized murine ovarian granular KK-1 cells and rat Sertoli cells. Recently exposure to MC-LR via drinking water was reported to accumulate in mouse brain with associated adverse oxidant and inflammatory responses. However, autophagy the physiological mechanism required for cells to degrade their own impaired organelles to maintain their homeostasis has not been determined with respect to MC-LR actions on the central nervous system (CNS). Thus, the aim of this study was to examine the effects of MC-LR on autophagy using human neuroblastoma SK-N-SH cells as CNS model. Data demonstrated that after treatment with 15 or 30 µmol/L MC-LR for 48 hr significantly reduced survival rate was noted in SK-N-SH cells. MC-LR increased the expression levels of autophagy-related proteins light chain 3 (LC3) II/I and p62 in SK-N-SH cells, resulting in the accumulation of LC3 and increased intracellular free calcium ion levels. Data indicated that MC-LR induced adverse effects on the CNS as evidenced by decreased cellular survival associated with inhibition of autophagy flux and consequent enhanced autophagosomes accumulation.
Collapse
Affiliation(s)
- Yue Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Cong Wen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuilin Zheng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wenya Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, China
| | - Zhen Ding
- Public Health Research Institute of Jiangsu Province, Jiangsu Center for Disease Control and Prevention, Jiangsu, China
| |
Collapse
|