1
|
Yang F, Yang H, Ramesh A, Goodwin JS, Okoro EU, Guo Z. Overexpression of Catalase Enhances Benzo(a)pyrene Detoxification in Endothelial Microsomes. PLoS One 2016; 11:e0162561. [PMID: 27607467 PMCID: PMC5015903 DOI: 10.1371/journal.pone.0162561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells. Our data showed that endothelial microsomes were enriched in cytochrome P450 (CYP) 1A1, CYP1B1 and epoxide hydrolase 1 (EH1), and contained considerable levels of NAD(P)H: quinone oxidoreductase-1 (NQO1) and glutathione S-transferase-pi (GSTP). Treatment of wild-type MAECs with 1μM BaP for 2 h increased the expression of microsomal CYP1A1, 1B1 and NQO1 by ~300, 64 and 116%, respectively. However, the same treatment did not significantly alter the expression of EH1 and GSTP. Overexpression of catalase did not significantly increase EH1, but upregulated BaP-induced expression of microsomal CYP1A1, 1B1, NQO1 and GSTP in the following order: 1A1>NQO1>GSTP>1B1. Overexpression of catalase did not alter the distribution of each of these enzymes in the microsomes. In contrast to our previous report showing lower level of BaP phenols versus BaP diols/diones in the whole-cell, this report demonstrated that the sum of microsomal BaP phenolic metabolites were ~60% greater than that of the BaP diols/diones after exposure of microsomes to BaP. Overexpression of catalase reduced the concentrations of microsomal BaP phenols and diols/diones by ~45 and 95%, respectively. This process enhanced the ratio of BaP phenol versus diol/dione metabolites in a potent manner. Taken together, upregulation of phase II XMEs and CYP1 proteins, but not EH1 in the ER might be the mechanism by which overexpression of catalase reduces the levels of all the BaP metabolites, and enhances the ratio of BaP phenolic metabolites versus diol/diones in endothelial microsomes.
Collapse
Affiliation(s)
- Fang Yang
- Department of Physiology, Meharry Medical College, Nashville, United States of America.,Wuhan University School of Basic Medical Science, Wuhan, P.R. China
| | - Hong Yang
- Department of Physiology, Meharry Medical College, Nashville, United States of America
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, United States of America
| | - J Shawn Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, United States of America
| | - Emmanuel U Okoro
- Department of Physiology, Meharry Medical College, Nashville, United States of America
| | - ZhongMao Guo
- Department of Physiology, Meharry Medical College, Nashville, United States of America
| |
Collapse
|
2
|
Sen S, Field JM. Genotoxicity of Polycyclic Aromatic Hydrocarbon Metabolites. ADVANCES IN MOLECULAR TOXICOLOGY 2013. [DOI: 10.1016/b978-0-444-62645-5.00003-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Elhassaneen YAEA, El-Badawy AM. Influence of Charcoal Broiled Meat Consumption on the Liver Functions and Non-Enzymatic Antioxidants in Human Blood. FOOD AND NUTRITION SCIENCES 2013; 04:90-99. [DOI: 10.4236/fns.2013.41013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Aktay G, Emre MH, Polat A. Influence of dihydropyridine calcium antagonist nitrendipine on benzo(a)pyrene-induced oxidative stress. Arch Pharm Res 2011; 34:1171-5. [PMID: 21811924 DOI: 10.1007/s12272-011-0715-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the influence of nitrendipine (NIT), a dihydropyridine derived calcium channel antagonist, on polycyclic aromatic hydrocarbon benzo(a)pyrene (BAP)-induced oxidative stress. Male Sprague Dawley rats (155-220 g) were divided into four groups: Control (corn oil, i.p.); BAP (200 mg/kg, i.p.), BAP + NIT (200 mg/kg, i.p. + 50 mg/kg, i.p.), and NIT (50 mg/kg, i.p.) groups. Twenty-four hours after the injection of BAP, the rats were sacrificed and blood samples, liver, lung, and brain tissues were removed to determine serum alanine transaminase (ALT), aspartate transferase (AST), and gamma-glutamyltransferase (GGT) activities and tissue thiobarbituric acid reactive substances (TBARS), glutathione (GSH), and superoxide dismutase (SOD) levels. BAP significantly elevated serum ALT and TBARS levels in all tissues. However, NIT pre-treatment protected against increasing TBARS levels in lung and brain tissues. In addition, NIT pre-treatment significantly increased SOD levels in lung and liver tissues, as well as GSH levels in the lungs, compared to the BAP group. Thus, in conclusion, further studies are required to confirm the protective effects of calcium channel blockers, especially in liver tissue.
Collapse
Affiliation(s)
- Göknur Aktay
- Department of Pharmacology, Faculty of Pharmacy, İnönü University, 44280 Malatya, Turkey.
| | | | | |
Collapse
|
5
|
Lin T, Yang MS. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Toxicology 2007; 235:1-10. [PMID: 17416446 DOI: 10.1016/j.tox.2007.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 01/30/2023]
Abstract
Glutathione (GSH) is one of the most important antioxidants in mammalian cells. It also plays an important role in chemical detoxification. Some evidence showed that polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (B[a]P [50-32-8]), could increase GSH content as a defense mechanism against oxidative stress as well as to promote its detoxification. However, there has been very little study on clarifying the role GSH plays in antioxidation and detoxification actions. Therefore, the present study aims to analyze intracellular glutathione metabolism in the human hepatoma cells (HepG2) upon exposure to B[a]P. Exposure of the cells to B[a]P (1-100 microM) for 24 h did not cause significant cell death in this cell line. By selecting the sublethal concentration of 10 microM, B[a]P caused a significant increase in GSH and a small (13%) but significant decrease in glutathione reductase activity. However, there was no change in the activity of glutathione peroxidase, and no detectable increase in reactive oxygen species (ROS) production. Treatment with B[a]P caused up to 1.5 folds increase in gamma-glutamylcysteine synthatase (gamma-GCS) activity over control. Buthioneine sulfoximine (BSO), an inhibitor of gamma-GCS, could suppress GSH increase in a dose-dependent manner. Assessment of the oxidative state of the cells indicated that the increase in GSH caused the cells to become more reduced. Thus, the results concluded that cells were not suffering from oxidative stress at 24 h after treatment with 10 microM B[a]P. Upon analyzing the activities of detoxification enzymes, there was an increase in the activity of CYP1A subfamily monooxygenases and glutathione S-transferase. Both changes occurred prior to the changes in gamma-GCS activity and the increase in GSH. In summary, results of the present study demonstrate that B[a]P caused an activation of detoxification enzymes. The increase in intracellular GSH level was due to activation of gamma-GCS activities. Oxidative stress may not be an important risk factor for B[a]P (at 10 microM of up to 24 h) induced injury.
Collapse
Affiliation(s)
- T Lin
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, PR China
| | | |
Collapse
|
6
|
Blanco GA, Cooper EL. Immune systems, geographic information systems (GIS), environment and health impacts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2004; 7:465-480. [PMID: 15586880 DOI: 10.1080/10937400490512375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exposure to dioxins, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) has been related to alterations in cellular and humoral immune responses in both adaptive and innate immune systems of most animal species. These compounds share a common signaling mechanism to exert their effects on cells of the immune system, which includes the aryl-hydrocarbon receptor (AhR) and the AhR nuclear translocator (ARN). Recently, the interference of AhR-ARNT with the nuclear factor (NF)-kappaB signaling pathway has been proposed as a critical event in the adverse effects on the immune system. Studies on the effects of these AhR-ARNT-related toxicants on the immune system of higher and lower phylum animals and knowledge of intracellular mechanisms of toxicity may contribute to development of biomarkers of ecotoxicant exposure and effects. Biomarkers of this kind allow sampling over extended geographic areas, in several sentinel species, including wildlife animals, and facilitate the building of risk models and risk maps of environmentally induced diseases. On the basis of location, biomarker sampled data obtained through evaluation of ecotoxicant exposure and effects on the immune system in sentinel species can be further integrated and analyzed together with other sources of environmental geographic information, or human population health data, by means of geographic information systems (GIS). The spatial analysis capability of GIS can help to evaluate the complex relationships of overlaid information and to identify areas with high risk indices or "hot spots." This integrative approach can be useful in studies contributing to support environmental and health-related policies and regulations.
Collapse
Affiliation(s)
- Guillermo A Blanco
- Department of Immunology, IDEHU-National Research Council (CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
7
|
Elhassaneen YA. The effects of charcoal-broiled meat consumption on antioxidant defense system of erythrocytes and antioxidant vitamins in plasma. Nutr Res 2004. [DOI: 10.1016/j.nutres.2003.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Miller KP, Ramos KS. Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab Rev 2001; 33:1-35. [PMID: 11270659 DOI: 10.1081/dmr-100000138] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polycyclic aromatic hydrocarbons are ubiquitous contaminants in the environment. Benzo[a]pyrene (BaP), a prototypical member of this class of chemicals, has been extensively studied for its toxic effects in laboratory animals and human populations. BaP toxicity is often mediated by oxidative metabolism to reactive intermediates that interact with macromolecules leading to alterations in target cell structure and function. More recent evidence suggests that disruption of cellular signaling pathways involved in the regulation of growth and differentiation contribute significantly to the toxicity of BaP and its metabolites. This review summarizes recent advances in our understanding of biological mechanisms of BaP toxicity at the molecular level, and the role of metabolic intermediates in carcinogenesis, atherogenesis, and teratogenesis.
Collapse
Affiliation(s)
- K P Miller
- Department of Veterinary Physiology and Pharmacology & Center for Environmental and Rural Health, Texas A&M University, College Station, USA
| | | |
Collapse
|
9
|
Yang Y, Griffiths WJ, Nordling M, Nygren J, Möller L, Bergman J, Liepinsh E, Otting G, Gustafsson JA, Rafter J, Sjövall J. Ring opening of benzo[a]pyrene in the germ-free rat is a novel pathway for formation of potentially genotoxic metabolites. Biochemistry 2000; 39:15585-91. [PMID: 11112546 DOI: 10.1021/bi001148y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metabolism of benzo[a]pyrene (BP) is known to lead to a large number of oxygenated compounds, some of which can bind covalently to DNA. We have studied the integrated metabolism of BP in vivo in germ-free rats given (14)C-labeled BP. Urinary metabolites were separated into groups according to acidity using lipophilic ion exchangers. The groups were analyzed by mass spectrometry and were further fractionated by high-performance liquid chromatography. The fraction of urinary metabolites previously shown to contain N-acetylcysteine and glucuronic acid conjugates was found to contain derivatives of 7-oxo-benz[d]anthracene-3,4-dicarboxylic acid as major components. These compounds, which were identified by mass spectrometry and NMR, accounted for about 30% of the total metabolites in urine, demonstrating that, surprisingly, ring opening is a major pathway for metabolism of BP in the germ-free rat. The dicarboxylic acid may be excreted in urine as an ester glucuronide. By using the single cell gel electrophoresis or COMET assay, we were able to demonstrate that the anhydride of 7-oxo-benz[d]anthracene-3, 4-dicarboxylic acid was an efficient inducer of DNA damage. Taken together, these results indicate that the novel ring opening metabolic pathway may provide alternative mechanisms for the toxicity of BP.
Collapse
Affiliation(s)
- Y Yang
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Miller KP, Chen YH, Hastings VL, Bral CM, Ramos KS. Profiles of antioxidant/electrophile response element (ARE/EpRE) nuclear protein binding and c-Ha-ras transactivation in vascular smooth muscle cells treated with oxidative metabolites of benzo[a]pyrene. Biochem Pharmacol 2000; 60:1285-96. [PMID: 11008122 DOI: 10.1016/s0006-2952(00)00439-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of nuclear protein binding to the antioxidant/electrophile response element (ARE/EpRE) by benzo[a]pyrene (BaP) in vascular smooth muscle cells (vSMCs) is associated with transcriptional deregulation of c-Ha-ras. This response may be mediated by oxidative intermediates of BaP generated during the course of cellular metabolism. To test this hypothesis, the profile of ARE/EpRE protein binding and transactivation elicited by BaP was compared with that of 3-hydroxy BaP (3-OH BaP) (0.03 to 3.0 microM), BaP 7,8-dihydrodiol (BaP 7,8-diol) (0.03 to 3.0 microM), BaP 3,6-quinone (BaP 3,6-Q) (0.0003 to 3.0 microM), and H(2)O(2) (25 to 100 microM). Specific protein binding to the consensus c-Ha-ras ARE/EpRE was observed in vSMCs treated with all BaP metabolites at concentrations considerably lower than those required for the parent compound. H(2)O(2), a by-product of BaP 3,6-Q redox cycling, also increased binding to the ARE/EpRE. Treatment of vSMCs with oxidative BaP metabolites or H(2)O(2) transactivated the c-Ha-ras promoter in all instances, but the response was consistently half of the maximal induction elicited by BaP. Similar proteins cross-linked specifically to the consensus c-Ha-ras ARE/EpRE sequence in cells treated with BaP or its oxidative intermediates. The protein binding profile in the c-Ha-ras promoter was similar to that in the NADPH:quinone reductase gene (NQO(1)) and the glutathione S-transferase Ya gene (GSTYa) promoters, but the relative abundance of individual complexes was promoter-specific. We conclude that oxidative intermediates of BaP mediate activation of nuclear protein binding to ARE/EpRE and contribute to transcriptional de-regulation of c-Ha-ras in vSMCs.
Collapse
Affiliation(s)
- K P Miller
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | | | |
Collapse
|
11
|
Kim HS, Kwack SJ, Lee BM. Lipid peroxidation, antioxidant enzymes, and benzo[a]pyrene-quinones in the blood of rats treated with benzo[a]pyrene. Chem Biol Interact 2000; 127:139-150. [PMID: 10936229 DOI: 10.1016/s0009-2797(00)00177-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lipid peroxidation (as malondialdehyde, MDA), activities of superoxide dismutase (SOD) and catalase (CAT), and benzo[a]pyrene (BaP) metabolites were investigated in sera and erythrocytes of male Sprague-Dawley rats treated with BaP (20 mg per rat). MDA levels were significantly increased in sera (16.98+/-3.29 nmol/ml serum, P<0.05) 12 h after BaP treatment and persisted up to 96 h (13.80+/-1. 65 nmol/ml serum, P<0.05), but no significant change in NIDA levels was observed in erythrocytes. SOD and CAT activities were significantly increased in erythrocytes shortly after BaP exposure, and they were slightly decreased in sera, indicating an inverse correlation between lipid peroxidation and antioxidant enzyme activity. BaP and BaP-quinones (BaP-1,6-quinone and BaP-3,6-quinone) were measured in sera during the study period. A rapid increase of unmetabolized BaP was observed in sera (41.27+/-4.14 pmol/ml serum) 3 h after BaP treatment, reaching a peak at 6 h (48.56+/-4.62 pmol/ml serum) followed by a sharp decrease. Formation of the BaP-1, 6-quinone and BaP-3,6-quinone started in sera 3 h after BaP treatment, reached a peak at 24 h (7.23+/-1.02 pmol/ml serum) and 12 h (9.20+/-0.98 pmol/ml serum), respectively, and then decreased gradually. The time-dependent pattern of serum lipid peroxidation and the level of erythrocyte antioxidant enzymes were shown to be related to the concentrations of the BaP-quinone metabolites. These results suggest that BaP treatment, probably via the formation of BaP-quinones, oxidatively altered lipids and antioxidant enzymes in the blood, and might be associated with BaP-related vascular toxicity including carcinogenesis.
Collapse
Affiliation(s)
- H S Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Chunchum-Dong 300, 440-476, Kyunggi-Do, Suwon, South Korea
| | | | | |
Collapse
|
12
|
Ramos KS. Redox regulation of c-Ha-ras and osteopontin signaling in vascular smooth muscle cells: implications in chemical atherogenesis. Annu Rev Pharmacol Toxicol 1999; 39:243-65. [PMID: 10331084 DOI: 10.1146/annurev.pharmtox.39.1.243] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reduction/oxidation (redox) reactions play a central role in the regulation of vascular cell functions. Recent studies in this laboratory have identified c-Ha-ras and osteopontin genes as critical molecular targets during oxidant-induced atherogenesis. This review focuses on the deregulation of gene transcription by redox-activated trans-acting factors after benzo(a)pyrene challenge and the modulation of extracellular matrix signaling in vascular smooth muscle cells by allylamine-induced oxidative injury. The induction of atherogenic vascular smooth muscle cell phenotypes by chemical injury exhibits remarkable parallels with those seen in other forms of atherogenesis.
Collapse
Affiliation(s)
- K S Ramos
- Department of Physiology and Pharmacology, Texas A&M University College of Veterinary Medicine, College Station 77843-4466, USA.
| |
Collapse
|
13
|
Lee SK, Lee BM. Oxidation of erythrocyte protein and lipid, and hemolysis in rabbit red blood cells treated with benzo[a]pyrene or adriamycin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1997; 51:557-69. [PMID: 9242228 DOI: 10.1080/00984109708984044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A number of free-radical-generating carcinogens catalyze the oxidative modification of macromolecules. Malondialdehyde (MDA), carbonyl content, alanine formation, and hemolysis were used as biomarkers of oxidative stress, and were determined in rabbit erythrocytes treated in vitro with benzo[a]pyrene or adriamycin. MDA and carbonyl content were significantly increased in a concentration-dependent manner by carcinogens. Alanine formation was also increased in a concentration-dependent manner in rabbit erythrocytes treated with carcinogens. Hemolysis occurred in erythrocytes treated with benzo[a]pyrene (540 microM) or adriamycin (300 microM) between 4 and 8 h of incubation, respectively. The hemolysis pattern correlated with increases in MDA, carbonyl content, and alanine formation. These data indicate that lipid peroxidation as measured by MDA may be the most sensitive indicator for oxidative stress in erythrocytes. Hemolysis could thus be applicable to free-radical-induced cellular damage as an alternative biomarker of oxidative stress.
Collapse
Affiliation(s)
- S K Lee
- Division of Toxicology, School of Pharmacy, Sung Kyun Kwan University, Kyunggi-Do, Suwon, Korea
| | | |
Collapse
|
14
|
Kim KB, Lee BM. Oxidative stress to DNA, protein, and antioxidant enzymes (superoxide dismutase and catalase) in rats treated with benzo(a)pyrene. Cancer Lett 1997; 113:205-12. [PMID: 9065823 DOI: 10.1016/s0304-3835(97)04610-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxidative DNA damage (as 8-hydroxydeoxyguanosine; 8-OHdG), carbonyl content of proteins, and activities of superoxide dismutase (SOD) and catalase were investigated in female Sprague-Dawley rats orally treated with benzo(a)pyrene (B(a)P) (75 mg/rat). HPLC-ECD system showed that B(a)P increased the level of 8-OHdG in tissues (liver, kidney, and lung), but a statistical significance was observed only in the liver (3.5-fold increase) and kidney (two-fold increase). In the liver, the peak level (21 +/- 5 8-OHdG residues/10(5) dG) was obtained 12 h after treatment and returned close to control level (9 +/- 2 8-OHdG residues/10(5) dG) at 24 h, but 8-OHdG was persistent in the kidney. Carbonyl contents measured as an index of protein oxidation were slightly increased (23-35%) in the cytosolic fraction of tissues, but a significant increase (2.19 nmol/mg protein, 35% increase) was observed only in the liver 6 h after treatment, similar to 8-OHdG. However, the rate of increase was relatively low compared to that of 8-OHdG. In contrast to DNA and protein damages, the activities of SOD and catalase in the tissues were decreased after treatment (P < 0.01) and gradually increased to control levels. SOD and catalase activities in organs of rats were inversely correlated with oxidative damages to DNA and protein. The data suggest that B(a)P oxidatively altered DNA, protein, and antioxidant enzymes in rats and this might be associated with B(a)P carcinogenesis.
Collapse
Affiliation(s)
- K B Kim
- Division of Toxicology, School of Pharmacy, Sung Kyun Kwan University, Suwon, Kyunggi-Do, South Korea
| | | |
Collapse
|
15
|
Winn LM, Wells PG. Evidence for embryonic prostaglandin H synthase-catalyzed bioactivation and reactive oxygen species-mediated oxidation of cellular macromolecules in phenytoin and benzo[a]pyrene teratogenesis. Free Radic Biol Med 1997; 22:607-21. [PMID: 9013124 DOI: 10.1016/s0891-5849(96)00340-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A mouse embryo culture model was used to determine whether embryonic prostaglandin H synthase (PHS)-catalyzed bioactivation and resultant oxidative damage to embryonic protein and DNA may constitute a molecular mechanism mediating phenytoin and benzo[a]pyrene teratogenesis. Embryos were explanted from CD-1 mouse dams on gestational day 9.5 (vaginal plug = day 1) and incubated for either 4 h (biochemistry) or 24 h (embryotoxicity) at 37 degrees C in medium containing either phenytoin (20 micrograms/ml, 80 microM), benzo[a]pyrene (10 microM), or their respective vehicles. As previously observed with phenytoin (Mol. Pharmacol.48: 112-120, 1995), embryos incubated with benzo[a]pyrene showed decreases in anterior neuropore closure, turning, yolk sac diameter, and somite development (p < .05). Addition of the antioxidative enzyme superoxide dismutase (SOD) substantially enhanced embryonic SOD activity (p < .05) and completely inhibited benzo[a]pyrene embryotoxicity (p < .05). Substantial PHS was detected in day 9.5 embryos using SDS/PAGE, anti-PHS antibody, and alkaline phosphatase-conjugated donkey anti-goat IgG. Embryonic protein oxidation was detected by the reaction of 0.5 mM 2,4-dinitrophenylhydrazine with protein carbonyl groups. This method was first validated by using a known hydroxyl radical-generating system consisting of vanadyl sulfate and H2O2, with bovine serum albumin or embryonic protein as the target. Embryonic proteins were characterized by SDS/PAGE, anti-dinitrophenyl antisera, and peroxidase-labeled goat anti-donkey IgG. Using enhanced chemiluminescence, the number and content of oxidized protein bands detected between 25 and 200 kDa were substantially increased by both phenytoin and benzo[a]pyrene. Addition of the reducing agent dithiothreitol, or SOD or catalase, decreased protein oxidation in phenytoin-exposed embryos. Both phenytoin (Mol. Pharmacol.48: 112-120, 1995) and benzo[a]pyrene enhanced embryonic DNA oxidation, determined by the formation of 8-hydroxy-2'-deoxyguanosine, as measured by high-performance liquid chromatography (HPLC) (p < .05). Phenytoin also enhanced the oxidation of embryonic glutathione (GSH) to its GSSG disulfide, as measured by HPLC (p < .05). These results provide direct evidence that, in the absence of maternal or placental processes, embryonic PHS-catalyzed bioactivation and reactive oxygen species-mediated oxidation of embryonic protein, thiols, and DNA may constitute a molecular mechanism mediating phenytoin and benzo[a]pyrene teratogenesis.
Collapse
Affiliation(s)
- L M Winn
- Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Patel U, Bhimani R, Frenkel K. Mechanism of mutagenicity by 5-hydroperoxymethyl-2'-deoxyuridine, an intermediate product of ionizing radiation, in bacteria. HPMdU bacterial mutagenicity and oxidation of DNA bases. Mutat Res 1992; 283:145-56. [PMID: 1381492 DOI: 10.1016/0165-7992(92)90147-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The specific objective was to find what processes are responsible for the mutagenicity of 5-hydroperoxymethyl-2'-deoxyuridine (HPMdU), which is a product of ionizing radiation, and what role transition metal ions play in those processes. We found that HPMdU is a more potent mutagen than its decomposition products 5-hydroxymethyl-2'-deoxyuridine (HMdU) and 5-formyl-2'-deoxyuridine (FdU) in the Salmonella typhimurium strains tested, with the TA100 strain being the most sensitive. HMdU exerted intermediate mutagenicity and FdU was the weakest of the three compounds. At 50 nmoles/plate, HPMdU increased the number of revertants by 4-fold, whereas 1000 nmoles HMdU was required to enhance the number of revertants by 5-fold. Pretreatment of TA100 with o-phenanthroline, a membrane-permeable Fe and Cu chelator, caused an increase in mutagenicity of the low HPMdU doses but inhibited that of the 50 nmoles HPMdU/plate, while desferal, a membrane-impermeable Fe chelator, had virtually no effect. Azide (a catalase inhibitor) enhanced HPMdU mutagenicity, whereas 3-amino-1,2,4-triazole (a catalase and peroxidase inhibitor) and ammonium formate (a hydroxyl radical scavenger) were protective. Preincubation of TA100 cells with 20 and 40 nM HPMdU caused dose-dependent formation of the oxidized DNA base derivatives HMdU, thymidine glycol and 8-hydroxyl-2'-deoxyguanosine (8-OHdG), known hydroxyl radical-mediated oxidation products. Cumulatively, these results suggest that the genetic effects of HPMdU are due to its hydroperoxide moiety, which upon reacting with Fe generates hydroxyl radicals that in turn oxidize neighboring bases in cellular DNA. This also may be a mechanism by which ionizing radiation exerts its long-term effects.
Collapse
Affiliation(s)
- U Patel
- Department of Environmental Medicine, New York University Medical Center, NY 10016-6451
| | | | | |
Collapse
|
17
|
Abstract
This article reviews the experimental data that points to formation of reactive oxygen species (ROS) and oxidative DNA base damage as being important contributors to cancer development. Particular emphasis is placed on the role they play in genetic changes occurring during tumor promotion. A number of structurally different anticarcinogenic agents inhibit ROS production and oxidative DNA damage as they inhibit inflammation and tumor promotion. This underlines the importance of ROS and oxidative genetic damage to the carcinogenic process. It also points to the possibility that some types of cancer may be preventable if the cycles of tumor promotion can be interrupted.
Collapse
Affiliation(s)
- K Frenkel
- Department of Environmental Medicine, Kaplan Comprehensive Cancer Center, New York University Medical Center, NY 10016-6451
| |
Collapse
|
18
|
Schlager JJ, Powis G. Cytosolic NAD(P)H:(quinone-acceptor)oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer 1990; 45:403-9. [PMID: 2307529 DOI: 10.1002/ijc.2910450304] [Citation(s) in RCA: 196] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NAD(P)H:(quinone-acceptor)oxidoreductase (QAO), previously known as DT-diaphorase, catalyzes the reduction of quinones to hydroquinones. Enhanced activity of the enzyme has been suggested to protect cells against the cellular toxicity and carcinogenicity of quinones, but may activate some cytotoxic anti-tumor quinones. Cytosolic levels of QAO, carbonyl reductase (CR) and total quinone reductase activity have been measured in normal and tumorous human tissues. QAO was the major component of the total cytosolic quinone reductase activity in all the tissues investigated. CR represented 10 to 28% of the total cytosolic quinone reductase activity in normal tissue. Normal tissue QAO was high in the stomach and kidney, and lower in the lung, liver, colon and breast. Primary tumor from lung, liver, colon and breast had elevated levels of QAO compared to normal tissue, while tumor from kidney and stomach had lower levels. CR was not significantly altered in tumor tissue, except in the case of lung and colon tumor which showed an increase compared to normal tissue. A major determinant of the variability of human lung tumor QAO was the cigarette-smoking history of the donor. Non-smokers and past smokers had high levels of tumor QAO compared to normal tissue. Smokers had levels of tumor QAO that were not significantly different from those of normal tissue QAO. Smokers had a small increase in normal lung QAO compared to non-smokers. Alcohol use was associated with an increase in lung tumor QAO but had no effect on QAO in normal lung. The function of QAO in tumors is not known but the elevated activity of QAO in some tumors and the apparent depressant effect of smoking could influence the response of these tumors to quinone drugs or toxic agents that are metabolized by QAO.
Collapse
Affiliation(s)
- J J Schlager
- Department of Pharmacology, Mayo Clinic, Rochester, MN 55905
| | | |
Collapse
|
19
|
Lesko SA, Trpis L, Zheng R. Somatic mutation, DNA damage and cytotoxicity induced by benzo[a]pyrenedione/benzo[a]pyrenediol redox couples in cultured mammalian cells. Mutat Res 1986; 161:173-80. [PMID: 2425252 DOI: 10.1016/0027-5107(86)90008-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BP-3,6-dione was found to be mutagenic, cytotoxic and to induce DNA damage in a transformed line of Syrian hamster fibroblasts at low concentrations, 2 micrograms/ml and less. Inhibition of sulfate and glucuronic acid conjugating enzymes with salicylamide potentiated the above effects of BP-3,6-dione. Diminishing cellular capacity to scavenge superoxide anion radicals also potentiated the mutagenic and cytotoxic action of the dione. The presence of dicumarol, a specific inhibitor of the two-electron reduction of quinones by DT-diaphorase, afforded some protection against cytotoxicity. The results indicate that BP-3,6-dione undergoes two-electron reduction to an unstable hydroquinone, BP-3,6-diol, or one-electron reduction to a semiquinone radical intermediate and that both of these reduced forms undergo rapid univalent oxidation to generate active reduced oxygen species. The data are consistent with the hypothesis that active oxygen species generated by BP-dione/BP-diol redox cycling are responsible, at least in part, for the mutagenic and cytotoxic effects observed with BP-3,6-dione.
Collapse
|