1
|
Hou Q, Ouyang S, Xie Z, He Y, Deng Y, Guo J, Yu P, Tan X, Ma W, Li P, Yu J, Mo Q, Zhang Z, Chen D, Lin X, Liu Z, Chen X, Peng T, Li L, Xie W. Exosome is a Fancy Mobile Sower of Ferroptosis. J Cardiovasc Transl Res 2024; 17:1067-1082. [PMID: 38776048 DOI: 10.1007/s12265-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 10/29/2024]
Abstract
Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.
Collapse
Affiliation(s)
- Qin Hou
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yinling He
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yunong Deng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiamin Guo
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Panpan Yu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhixia Zhang
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Dandan Chen
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Bayat M, Hooshmandi E, Karimi N, Rahimi M, Tabrizi R, Asadabadi T, Salehi MS, Zafarmand SS, Owjfard M, Garcia Esperon C, Spratt N, Levi C, Borhani-Haghighi A. Sequential changes in expression of long non-coding RNAs THRIL and MALAT1 after ischemic stroke. CURRENT JOURNAL OF NEUROLOGY 2024; 23:74-82. [PMID: 39431230 PMCID: PMC11489629 DOI: 10.18502/cjn.v23i1.16437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/07/2023] [Indexed: 10/22/2024]
Abstract
Background: Inflammation is the major contributor to the pathophysiology of ischemic stroke (IS). Long non-coding ribonucleic acids (lncRNAs) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and tumor necrosis factor and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory (THRIL) have been demonstrated to be up-regulated in inflammation and atherosclerosis. Therefore, we aimed to study the expression profile of these lncRNAs after IS. Methods: This observational case-control study was conducted in Namazi Hospital, Shiraz, Iran. The real-time polymerase chain reaction (RT-PCR) measured the sequential changes in circulating levels of MALAT1 and THRIL on days 1, 3, and 5 after IS. The receiver operating characteristic (ROC) curve analysis was used to estimate the diagnostic and prognostic potential of lncRNAs with the area under the curve (AUC). Results: In patients with IS, the relative MALAT1 and THRIL expressions were significantly higher than the controls (P < 0.001 and P < 0.01, respectively), on days 1, 3, and 5 after stroke. We showed a significantly increase in lncRNAs expression on day five compared to days 1 and 3 after stroke. Moreover, a positive correlation was detected between MALAT1 expression and time within the first 24 hours after stroke (r = 0.27, P = 0.03). Logistic regression analysis showed a significant positive association between MALAT1 and THRIL and the risk of stroke evolution. We found a potential diagnostic marker for MALAT1 with an AUC of 0.78. Conclusion: We demonstrated the significant sequential upregulation in MALAT1 and THRIL expression on days 1, 3, and 5 after IS with a significant positive association with the risk of stroke. MALAT1 also significantly correlated with time within the first 24 hours after stroke.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Karimi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moosa Rahimi
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Tahereh Asadabadi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Neil Spratt
- Department of Neurology, John Hunter Hospital, Newcastle, Newcastle, Australia
| | - Christopher Levi
- Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | | |
Collapse
|
3
|
Spanos M, Gokulnath P, Chatterjee E, Li G, Varrias D, Das S. Expanding the horizon of EV-RNAs: LncRNAs in EVs as biomarkers for disease pathways. EXTRACELLULAR VESICLE 2023; 2:100025. [PMID: 38188000 PMCID: PMC10768935 DOI: 10.1016/j.vesic.2023.100025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles with different types of cargo released by cells and postulated to mediate functions such as intercellular communications. Recent studies have shown that long non-coding RNAs (lncRNAs) or their fragments are present as cargo within EVs. LncRNAs are a heterogeneous group of RNA species with a length exceeding 200 nucleotides with diverse functions in cells based on their localization. While lncRNAs are known for their important functions in cellular regulation, their presence and role in EVs have only recently been explored. While certain studies have observed EV-lncRNAs to be tissue-and disease-specific, it remains to be determined whether or not this is a global observation. Nonetheless, these molecules have demonstrated promising potential to serve as new diagnostic and prognostic biomarkers. In this review, we critically evaluate the role of EV-derived lncRNAs in several prevalent diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases, with a specific focus on their role as biomarkers.
Collapse
Affiliation(s)
- Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dimitrios Varrias
- Albert Einstein College of Medicine/Jacobi Medical Center, The Bronx, NY, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Zhang X, Wang C, Xu H, Cai S, Liu K, Li S, Chen L, Shen S, Gu X, Tang J, Xia Z, Hu Z, Ma X, Zhang L. Propofol inhibits myocardial injury induced by microvesicles derived from hypoxia-reoxygenated endothelial cells via lncCCT4-2/CCT4 signaling. Biol Res 2023; 56:20. [PMID: 37143143 PMCID: PMC10161458 DOI: 10.1186/s40659-023-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Changsen Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Hao Xu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Shuyun Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Keyu Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Simeng Li
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Linming Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Siman Shen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Xiaoxia Gu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Department of Anaesthesiology, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhe Hu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China.
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China.
| | - Xiaotang Ma
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China.
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China.
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- Key Laboratory of Organ Functional Injury and Protection, Department of Translational Medicine of ZhanJiang, ZhanJiang, 524001, China.
- Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases of Guangdong, ZhanJiang, 524001, China.
| |
Collapse
|
5
|
Wu JJ, Jin J, Li YH, Wang C, Bai J, Jiang QJ, He TX, Nie SJ, Li DJ, Qu LF. LncRNA FGF7-5 and lncRNA GLRX3 together inhibits the formation of carotid plaque via regulating the miR-2681-5p/ERCC4 axis in atherosclerosis. Cell Cycle 2023; 22:165-182. [PMID: 36071684 PMCID: PMC9815221 DOI: 10.1080/15384101.2022.2110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Atherosclerotic plaques belong to the common vascular disease in the aged, which rupture will lead to acute thromboembolic diseases, the leading cause of fatal cardiovascular events. Accumulating evidence indicates that the lncRNAs-miRNAs-mRNA regulatory network plays a critical role in atherosclerosis. Based on RNA sequencing (GSE207252), we constructed expression profiles of lncRNAs, microRNAs, and mRNA in the carotid plaque of atherosclerosis patients and analyzed differentially expressed genes (DEGs). We identified three candidate lncRNAs using two algorithms (LASSO and SVM-RFE): lnc_GLRX3, lnc_FGF7-5, and DISC1FP1). LNCipedia, TargetScan, and miRDB databases were used to predict target miRNAs of lncRNAs and target genes of miRNAs. Gene ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Set Enrichment Analysis (GSEA) analysis of DEGs was carried out using the R package clusterProfiler. A PPI network was constructed using the STRING website and visualized by Cytoscape. According to the "MCC" method of the plug-in cytoHubba in Cytoscape, ERCC4 was the top hub gene of the PPI network. We constructed a lncRNA_FGF7-5/lncRNA_GLRX3-miR-2681-5p-ERCC4 regulatory network for carotid plaque using lncRNA-miRNA and miRNA-mRNA pairs. Next, lncRNA_FGF7-5 and lncRNA_GLRX3 targeted miR-2681-5p directly to upregulate ERCC4 expression. Silencing of lncRNA_FGF7-5 and lncRNA_GLRX3 promoted apoptosis and TP53 expression in HUVECs treated with ox-LDL; however, these effects were reversed by ERCC4-overexpression. Taken together, these findings indicated that lncRNA_FGF7-5 and lncRNA_GLRX3 together reduced atherosclerosis-induced apoptosis of HUVECs via targeting miR-2681-5p to increase ERCC4 expression, thereby preventing the formation of carotid plaque and finally inhibiting atherosclerosis progression.
Collapse
Affiliation(s)
- Jian-Jin Wu
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jie Jin
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chao Wang
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jun Bai
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qing-Jun Jiang
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Tian-Xiao He
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shao-Jie Nie
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Chang W, Wang M, Zhang Y, Yu F, Hu B, Goljanek-Whysall K, Li P. Roles of long noncoding RNAs and small extracellular vesicle-long noncoding RNAs in type 2 diabetes. Traffic 2022; 23:526-537. [PMID: 36109347 PMCID: PMC9828071 DOI: 10.1111/tra.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The prevalence of a high-energy diet and a sedentary lifestyle has increased the incidence of type 2 diabetes (T2D). T2D is a chronic disease characterized by high blood glucose levels and insulin resistance in peripheral tissues. The pathological mechanism of this disease is not fully clear. Accumulated evidence has shown that noncoding RNAs have an essential regulatory role in the progression of diabetes and its complications. The roles of small noncoding RNAs, such as miRNAs, in T2D, have been extensively investigated, while the function of long noncoding RNAs (lncRNAs) in T2D has been unstudied. It has been reported that lncRNAs in T2D play roles in the regulation of pancreatic function, peripheral glucose homeostasis and vascular inflammation. In addition, lncRNAs carried by small extracellular vesicles (sEV) were shown to mediate communication between organs and participate in diabetes progression. Some sEV lncRNAs derived from stem cells are being developed as potential therapeutic agents for diabetic complications. In this review, we summarize the current knowledge relating to lncRNA biogenesis, the mechanisms of lncRNA sorting into sEV and the regulatory roles of lncRNAs and sEV lncRNAs in diabetes. Knowledge of lncRNAs and sEV lncRNAs in diabetes will aid in the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Bin Hu
- The Institute of Medical Sciences (IMS), School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Ireland
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Ormazabal V, Nair S, Carrión F, Mcintyre HD, Salomon C. The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. Cardiovasc Diabetol 2022; 21:174. [PMID: 36057662 PMCID: PMC9441052 DOI: 10.1186/s12933-022-01597-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles are critical mediators of cell communication. They encapsulate a variety of molecular cargo such as proteins, lipids, and nucleic acids including miRNAs, lncRNAs, circular RNAs, and mRNAs, and through transfer of these molecular signals can alter the metabolic phenotype in recipient cells. Emerging studies show the important role of extracellular vesicle signaling in the development and progression of cardiovascular diseases and associated risk factors such as type 2 diabetes and obesity. Gestational diabetes mellitus (GDM) is hyperglycemia that develops during pregnancy and increases the future risk of developing obesity, impaired glucose metabolism, and cardiovascular disease in both the mother and infant. Available evidence shows that changes in maternal metabolism and exposure to the hyperglycemic intrauterine environment can reprogram the fetal genome, leaving metabolic imprints that define life-long health and disease susceptibility. Understanding the factors that contribute to the increased susceptibility to metabolic disorders of children born to GDM mothers is critical for implementation of preventive strategies in GDM. In this review, we discuss the current literature on the fetal programming of cardiovascular diseases in GDM and the impact of extracellular vesicle (EV) signaling in epigenetic programming in cardiovascular disease, to determine the potential link between EV signaling in GDM and the development of cardiovascular disease in infants.
Collapse
Affiliation(s)
- Valeska Ormazabal
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia.,Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - H David Mcintyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia. .,Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
8
|
Feng H, Xiong X, Chen Z, Luo N, Wu Y. MALAT1 Induces Food Allergy by Promoting Release of IL-6 from Dendritic Cells and Suppressing the Immunomodulatory Function of Tregs. J Asthma Allergy 2022; 15:529-544. [PMID: 35515816 PMCID: PMC9064454 DOI: 10.2147/jaa.s341742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background Dendritic cells (DCs) comprise a valuable target for immune-modulation in food allergy (FA). Long noncoding RNA (lncRNA), metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has immunomodulatory capacities and may influence the outcome of DC antigen presentation. However, the precise molecular mechanisms underlying the implication of MALAT1 in FA remain unclear. Methods BALB/c mice were sensitized to ovalbumin in accordance with a model of FA protocol and injected with adenovirus. After modeling, immunohistochemistry was performed to analyze the jejunal tissues of FA mice and hematoxylin-eosin staining and toluidine blue staining were performed to detect inflammation and mast cell numbers. Ovalbumin-sensitized mice were monitored for symptoms of diarrhea and rectal temperature. Immature DCs were stimulated by oxidized low density lipoprotein to trigger their maturation. Results MALAT1 was found highly expressed in mice with FA, and its silencing relieved allergic reactions with reduction in intestinal inflammatory cells and mast cells in FA mice. MALAT1 aggravated symptoms by downregulating zinc finger protein 36 (ZFP36). MALAT1 also downregulated ZFP36 expression to promote interleukin-6 (IL-6) secretion by DCs and maturation of DCs, with increased serum-specific immunoglobulin E (IgE) and IgG1 levels. Conclusion Together, these data suggested that therapeutically blocking MALAT1 in FA could reduce the severity of FA by decreasing secretion of IL-6 by DCs and suppressing the immunomodulation of Tregs.
Collapse
Affiliation(s)
- Hua Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Nan Luo
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- China National Center for Food Safety Risk Assessment, Beijing, 100022, People’s Republic of China
- Chinese Academy of Medical Science Research Unit, Beijing, 100730, People’s Republic of China
- Correspondence: Yongning Wu, State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China, Tel +86-10-52165589, Email
| |
Collapse
|
9
|
Cui Y, Zhou Y, Gan N, Xiang Q, Xia M, Liao W, Zheng XL, Peng J, Tang Z. The Role of Extracellular Non-coding RNAs in Atherosclerosis. J Cardiovasc Transl Res 2022; 15:477-491. [PMID: 35233720 DOI: 10.1007/s12265-022-10218-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis (AS) is a complex chronic inflammatory disease that leads to myocardial infarction, stroke, and disabling peripheral artery disease. Non-coding RNAs (ncRNAs) directly participate in various physiological processes and exhibit a wide range of biological functions. The present review discusses how different ncRNAs participate in the process of AS in various carrier forms. We focused on the role and potential mechanisms of extracellular ncRNAs in AS and examined their potential implications for clinical treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Yating Zhou
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Ni Gan
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qiong Xiang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Mengdie Xia
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Liao
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Juan Peng
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhihan Tang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Buffolo F, Monticone S, Camussi G, Aikawa E. Role of Extracellular Vesicles in the Pathogenesis of Vascular Damage. Hypertension 2022; 79:863-873. [PMID: 35144490 PMCID: PMC9010370 DOI: 10.1161/hypertensionaha.121.17957] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanosized membrane-bound structures released by cells that are able to transfer nucleic acids, protein cargos, and metabolites to specific recipient cells, allowing cell-to-cell communications in an endocrine and paracrine manner. Endothelial, leukocyte, and platelet-derived EVs have emerged both as biomarkers and key effectors in the development and progression of different stages of vascular damage, from earliest alteration of endothelial function, to advanced atherosclerotic lesions and cardiovascular calcification. Under pathological conditions, circulating EVs promote endothelial dysfunction by impairing vasorelaxation and instigate vascular inflammation by increasing levels of adhesion molecules, reactive oxygen species, and proinflammatory cytokines. Platelets, endothelial cells, macrophages, and foam cells secrete EVs that regulate macrophage polarization and contribute to atherosclerotic plaque progression. Finally, under pathological stimuli, smooth muscle cells and macrophages secrete EVs that aggregate between collagen fibers and serve as nucleation sites for ectopic mineralization in the vessel wall, leading to formation of micro- and macrocalcification. In this review, we summarize the emerging evidence of the pathological role of EVs in vascular damage, highlighting the major findings from the most recent studies and discussing future perspectives in this research field.
Collapse
Affiliation(s)
- Fabrizio Buffolo
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy. (F.B., S.M.).,Center for Interdisciplinary Cardiovascular Sciences, Department of Cardiovascular Medicine (F.B, E.A.)
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Torino, Italy. (F.B., S.M.)
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Italy. (G.C.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Department of Cardiovascular Medicine (F.B, E.A.).,Center for Excellence in Vascular Biology, Department of Cardiovascular Medicine (E.A.)
| |
Collapse
|
11
|
Hussain A, Rafeeq H, Munir N, Jabeen Z, Afsheen N, Rehman KU, Bilal M, Iqbal HMN. Dendritic Cell-Targeted Therapies to Treat Neurological Disorders. Mol Neurobiol 2022; 59:603-619. [PMID: 34743292 DOI: 10.1007/s12035-021-02622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cells (DCs) are the immune system's highly specialized antigen-presenting cells. When DCs are sluggish and mature, self-antigen presentation results in tolerance; however, when pathogen-associated molecular patterns stimulate mature DCs, antigen presentation results in the development of antigen-specific immunity. DCs have been identified in various vital organs of mammals (e.g., the skin, heart, lungs, intestines, and spleen), but the brain has long been thought to be devoid of DCs in the absence of neuroinflammation. However, neuroinflammation is becoming more recognized as a factor in a variety of brain illnesses. DCs are present in the brain parenchyma in trace amounts under healthy circumstances, but their numbers rise during neuroinflammation. New therapeutics are being developed that can reduce dendritic cell immunogenicity by inhibiting pro-inflammatory cytokine production and T cell co-stimulatory pathways. Additionally, innovative ways of regulating dendritic cell growth and differentiation and harnessing their tolerogenic capability are being explored. Herein, we described the function of dendritic cells in neurological disorders and discussed the potential for future therapeutic techniques that target dendritic cells and dendritic cell-related targets in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nimra Munir
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Khalil Ur Rehman
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
12
|
Jadli AS, Parasor A, Gomes KP, Shandilya R, Patel VB. Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger. Front Cardiovasc Med 2021; 8:767488. [PMID: 34869682 PMCID: PMC8632805 DOI: 10.3389/fcvm.2021.767488] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) represent a major global health problem, due to their continued high incidences and mortality. The last few decades have witnessed new advances in clinical research which led to increased survival and recovery in CVD patients. Nevertheless, elusive and multifactorial pathophysiological mechanisms of CVD development perplexed researchers in identifying efficacious therapeutic interventions. Search for novel and effective strategies for diagnosis, prevention, and intervention for CVD has shifted research focus on extracellular vesicles (EVs) in recent years. By transporting molecular cargo from donor to recipient cells, EVs modulate gene expression and influence the phenotype of recipient cells, thus EVs prove to be an imperative component of intercellular signaling. Elucidation of the role of EVs in intercellular communications under physiological conditions implied the enormous potential of EVs in monitoring and treatment of CVD. The EVs secreted from the myriad of cells in the cardiovascular system such as cardiomyocytes, cardiac fibroblasts, cardiac progenitor cells, endothelial cells, inflammatory cells may facilitate the communication in physiological and pathological conditions. Understanding EVs-mediated cellular communication may delineate the mechanism of origin and progression of cardiovascular diseases. The current review summarizes exosome-mediated paracrine signaling leading to cardiovascular disease. The mechanistic role of exosomes in cardiovascular disease will provide novel avenues in designing diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ananya Parasor
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ruchita Shandilya
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S, Liu YS. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Qun-Yan Xiang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Jie-Yu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Xu H, Ni YQ, Liu YS. Mechanisms of Action of MiRNAs and LncRNAs in Extracellular Vesicle in Atherosclerosis. Front Cardiovasc Med 2021; 8:733985. [PMID: 34692785 PMCID: PMC8531438 DOI: 10.3389/fcvm.2021.733985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| |
Collapse
|
15
|
Wang Z, Xu H, Cheng F, Zhang J, Feng Y, Liu D, Shang W, Feng G. Donor BMSC-derived small extracellular vesicles relieve acute rejection post-renal allograft through transmitting Loc108349490 to dendritic cells. Aging Cell 2021; 20:e13461. [PMID: 34499402 PMCID: PMC8520728 DOI: 10.1111/acel.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BMSC)-derived small extracellular vesicles (sEVs) are potent candidates for the suppression of acute rejection post-renal allograft and have been reported to halt dendritic cells (DCs) maturation. However, whether BMSC-derived sEVs mitigate acute rejection post-renal allograft by targeting DCs is still unclear. In this study, donor BMSC-derived sEVs (sEVs) relieved the inflammatory response and suppressed mature DCs (mDCs) location in kidney grafts, and increased regulatory T (Treg) cell population in the spleens of the rats that underwent kidney allograft. In lipopolysaccharide (LPS)-stimulated immature DCs (imDCs), sEVs suppressed the maturation and migration of DCs and inactivated toll-like receptor 4 (TLR4) signaling. Compared with LPS-treated imDCs, imDCs treated with LPS+sEVs promoted CD4+ T cells differentiated toward Treg cells. Subsequently, we found that Loc108349490, a long non-coding RNA (lncRNA) abundant in sEVs, mediated the inhibitory effect of sEVs on DC maturation and migration by promoting TLR4 ubiquitination. In rats that underwent an allograft, Loc108349490 deficiency weakened the therapeutic effect of sEVs on acute rejection. The present study firstly found that sEVs alleviated acute rejection post-renal allograft by transferring lncRNA to DCs and screened out the functional lncRNA loaded in sEVs was Loc108349490.
Collapse
Affiliation(s)
- Zhi‐gang Wang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong‐en Xu
- Precision Medicine Center of Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Fu‐min Cheng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jie Zhang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yong‐hua Feng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dan‐hua Liu
- Precision Medicine Center of Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Wen‐jun Shang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐wen Feng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
16
|
Lin B, Yang J, Song Y, Dang G, Feng J. Exosomes and Atherogenesis. Front Cardiovasc Med 2021; 8:738031. [PMID: 34513963 PMCID: PMC8427277 DOI: 10.3389/fcvm.2021.738031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction and ischemic stroke are the leading causes of mortality worldwide. Atherosclerosis is their common pathological foundation. It is known that atherosclerosis is characterized by endothelial activation/injury, accumulation of inflammatory immune cells and lipid-rich foam cells, followed by the development of atherosclerotic plaque. Either from arterial vessel wall or blood circulation, endothelial cells, smooth muscle cells, macrophages, T-lymphocytes, B-lymphocytes, foam cells, and platelets have been considered to contribute to the pathogenesis of atherosclerosis. Exosomes, as natural nano-carriers and intercellular messengers, play a significant role in modulation of cell-to-cell communication. Under physiological or pathological conditions, exosomes can deliver their cargos including donor cell-specific proteins, lipids, and nucleic acids to target cells, which in turn affect the function of the target cells. In this review, we will describe the pathophysiological significance of various exosomes derived from different cell types associated with atherosclerosis, and the potential applications of exosome in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingbing Lin
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Yang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuwei Song
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guohui Dang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Juan Feng
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
17
|
Shi Z, Zheng Z, Lin X, Ma H. Long Noncoding RNA MALAT1 Regulates the Progression of Atherosclerosis by miR-330-5p/NF-κB Signal Pathway. J Cardiovasc Pharmacol 2021; 78:235-246. [PMID: 34554676 DOI: 10.1097/fjc.0000000000001061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/04/2023]
Abstract
ABSTRACT Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was reported to be related to atherosclerosis (AS) progression. However, the underlying mechanism of MALAT1 in AS remains unknown. Quantitative real-time polymerase chain reaction was performed to detect the expression of MALAT1 and miR-330-5p. Western blot was applied to assess the protein levels of cluster of differentiation 36, interleukin-1β, interleukin-6 and tumor necrosis factor-α, phosphorylation of nuclear factor kappa-B inhibitor alpha and phosphorylation of p65. Flow cytometry assay, cell counting kit 8 assay, triglyceride, and total cholesterol detection assays were used to detect the apoptosis, viability, and lipid indexes of THP-1 macrophages-derived foam cells. Online database starbasev2.0 was used to predict the binding sequences between MALAT1 and miR-330-5p and it was verified by dual-luciferase reporter system and RNA immunoprecipitation assay. Besides, an AS mice model was used to evaluate the effect of MALAT1 in vivo. As a result, MALAT1 was overexpressed, whereas miR-330-5p was downregulated in THP-1 macrophages-derived foam cells. MiR-330-5p was a target of MALAT1. MALAT1 depletion inhibited cell formation, apoptosis, and inflammation in THP-1 macrophages-derived foam cells. Besides, MALAT1 overexpression promoted the inflammation in AS mice model, which promoted the pathogenesis of AS. Furthermore, miR-330-5p regulated the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway in THP-1 macrophages-derived foam cells. Moreover, MALAT1 regulated NF-κB signal pathway to mediate the pathogenesis of AS by sponging miR-330-5p. MALAT1 sponges miR-330-5p to activate NF-κB signal pathway in THP-1 macrophages-derived foam cells. This finding may provide a novel biomarker for AS diagnosis.
Collapse
Affiliation(s)
- Zhifeng Shi
- Department of Neurology, MinDong Hospital of Ningde City, Fuan City, Fujian Province, China
| | | | | | | |
Collapse
|
18
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
19
|
Yuan Z, Huang W. New Developments in Exosomal lncRNAs in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709169. [PMID: 34307511 PMCID: PMC8295603 DOI: 10.3389/fcvm.2021.709169] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs with lengths >200 nt and are involved in the occurrence and development of cardiovascular diseases (CVDs). Exosomes are secreted and produced by various cell types. Exosome contents include various ncRNAs, proteins and lipids. Exosomes are also important mediators of intercellular communication. The proportion of lncRNAs in exosomes is low, but increasing evidence suggests that exosomal lncRNAs play important roles in CVDs. We focused on research progress in exosomal lncRNAs in atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury, cardiac angiogenesis, cardiac aging, rheumatic heart disease, and chronic kidney disease combined with CVD. The potential diagnostic and therapeutic effects of exosomal lncRNAs in CVDs are summarized based on preclinical studies involving animal and cell models and circulating exosomes in clinical patients. Finally, the challenges and possible prospects of exosomes and exosomal lncRNAs in clinical applications related to CVD are discussed.
Collapse
Affiliation(s)
- Zhu Yuan
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiqiang Huang
- Department of Geriatric Cardiology, Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Zhou H, Jiang F, Leng Y. Propofol Ameliorates ox-LDL-Induced Endothelial Damage Through Enhancing Autophagy via PI3K/Akt/m-TOR Pathway: A Novel Therapeutic Strategy in Atherosclerosis. Front Mol Biosci 2021; 8:695336. [PMID: 34250023 PMCID: PMC8267008 DOI: 10.3389/fmolb.2021.695336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: Atherosclerosis (AS) represents a common age-associated disease, which may be accelerated by oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury. This study aimed to investigate the effects of Propofol on ox-LDL-induced endothelial damage and the underlying molecular mechanisms. Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to ox-LDL to induce endothelial damage. HUVECs were pretreated with 0, 5, 25 and 100°μM Propofol, followed by exposure to 100°μg/ml ox-LDL for 24°h. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. The expression of autophagy- and apoptosis-related proteins was detected via western blot. Autophagosome was investigated under a transmission electron microscope. After co-treatment with autophagy inhibitor Bafilomycin A1 or si-Beclin-1, cell apoptosis was detected by flow cytometry. Furthermore, under cotreatment with PI3K activator 740Y-P, PI3K/Akt/m-TOR pathway- and autophagy-related proteins were examined by western blot. Results: With a concentration-dependent manner, Propofol promoted the viability of HUVECs exposed to ox-LDL, and increased LC3-II/I ratio and Beclin-1 expression, and decreased P62 expression. The formation of autophagosome was enhanced by Propofol. Furthermore, Propofol treatment elevated Bcl-2/Bax ratio and lowered Caspase-3 expression. Bafilomycin A1 or si-Beclin-1 distinctly ameliorated the inhibitory effects of Propofol on apoptosis in ox-LDL-exposed HUVECs. Moreover, Propofol lowered the activation of PI3K/Akt/m-TOR pathway in HUVECs under exposure to ox-LDL. However, its inhibitory effects were weakened by 740Y-P. Conclusion: Collectively, this study revealed that Propofol could ameliorate ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/Akt/m-TOR pathway, which might offer a novel therapeutic strategy in AS.
Collapse
Affiliation(s)
- Hongyi Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Anesthesiology, Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Fan Jiang
- Department of General Medicine, Beijing Luhe Hospital, Capital Medical University, Beijin, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Ni J, Huang Z, Wang D. LncRNA TP73-AS1 promotes oxidized low-density lipoprotein-induced apoptosis of endothelial cells in atherosclerosis by targeting the miR-654-3p/AKT3 axis. Cell Mol Biol Lett 2021; 26:27. [PMID: 34103010 PMCID: PMC8188714 DOI: 10.1186/s11658-021-00264-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Although lncRNA TP73-AS1 has been shown to play important roles in various human diseases, its function in atherosclerosis (AS) remains unclear. Methods Human aortic endothelial cells (HAECs) were treated with 50 μg/ml oxidized low-density lipoprotein (ox-LDL) to establish an atherosclerotic cell model. The expression of TP73-AS1, miR-654-3p and AKT3 was detected by qRT-PCR. Cell functions were evaluated CCK-8 assay and flow cytometry. The protein levels of apoptosis-related proteins were evaluated by western blot. The binding relationship among TP73-AS1, miR-654-3p and AKT3 was determined by bioinformatics analysis and luciferase reporter assay. Results TP73-AS1 was upregulated and miR-654-3p was downregulated in ox-LDL treated HAECs. TP73-AS1 silencing and miR-654-3p mimics decreased the viability and inhibited apoptosis of ox-LDL treated HAECs, decreased the expression levels of c-caspase-9, c-caspase-3 and Bax, and increased Bcl-2 expression. In addition, miR-654-3p inhibitor significantly reversed the inhibitory effects of si-TP73-AS1 on cell viability and apoptosis. TP73-AS1 could positively regulate AKT3 through directly sponging miR-654-3p. Conclusion TP73-AS1 promoted apoptosis of ox-LDL stimulated endothelial cells by targeting the miR-654-3p/AKT3 axis, suggesting that TP73-AS1 might be a potential target for AS treatment.
Collapse
Affiliation(s)
- Jia Ni
- Stomatological Hospital, Southern Medical University, No. 366 Jiangnan Avenue South, Haizhu District, Guangzhou City, Guangdong Province, People's Republic of China.
| | - Zhen Huang
- Peking University School of Stomatology, Beijing, 100081, People's Republic of China
| | - Dan Wang
- Stomatological Hospital, Southern Medical University, No. 366 Jiangnan Avenue South, Haizhu District, Guangzhou City, Guangdong Province, People's Republic of China.
| |
Collapse
|
22
|
Khan S, Masood M, Gaur H, Ahmad S, Syed MA. Long non-coding RNA: An immune cells perspective. Life Sci 2021; 271:119152. [PMID: 33548285 DOI: 10.1016/j.lfs.2021.119152] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) were considered as accumulated genetic waste until they were found to be gene expression regulators by highly sensitive modern genomics platforms. It is a huge class of non-coding transcripts with an arbitrary length of >200 nucleotides, which has gained much attention in the past few years. Increasing evidence from several experimental studies unraveled the expression of lncRNA linked to immune response and disease progression. However, only a small number of lncRNAs have robust evidence of their function. Differential expression of lncRNAs in different immune cells is also evident. In this review, we focused on how lncRNAs expression assist in shaping immune cells (Macrophages, Dendritic cells, NK cells, T cells, B cells, eosinophils, neutrophils, and microglial cells) function and their response to the diseased conditions. Emerging evidence revealed lncRNAs may serve as key regulators in the innate and adaptive immune response system. So, the molecular mechanism insight into the function of lncRNAs in immune response may contribute to the development of potential therapeutic targets for various disease treatments. Therefore, it is imperative to explore the expression of lncRNAs and understand its relevance associated with the immune system.
Collapse
Affiliation(s)
- Salman Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Masood
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Harshita Gaur
- Department of Life Sciences, University of Glasgow, United Kingdom
| | - Shaniya Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
23
|
Chen D, Wang K, Zheng Y, Wang G, Jiang M. Exosomes-Mediated LncRNA ZEB1-AS1 Facilitates Cell Injuries by miR-590-5p/ETS1 Axis Through the TGF-β/Smad Pathway in Oxidized Low-density Lipoprotein-induced Human Umbilical Vein Endothelial Cells. J Cardiovasc Pharmacol 2021; 77:480-490. [PMID: 33818551 DOI: 10.1097/fjc.0000000000000974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Atherosclerosis is a chronic lipid-induced inflammation of the vessel wall. Oxidized low-density lipoprotein was confirmed to drive the onset of atherogenesis. Zinc finger e-box-binding homeobox 1 antisense 1 (ZEB1-AS1) is a long noncoding RNA that is involved in human diseases, including atherosclerosis. In this study, the role of exosomes-mediated ZEB1-AS1 and its underlying mechanisms in atherosclerosis were explored in oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). Exosomes were extracted from HUVECs. Quantitative real-time polymerase chain reaction was conducted to measure the expression of ZEB1-AS1, microRNA-590-5p (miR-590-5p), or erythroblastosis virus E26 oncogene homolog 1 (ETS1) in cells or exosomes. Cell proliferation and apoptosis were assessed by MTT assay and flow cytometry analysis, respectively. Western blot was performed to detect apoptosis-related factors, ETS1, and TGF-β/Smad pathway protein levels. The secretion of inflammatory factors in supernatant was detected by ELISA assay. Oxidative stress damage indicators were used to assess cellular damage. Relationship between miR-590-5p and ZEB1-AS1 or ETS1 was analyzed. Our data indicated that ox-LDL-induced exosomes-mediated ZEB1-AS1 in HUVECs. Ox-LDL treatment resulted in limited proliferation, proapoptosis, inflammation, and oxidative stress damage, whereas knockdown of ZEB1-AS1 could reverse these effects. Mechanically, ZEB1-AS1 sponged miR-590-5p to regulate ETS1 expression. MiR-590-5p knockdown inverted effects above of si-ZEB1-AS1 on HUVECs under ox-LDL exposure. Moreover, ETS1 reversed miR-590-5p-induced effects and activated the TGF-β/Smad pathway in ox-LDL-treated HUVECs. Taken together, our findings demonstrated that exosomes-mediated ZEB1-AS1 enhanced cell injuries by miR-590-5p/ETS1 axis through the TGF-β/Smad pathway in ox-LDL-induced HUVECs, suggesting that inhibiting ZEB1-AS1 might be an effective way for atherosclerosis treatment.
Collapse
Affiliation(s)
- Difang Chen
- Department of Cardiology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Kunwei Wang
- Department of Endocrinology, Shanghai Tianyou Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Zheng
- Emergency Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China ; and
| | - Guangyu Wang
- Department of Endocrinology, People's Hospital of Shanghai Putuo, Tongji University School of Medicine, Shanghai, China
| | - Mei Jiang
- Emergency Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China ; and
| |
Collapse
|
24
|
Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Am J Cancer Res 2021; 11:3996-4010. [PMID: 33664877 PMCID: PMC7914371 DOI: 10.7150/thno.56035] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized lipid vesicles originating from the endosomal system that carry many macromolecules from their parental cells and play important roles in intercellular communication. The functions and underlying mechanisms of exosomes in atherosclerosis have recently been intensively studied. In this review, we briefly introduce exosome biology and then focus on advances in the roles of exosomes in atherosclerosis, specifically exosomal changes associated with atherosclerosis, their cellular origins and potential functional cargos, and their detailed impacts on recipient cells. We also discuss the potential of exosomes as biomarkers and drug carriers for managing atherosclerosis.
Collapse
|
25
|
Jayasuriya R, Ramkumar KM. Role of long non-coding RNAs on the regulation of Nrf2 in chronic diseases. Life Sci 2021; 270:119025. [PMID: 33450255 DOI: 10.1016/j.lfs.2021.119025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
Studies have identified dysregulated long non-coding RNA (lncRNA) in several diseases at transcriptional, translational, and post-translational levels. Although our mechanistic knowledge on the regulation of lncRNAs is still limited, one of the mechanisms of action attributed is binding and regulating transcription factors, thus controlling gene expression and protein function. One such transcription factor is nuclear factor erythroid 2-related factor 2 (Nrf2), which plays a critical biological role in maintaining cellular homeostasis at multiple levels in physiological and pathophysiological conditions. The levels of Nrf2 were found to be down-regulated in many chronic diseases, signifying that Nrf2 can be a key therapeutic target. Few lncRNAs like lncRNA ROR, ENSMUST00000125413, lncRNA ODRUL, Nrf2-lncRNA have been associated with the Nrf2 signaling pathway in response to various stimuli, including stress. This review discusses the regulation of Nrf2 in different responses and the potential role of specific lncRNA in modulating its transcriptional activities. This review further helps to enhance our knowledge on the regulatory role of the critical antioxidant transcription factor, Nrf2.
Collapse
Affiliation(s)
- Ravichandran Jayasuriya
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- SRM Research Institute and Department of Biotechnology, School of bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
26
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2021; 73:64-91. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
AbstractCardiovascular disease is the leading cause of death globally. Coronary artery disease (CAD) is a chronic inflammatory disease usually caused by atherosclerosis, in which the coronary arteries become narrowed by atheromatous plaque. Plaques in atherosclerosis are formed through the accumulation of lipids and various immune cells. Both adaptive and innate immune systems are involved in the pathogenesis of atherosclerosis and facilitate plaque formation and disease progression. Almost all immune system cells, including neutrophils, B cells, T cells monocytes, macrophages, foam cells, and dendritic cells (DCs), play a vital role in atherosclerotic plaque. Atherogenesis, the normal function of the endothelium, is initially disrupted and, then, cells of the immune system are recruited to the endothelium following increased expression of cell adhesion molecules. Accumulation of immune cells and lipids leads to the formation of a necrotic nucleus. As the disease progresses, smooth muscle cells form fibrous layers, whose rupture results in exposing the necrotic nucleus and thrombosis. Accordingly, the present review was conducted to determine the role of different cells in innate and adaptive immune systems in inhibition and progression of atherosclerosis.
Collapse
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
27
|
Liu J, Wu J, Li L, Li T, Wang J. The Role of Exosomal Non-Coding RNAs in Coronary Artery Disease. Front Pharmacol 2020; 11:603104. [PMID: 33363474 PMCID: PMC7753098 DOI: 10.3389/fphar.2020.603104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide. Atherosclerosis (AS) is a major cause of CVD. Oxidative stress, endothelial dysfunction, and inflammation are key factors involved in the development and progression of AS. Exosomes are nano-sized vesicles secreted into the extracellular space by most types of cells, and are ideal substances for the transmission and integration of signals between cells. Cells can selectively encapsulate biologically active substances, such as lipids, proteins and RNA in exosomes and act through paracrine mechanisms. Non-coding RNAs (ncRNAs) are important for communication between cells. They can reach the recipient cells through exosomes, causing phenotypic changes and playing a molecular regulatory role in cell function. Elucidating their molecular mechanisms can help identify therapeutic targets or strategies for CVD. Coronary artery disease (CAD) is the most important disease in CVD. Here, we review the role and the regulatory mechanism of exosomal ncRNAs in the pathophysiology of CAD, as well as the potential contribution of exosomal ncRNA to diagnosis and treatment of CAD.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Longbo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Lu S, Liang Q, Huang Y, Meng F, Liu J. Definition and review on a category of long non-coding RNA: Atherosclerosis-associated circulating lncRNA (ASCLncRNA). PeerJ 2020; 8:e10001. [PMID: 33240586 PMCID: PMC7666546 DOI: 10.7717/peerj.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular system diseases which seriously affects public health in modern society. Finding potential biomarkers in the complicated pathological progression of AS is of great significance for the prevention and treatment of AS. Studies have shown that long noncoding RNAs (lncRNAs) can be widely involved in the regulation of many physiological processes, and have important roles in different stages of AS formation. LncRNAs can be secreted into the circulatory system through exosomes, microvesicles, and apoptotic bodies. Recently, increasing studies have been focused on the relationships between circulating lncRNAs and AS development. The lncRNAs in circulating blood are expected to be new non-invasive diagnostic markers for monitoring the progression of AS. We briefly reviewed the previously reported lncRNA transcripts which related to AS development and detectable in circulating blood, including ANRIL, SENCR, CoroMarker, LIPCAR, HIF1α-AS1, LncRNA H19, APPAT, KCNQ1OT1, LncPPARδ, LincRNA-p21, MALAT1, MIAT, and UCA1. Further researches and a definition of atherosclerosis-associated circulating lncRNA (ASCLncRNA) were also discussed.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qin Liang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Fanming Meng
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
29
|
Ren K, Xu XD, Yu XH, Li MQ, Shi MW, Liu QX, Jiang T, Zheng XL, Yin K, Zhao GJ. LncRNA-modulated autophagy in plaque cells: a new paradigm of gene regulation in atherosclerosis? Aging (Albany NY) 2020; 12:22335-22349. [PMID: 33154191 PMCID: PMC7695379 DOI: 10.18632/aging.103786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The development of atherosclerosis is accompanied by the functional deterioration of plaque cells, which leads to the escalation of endothelial inflammation, abnormal vascular smooth muscle cell phenotype switching and the accumulation of lipid-laden macrophages within vascular walls. Autophagy, a highly conserved homeostatic mechanism, is critical for the delivery of cytoplasmic substrates to lysosomes for degradation. Moderate levels of autophagy prevent atherosclerosis by safeguarding plaque cells against apoptosis, preventing inflammation, and limiting the lipid burden, whereas excessive autophagy exacerbates cell damage and inflammation and thereby accelerates the formation of atherosclerotic plaques. Increasing lines of evidence suggest that long noncoding RNAs can be either beneficial or detrimental to atherosclerosis development by regulating the autophagy level. This review summarizes the research progress related to 1) the significant role of autophagy in atherosclerosis and 2) the effects of the lncRNA-mediated modulation of autophagy on the plaque cell fate, inflammation levels, proliferative capacity, and cholesterol metabolism and subsequently on atherogenesis.
Collapse
Affiliation(s)
- Kun Ren
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China.,Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Hai Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Qi Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China
| | - Meng-Wen Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xian Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ting Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, Calgary, AB, Canada.,Key Laboratory of Molecular Targets and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People’s Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
30
|
Chen L, Hu L, Zhu X, Wang Y, Li Q, Ma J, Li H. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis. Cell Cycle 2020; 19:2472-2485. [PMID: 32840181 DOI: 10.1080/15384101.2020.1807094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MALAT1 is associated with dendritic cells (DCs) maturation in Atherosclerosis (AS). This article aims to demystify the role of MALAT1 in AS. We separated immature DCs (iDCs) from healthy volunteers or ApoE-/- mice. And iDCs were treated with oxidized low density lipoprotein (ox-LDL) to induce DCs maturation. We found that ox-LDL promoted the levels of DCs maturation markers including CD83, CD86, IL-12 and IL-6. MALAT1 and NFIA were down-regulated, whereas miR-155-5p was up-regulated in the ox-LDL-treated iDCs. Furthermore, DCs maturation was notably suppressed by MALAT1 overexpression, NFIA overexpression or miR-155-5p knockdown. Moreover, MALAT1 functioned as a competing endogenous RNA to repress miR-155-5p, which controlled its down-stream target, NFIA. In addition, MALAT1 overexpression inhibited ox-LDL-stimulated DCs maturation by regulating miR-155-5p/NFIA axis. In AS mice, MALAT1 overexpression attenuated ox-LDL-stimulated DCs maturation and reduced atherosclerotic plaque area. In summary, our study demonstrates that MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated DCs maturation via miR-155-5p/NFIA axis. Thus, MALAT1/miR-155-5p/NFIA axis can potentially be used in the treatment of AS.
Collapse
Affiliation(s)
- Li Chen
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Liqun Hu
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Xiang Zhu
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Yan Wang
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Qing Li
- The Central Laboratory of Medical Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Jian Ma
- Department of Cardiology, Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Hongqi Li
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| |
Collapse
|
31
|
Exosomal Nrf2: From anti-oxidant and anti-inflammation response to wound healing and tissue regeneration in aged-related diseases. Biochimie 2020; 171-172:103-109. [PMID: 32109502 DOI: 10.1016/j.biochi.2020.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Accumulation of oxidative stress in cells is an essential feature of cellular senescence and aging. This phenomenon is involved in different age-related diseases through dysregulation of homeostasis and impairing repair and regeneration (wound healing) capacity, which can suppress antioxidant responses such as the activity of antioxidant enzymes and damaged protein clearance system. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor which regulates basal and inducible expression pattern of specific genes (antioxidants and detoxifications) through antioxidant element response (ARE) sites in the stress condition, specifically in chronic and age-related stresses. Nrf2 maintains cellular redox hemostasis and promotes rejuvenation. Exosomes are nanoscale vesicles that are released by various cells to actively regulate the complex cellular signaling networks. Exosomal-Nrf2 and exosomal-Nrf2-mediated products can modulate oxidative hemostasis in target cells to induce tissue repairing with therapeutic proposes, and regeneration capability. In this study, we summarized the role of exosomal-Nrf2 in different age-related diseases, including diabetic foot ulcers, atherosclerosis, chronic heart failure, reproductive cell failures, and neurodegenerative diseases. In addition, we briefly explained the crosstalk between plant exosomes and mammalian cell metabolism in the benefit of cellular stress suppression.
Collapse
|