1
|
Tan L, Miao Z, Zhao Y, Liang Y, Xu N, Chen X, Tu Y, He C. Dual regulation of phaseol on osteoclast formation and osteoblast differentiation by targeting TAK1 kinase for osteoporosis treatment. J Adv Res 2024:S2090-1232(24)00565-4. [PMID: 39662728 DOI: 10.1016/j.jare.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Osteoporosis is an osteolytic disorder resulting from an inequilibrium between osteoblast-mediated osteogenesis and osteoclast-driven bone absorption. Safe and effective approaches for osteoporosis management are still highly demanded. PURPOSE This study aimed to examine the osteoprotective effect and the mechanisms of phaseol (PHA) in vitro and in vivo. METHODS Virtual screening identified the potential inhibitors of transforming growth factor-beta-activated kinase 1 (TAK1) from coumestans. The interaction between PHA and TAK1 was investigated by molecular simulation, pronase and thermal resistance assays. The maturation and function of osteoclasts were determined using tartrate-resistant acid phosphatase staining, bone absorption and F-actin ring formation assays. The differentiation and calcification of osteoblasts were assessed by alkaline phosphatase staining and Alizarin Red S staining. The activity of related targets and pathways were detected using immunoblotting, immunofluorescence and co-immunoprecipitation assays. The in vivo osteoprotective effect of PHA was evaluated using a lipopolysaccharide (LPS)-induced mouse osteoporosis model. RESULTS Firstly, we confirmed that TAK1 was essential in controlling bone remodeling by regulating osteogenesis and osteoclastogenesis. Moreover, PHA, a coumestan compound predominantly present in leguminous plants, was identified as a potent TAK1 inhibitor through virtual and real experiments. Subsequently, PHA was observed to enhance osteoblast differentiation and calcification, while suppress osteoclast maturation and bone resorptive function in vitro. Mechanistically, PHA remarkably inhibited the TRAF6-TAK1 complex formation, and inhibited the activation of TAK1, MAPK and NF-κB pathways by targeting TAK1. In the in vivo study, PHA strongly attenuated bone loss, inflammatory responses, and osteoclast over-activation in lipopolysaccharide-induced osteoporosis mice. CONCLUSION PHA had a dual-functional regulatory impact on osteogenesis and osteoclastogenesis by targeting TAK1, suppressing TRAF6-TAK1 complex generation, and modulating its associated signaling pathways, ultimately leading to mitigating osteoporosis. This study offered compelling evidence in favor of using PHA for preventing and managing osteoporosis as both a bone anabolic and anti-resorptive agent.
Collapse
Affiliation(s)
- Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
2
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
3
|
Tarapongpun T, Onlamoon N, Tabu K, Chuthapisith S, Taga T. The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells. Genes Cells 2024; 29:231-253. [PMID: 38253356 DOI: 10.1111/gtc.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.
Collapse
Affiliation(s)
- Tanakorn Tarapongpun
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nattawat Onlamoon
- Department of Research, Faculty of Medicine Siriraj Hospital, Siriraj Research Group in Immunobiology and Therapeutic Sciences, Mahidol University, Bangkok, Thailand
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suebwong Chuthapisith
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother 2023; 168:115795. [PMID: 37918253 DOI: 10.1016/j.biopha.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Platelet-rich fibrin (PRF), as an autologous blood preparation, has been receiving increasing attention in recent years and has been successfully applied in various clinical treatments for alveolar bone regeneration in the oral field. This review focuses on analyzing and summarizing the role and mechanism of PRF in alveolar bone regeneration. We first provide a brief introduction to PRF, then summarize the mechanisms by which PRF promotes alveolar bone regeneration from three aspects: osteogenesis mechanism, bone induction mechanism, and bone conduction mechanism, involving multiple signaling pathways such as Smad, ERK1/2, PI3K/Akt, and Wnt/β-catenin. We also explore the various roles of PRF as a scaffold, filler, and in combination with bone graft materials, detailing how PRF promotes alveolar bone regeneration and provides a wealth of experimental evidence. Finally, we summarize the current applications of PRF in various oral fields. The role of PRF in alveolar bone regeneration is becoming increasingly important, and its role and mechanism are receiving more and more research and understanding. This article will provide a reference of significant value for research in related fields. The exploration of the role and mechanism of PRF in alveolar bone regeneration may lead to the discovery of new therapeutic targets and the development of more effective and efficient treatment strategies.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Tantalum as Trabecular Metal for Endosseous Implantable Applications. Biomimetics (Basel) 2023; 8:biomimetics8010049. [PMID: 36810380 PMCID: PMC9944482 DOI: 10.3390/biomimetics8010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
During the last 20 years, tantalum has known ever wider applications for the production of endosseous implantable devices in the orthopedic and dental fields. Its excellent performances are due to its capacity to stimulate new bone formation, thus improving implant integration and stable fixation. Tantalum's mechanical features can be mainly adjusted by controlling its porosity thanks to a number of versatile fabrication techniques, which allow obtaining an elastic modulus similar to that of bone tissue, thus limiting the stress-shielding effect. The present paper aims at reviewing the characteristics of tantalum as a solid and porous (trabecular) metal, with specific regard to biocompatibility and bioactivity. Principal fabrication methods and major applications are described. Moreover, the osteogenic features of porous tantalum are presented to testify its regenerative potential. It can be concluded that tantalum, especially as a porous metal, clearly possesses many advantageous characteristics for endosseous applications but it presently lacks the consolidated clinical experience of other metals such as titanium.
Collapse
|
6
|
Gu Y, Hou T, Qin Y, Dong W. Zoledronate promotes osteoblast differentiation in high-glucose conditions via the p38MAPK pathway. Cell Biol Int 2022; 47:216-227. [PMID: 36193698 DOI: 10.1002/cbin.11921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Zoledronate (ZOL) were found to inhibit bone resorption in an animal model of diabetes, high glucose concentrations have been shown to decreased the osteogenesis-related gene expression. But the molecular mechanism by which high glucose levels affect osteoblasts and the effects of ZOL on osteoblast differentiation in a high-glucose environment remain unclear. Therefore, we aimed to investigate the effect of ZOL on osteoblast differentiation in a high-glucose environment and determine the responsible mechanism. Cell proliferation was detected by MTT assay, and cell differentiation was evaluated by immunofluorescence staining for alkaline phosphatase expression, alizarin red staining, cytoskeletal arrangement, and actin fiber formation. Real-time PCR and western blot analyses were performed to detect the mRNA and protein expression of p38MAPK, phosphorylated (p)-p38MAPK, CREB, p-CREB, collagen (COL) I, osteoprotegerin (OPG), and RANKL. The results showed that cell proliferation activity did not differ among the groups. But high glucose inhibited osteoblast differentiation; actin fiber formation; and p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression, while promoting RANKL expression. However, we found that treatment with ZOL reversed these effects of high glucose. And further addition of a p38MAPK inhibitor led to inhibition of osteoblast differentiation and actin fiber formation, and lower p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression than in the high glucose +ZOL group with higher RANKL expression than in the high glucose +ZOL group. Collectively, this study demonstrates that high glucose inhibits the differentiation of osteoblasts, and ZOL could partly overcome these effects by regulating p38MAPK pathway activity.
Collapse
Affiliation(s)
- Yingying Gu
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Tian Hou
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Yazhi Qin
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
7
|
Small extracellular vesicle-mediated miR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat Commun 2022; 13:2467. [PMID: 35513391 PMCID: PMC9072352 DOI: 10.1038/s41467-022-29029-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is an emerging spinal disease caused by heterotopic ossification of the posterior longitudinal ligament. The pathological mechanism is poorly understood, which hinders the development of nonsurgical treatments. Here, we set out to explore the function and mechanism of small extracellular vesicles (sEVs) in OPLL. Global miRNA sequencings are performed on sEVs derived from ligament cells of normal and OPLL patients, and we have showed that miR-320e is abundantly expressed in OPLL-derived sEVs compare to other sEVs. Treatment with either sEVs or miR-320e significantly promote the osteoblastic differentiation of normal longitudinal ligament cells and mesenchymal stem cells and inhibit the osteoclastic differentiation of monocytes. Through a mechanistic study, we find that TAK1 is a downstream target of miR-320e, and we further validate these findings in vivo using OPLL model mice. Together, our data demonstrate that OPLL ligament cells secrete ossification-promoting sEVs that contribute to the development of ossification through the miR-320e/TAK1 axis. The pathological mechanisms that lead to Ossification of the posterior longitudinal ligament (OPLL) are unclear. Here, the authors show that OPLL ligament cells produce small extracellular vesicles that induce ossification via miR-320e/TAK1 signaling in mice and human posterior longitudinal ligament cells.
Collapse
|
8
|
Micale L, Morlino S, Carbone A, Carissimo A, Nardella G, Fusco C, Palumbo O, Schirizzi A, Russo F, Mazzoccoli G, Breckpot J, De Luca C, Ferraris A, Giunta C, Grammatico P, Haanpää MK, Mancano G, Forzano G, Cacchiarelli D, Van Esch H, Callewaert B, Rohrbach M, Castori M. Loss-of-function variants in exon 4 of TAB2 cause a recognizable multisystem disorder with cardiovascular, facial, cutaneous, and musculoskeletal involvement. Genet Med 2021; 24:439-453. [PMID: 34906501 DOI: 10.1016/j.gim.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. METHODS Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients' fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. RESULTS A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFβ-, Ras-MAPK-, and Wnt-signaling networks. CONCLUSION Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annalucia Carbone
- Unit of Chronobiology, Division of Internal Medicine, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annamaria Carissimo
- Institute for Applied Mathematics "Mauro Picone" National Research Council, Naples, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annalisa Schirizzi
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Russo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Unit of Chronobiology, Division of Internal Medicine, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Chiara De Luca
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Alessandro Ferraris
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Cecilia Giunta
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Paola Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Maria K Haanpää
- Department of Clinical Genetics and Genomics, Turku University Hospital and University of Turku, Turku, Finland
| | - Giorgia Mancano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, University of Florence, Florence, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Hilde Van Esch
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Bert Callewaert
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
9
|
Yong J, von Bremen J, Ruiz-Heiland G, Ruf S. Adiponectin as Well as Compressive Forces Regulate in vitro β-Catenin Expression on Cementoblasts via Mitogen-Activated Protein Kinase Signaling Activation. Front Cell Dev Biol 2021; 9:645005. [PMID: 33996803 PMCID: PMC8113767 DOI: 10.3389/fcell.2021.645005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 01/19/2023] Open
Abstract
We aimed to investigate the molecular effect that adiponectin exerts on cementoblasts especially in the presence of compressive forces. OCCM-30 cells (M. Somerman, NIH, NIDCR, United States) were used. Real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and western blots were employed to verify if the mRNA and protein levels of adiponectin receptors (AdipoRs), mitogen-activated protein kinase (MAPK), and β-catenin signaling were influenced by compressive forces or adiponectin. Moreover, siRNAs targeting P38α, JNK1, ERK1, ERK2, and AdipoRs as well as pharmacological MAPK inhibition were performed. We found that compressive forces increase the expression of AdipoRs. Adiponectin and compression up-regulate P38α,JNK1, ERK1, and ERK2 as well as β-catenin gene expression. Western blots showed that co-stimuli activate the MAPK and β-catenin signaling pathways. MAPK inhibition alters the compression-induced β-catenin activation and the siRNAs targeting AdipoRs, P38α, and JNK1, showing the interaction of single MAPK molecules and β-catenin signaling in response to compression or adiponectin. Silencing by a dominantly negative version of P38α and JNK1 attenuates adiponectin-induced TCF/LEF reporter activation. Together, we found that light compressive forces activate β-catenin and MAPK signaling pathways. Adiponectin regulates β-catenin signaling principally by inactivating the GSK-3β kinase activity. β-Catenin expression was partially inhibited by MAPK blockade, indicating that MAPK plays a crucial role regulating β-catenin during cementogenesis. Moreover, adiponectin modulates GSK-3β and β-catenin mostly through AdipoR1. P38α is a key connector between β-catenin, TCF/LEF transcription, and MAPK signaling pathway.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Gisela Ruiz-Heiland
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Babaki D, Yaghoubi S, Matin MM. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: a comprehensive and systematic literature review. Biomater Investig Dent 2020; 7:175-185. [PMID: 33313519 PMCID: PMC7717865 DOI: 10.1080/26415275.2020.1848432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The significance of dental materials in dentin-pulp complex tissue engineering is undeniable. The mechanical properties and bioactivity of mineral trioxide aggregate (MTA) make it a promising biomaterial for future stem cell-based endodontic therapies. There are numerous in vitro studies suggesting the low cytotoxicity of MTA towards various types of cells. Moreover, it has been shown that MTA can enhance mesenchymal stem cells' (MSCs) osteo/odontogenic ability. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA), a literature review was conducted in the Medline, PubMed, and Scopus databases. Among the identified records, the cytotoxicity and osteo/odontoblastic potential of MTA or its extract on stem cells were investigated. Previous studies have discovered the differentiation-inducing potential of MTA on MSCs, providing a background for dentin-pulp complex cell therapies using the MTA, however, animal trials are needed before moving into clinical trials. In conclusion, MTA can be a promising candidate dental biomaterial for futuristic stem cell-based endodontic therapies.
Collapse
Affiliation(s)
- Danial Babaki
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
| | - Sanam Yaghoubi
- Visiting Scholar at Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Strong AL, Spreadborough PJ, Pagani CA, Haskins RM, Dey D, Grimm PD, Kaneko K, Marini S, Huber AK, Hwang C, Westover K, Mishina Y, Bradley MJ, Levi B, Davis TA. Small molecule inhibition of non-canonical (TAK1-mediated) BMP signaling results in reduced chondrogenic ossification and heterotopic ossification in a rat model of blast-associated combat-related lower limb trauma. Bone 2020; 139:115517. [PMID: 32622875 PMCID: PMC7945876 DOI: 10.1016/j.bone.2020.115517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Heterotopic ossification (HO) is defined as ectopic bone formation around joints and in soft tissues following trauma, particularly blast-related extremity injuries, thermal injuries, central nerve injuries, or orthopaedic surgeries, leading to increased pain and diminished quality of life. Current treatment options include pharmacotherapy with non-steroidal anti-inflammatory drugs, radiotherapy, and surgical excision, but these treatments have limited efficacy and have associated complication profiles. In contrast, small molecule inhibitors have been shown to have higher specificity and less systemic cytotoxicity. Previous studies have shown that bone morphogenetic protein (BMP) signaling and downstream non-canonical (SMAD-independent) BMP signaling mediated induction of TGF-β activated kinase-1 (TAK1) contributes to HO. In the current study, small molecule inhibition of TAK1, NG-25, was evaluated for its efficacy in limiting ectopic bone formation following a rat blast-associated lower limb trauma and a murine burn tenotomy injury model. A significant decrease in total HO volume in the rat blast injury model was observed by microCT imaging with no systemic complications following NG-25 therapy. Furthermore, tissue-resident mesenchymal progenitor cells (MPCs) harvested from rats treated with NG-25 demonstrated decreased proliferation, limited osteogenic differentiation capacity, and reduced gene expression of Tac1, Col10a1, Ibsp, Smad3, and Sox2 (P < 0.05). Single cell RNA-sequencing of murine cells harvested from the injury site in a burn tenotomy injury model showed increased expression of these genes in MPCs during stages of chondrogenic differentiation. Additional in vitro cell cultures of murine tissue-resident MPCs and osteochondrogenic progenitors (OCPs) treated with NG-25 demonstrated reduced chondrogenic differentiation by 10.2-fold (P < 0.001) and 133.3-fold (P < 0.001), respectively, as well as associated reduction in chondrogenic gene expression. Induction of HO in Tak1 knockout mice demonstrated a 7.1-fold (P < 0.001) and 2.7-fold reduction (P < 0.001) in chondrogenic differentiation of murine MPCs and OCPs, respectively, with reduced chondrogenic gene expression. Together, our in vivo models and in vitro cell culture studies demonstrate the importance of TAK1 signaling in chondrogenic differentiation and HO formation and suggest that small molecule inhibition of TAK1 is a promising therapy to limit the formation and progression of HO.
Collapse
Affiliation(s)
- Amy L Strong
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Philip J Spreadborough
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America; Academic Department of Military Surgery and Trauma, Royal Centre for Defense Medicine, Birmingham, United Kingdom
| | - Chase A Pagani
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Ryan M Haskins
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Patrick D Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Keiko Kaneko
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Simone Marini
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Amanda K Huber
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Charles Hwang
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Kenneth Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States of America
| | - Yuji Mishina
- Department of Biologic and Materials Science and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States of America
| | - Matthew J Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Benjamin Levi
- Division of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, United States of America.
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, United States of America; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America.
| |
Collapse
|
12
|
Stutz C, Strub M, Clauss F, Huck O, Schulz G, Gegout H, Benkirane-Jessel N, Bornert F, Kuchler-Bopp S. A New Polycaprolactone-Based Biomembrane Functionalized with BMP-2 and Stem Cells Improves Maxillary Bone Regeneration. NANOMATERIALS 2020; 10:nano10091774. [PMID: 32911737 PMCID: PMC7558050 DOI: 10.3390/nano10091774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
Oral diseases have an impact on the general condition and quality of life of patients. After a dento-alveolar trauma, a tooth extraction, or, in the case of some genetic skeletal diseases, a maxillary bone defect, can be observed, leading to the impossibility of placing a dental implant for the restoration of masticatory function. Recently, bone neoformation was demonstrated after in vivo implantation of polycaprolactone (PCL) biomembranes functionalized with bone morphogenic protein 2 (BMP-2) and ibuprofen in a mouse maxillary bone lesion. In the present study, human bone marrow derived mesenchymal stem cells (hBM-MSCs) were added on BMP-2 functionalized PCL biomembranes and implanted in a maxillary bone lesion. Viability of hBM-MSCs on the biomembranes has been observed using the "LIVE/DEAD" viability test and scanning electron microscopy (SEM). Maxillary bone regeneration was observed for periods ranging from 90 to 150 days after implantation. Various imaging methods (histology, micro-CT) have demonstrated bone remodeling and filling of the lesion by neoformed bone tissue. The presence of mesenchymal stem cells and BMP-2 allows the acceleration of the bone remodeling process. These results are encouraging for the effectiveness and the clinical use of this new technology combining growth factors and mesenchymal stem cells derived from bone marrow in a bioresorbable membrane.
Collapse
Affiliation(s)
- Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Pediatric Dentistry, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - François Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Pediatric Dentistry, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Periodontology, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Georg Schulz
- Core Facility Micro- and Nanotomography, Biomaterials Science Center (BMC), Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland;
| | - Hervé Gegout
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Pediatric Dentistry, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Oral Medicine and Oral Surgery, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Correspondence: ; Tel.: +33-619610523
| |
Collapse
|
13
|
Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci 2020; 62:349-356. [PMID: 32835781 DOI: 10.1016/j.job.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Bone marrow derived mesenchymal stem cells (BMSCs) are an irresistible choice for use in stem cell therapy and regenerative medicine. BMSCs osteoblastic differentiation is also important in bone development, diseases, malignancies, and cancers studies. Wnt signaling pathway antagonists, Dickkopf-1 (Dkk 1), Secreted Frizzled-Related Proteins (sFRPs), and Wnt Inhibitory Factor 1 (Wif1) play important roles in inducing osteoblastic differentiation. This study is the first to investigate the association between DNA methylation and gene expression of Dkk1, sFRP2, sFRP4, and Wif1 during BMSCs osteoblastic differentiation. METHODS Human BMSCs were isolated and characterized using flow cytometry. Then, cells were treated with osteo-differentiation medium for three weeks. Alizarin red S staining and polymerase chain reaction (PCR) (alkaline phosphatase/osteocalcin) were performed for confirmation. The expression of Dkk 1, sFRP2, sFRP4, and Wif1 genes was evaluated at days 7, 14, and 21 using real-time PCR. Methylation-specific PCR (MSP) was performed to detect the methylation status of the promoters of the genes. RESULTS Data showed significant decreases (P < 0.05) during various days of BMSCs differentiation, while the promoters of the genes remained mostly un-methylated. CONCLUSIONS The down-regulation of Dkk 1, sFRP2, sFRP4, and Wif1 regulates various stages of human BMSCs during osteoblastic differentiation. DNA methylation does not interfere in the down-regulation of these genes, except for Wif1. We propose that the Wnt antagonist gene promoters should remain un-methylated during osteoblastic differentiation of BMSCs and that the down-regulation of these genes may contribute to other epigenetic mechanisms, other than DNA methylation, which implicitly indicates the role of DNA methylation in osteogenic cancers.
Collapse
Affiliation(s)
- Maedeh Mashhadikhan
- Department of Biology, Faculty of Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamidreza Kheiri
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran.
| | - Ali Dehghanifard
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
15
|
Temporal TGF-β Supergene Family Signalling Cues Modulating Tissue Morphogenesis: Chondrogenesis within a Muscle Tissue Model? Int J Mol Sci 2020; 21:ijms21144863. [PMID: 32660137 PMCID: PMC7402331 DOI: 10.3390/ijms21144863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Temporal translational signalling cues modulate all forms of tissue morphogenesis. However, if the rules to obtain specific tissues rely upon specific ligands to be active or inactive, does this mean we can engineer any tissue from another? The present study focused on the temporal effect of “multiple” morphogen interactions on muscle tissue to figure out if chondrogenesis could be induced, opening up the way for new tissue models or therapies. Gene expression and histomorphometrical analysis of muscle tissue exposed to rat bone morphogenic protein 2 (rBMP-2), rat transforming growth factor beta 3 (rTGF-β3), and/or rBMP-7, including different combinations applied briefly for 48 h or continuously for 30 days, revealed that a continuous rBMP-2 stimulation seems to be critical to initiate a chondrogenesis response that was limited to the first seven days of culture, but only in the absence of rBMP-7 and/or rTGF-β3. After day 7, unknown modulatory effects retard rBMP-2s’ effect where only through the paired-up addition of rBMP-7 and/or rTGF-β3 a chondrogenesis-like reaction seemed to be maintained. This new tissue model, whilst still very crude in its design, is a world-first attempt to better understand how multiple morphogens affect tissue morphogenesis with time, with our goal being to one day predict the chronological order of what signals have to be applied, when, for how long, and with which other signals to induce and maintain a desired tissue morphogenesis.
Collapse
|
16
|
Kim JE, Takanche JS, Jang S, Yi HK. Mussel adhesive protein blended with gelatin loaded into nanotube titanium dental implants enhances osseointegration. Drug Deliv Transl Res 2020; 11:956-965. [PMID: 32557198 DOI: 10.1007/s13346-020-00807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to investigate whether mussel adhesive protein (MAP) blended with gelatin loaded into nanotube titanium (Ti) dental implants enhances osseointegration and supports bone formation. Cell viability, crystal violet staining, Western blot analysis, alizarin red S staining, alkaline phosphatase (ALP) activity, micro-computed tomography (μ-CT), hematoxylin and eosin (H&E), and immunohistochemistry (IHC) staining were employed to test the biocompatibility of MAP blended with gelatin (MAP/Gel). MC3T3 E1 cells were used for in vitro and Sprague-Dawley rats for in vivo models in this study. MC3T3 E1 cells cultured in MAP/Gel loaded into nanotube Ti surface demonstrated activation of FAK-PI3K-MAPKs-Wnt/β-catenin signaling pathway and enhanced osteogenic differentiation. μ-CT, H&E, and IHC staining confirmed that MAP/Gel dental implants promoted bone regeneration around the nanotube Ti implants by upregulation of Runx-2, BMP-2/7, Osterix, and OPG in rat mandible model. MAP/Gel supports osseointegration of dental implant after implantation. It is hypothesized that MAP/Gel loaded into nanotube Ti dental implants may be applicable as a potential treatment for bone formation and proper integration of dental implants with alveolar bone. Graphical abstract.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk, 54896, South Korea
| | - Jyoti Shrestha Takanche
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk, 54896, South Korea
| | - Sungil Jang
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk, 54896, South Korea
| | - Ho-Keun Yi
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk, 54896, South Korea.
| |
Collapse
|
17
|
Fan T, Qu R, Yu Q, Sun B, Jiang X, Yang Y, Huang X, Zhou Z, Ouyang J, Zhong S, Dai J. Bioinformatics analysis of the biological changes involved in the osteogenic differentiation of human mesenchymal stem cells. J Cell Mol Med 2020; 24:7968-7978. [PMID: 32463168 PMCID: PMC7348183 DOI: 10.1111/jcmm.15429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanisms underlying the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) remain unclear. In the present study, we aimed to identify the key biological processes during osteogenic differentiation. To this end, we downloaded three microarray data sets from the Gene Expression Omnibus (GEO) database: GSE12266, GSE18043 and GSE37558. Differentially expressed genes (DEGs) were screened using the limma package, and enrichment analysis was performed. Protein-protein interaction network (PPI) analysis and visualization analysis were performed with STRING and Cytoscape. A total of 240 DEGs were identified, including 147 up-regulated genes and 93 down-regulated genes. Functional enrichment and pathways of the present DEGs include extracellular matrix organization, ossification, cell division, spindle and microtubule. Functional enrichment analysis of 10 hub genes showed that these genes are mainly enriched in microtubule-related biological changes, that is sister chromatid segregation, microtubule cytoskeleton organization involved in mitosis, and spindle microtubule. Moreover, immunofluorescence and Western blotting revealed dramatic quantitative and morphological changes in the microtubules during the osteogenic differentiation of human adipose-derived stem cells. In summary, the present results provide novel insights into the microtubule- and cytoskeleton-related biological process changes, identifying candidates for the further study of osteogenic differentiation of the mesenchymal stem cells.
Collapse
Affiliation(s)
- Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Qinghe Yu
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Zhang M, Chen D, Zhang F, Zhang G, Wang Y, Zhang Q, He W, Wang H, Chen P. Serum exosomal hsa-miR-135b-5p serves as a potential diagnostic biomarker in steroid-induced osteonecrosis of femoral head. Am J Transl Res 2020; 12:2136-2154. [PMID: 32509207 PMCID: PMC7269975 DOI: pmid/32509207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 02/05/2023]
Abstract
Accumulating studies have demonstrated serum exosomal microRNAs (miRNAs) represent novel biomarkers for various diseases. In this study, we aimed to explore the feasibility of using serum exosomal miRNAs as novel serological biomarkers for steroid-induced osteonecrosis of femoral head (SONFH). We identified the characters of exosomes which were obtained from fresh serum of 5 systemic lupus erythematosus (SLE) patients without SONFH, 5 SLE patients with SONFH (SLE-SONFH) and 5 healthy ones. Comprehensive exosomal miRNA sequencing was performed to profile the differentially expressed miRNAs in the three groups. We then validated the expression levels of selected miRNAs by qRT-PCR. Furthermore, KEGG pathway, GO annotation, protein-protein interaction (PPI) network, module analysis and miRNAs-mRNAs interaction network were built to analyze the potential targets and mechanism. Sequencing data conveyed that hsa-miR-135b-5p, hsa-miR-150-5p, hsa-miR-509-3-5p, hsa-miR-514a-3p and hsa-miR-708-5p were significantly differentially expressed in the three groups. The results of qRT-PCR for the first time confirmed that the expression of hsa-miR-135b-5p was strikingly up-regulated in SLE-SONFH group which were consistent with miRNA sequencing results. In addition, bioinformatics analysis indicated that the enriched functions and pathways of the most differentially expressed miRNAs including Wnt, MAPK as well as Hippo signaling pathway. The top five hub genes (FGF2, PTEN, HACE1, VAMP2, and CBL) were part of module of the PPI network, which consisted of 713 nodes and 2191 edges. In conclusion, this study provides a novel and fundamental serum exosomal miRNAs profile of SONFH and hsa-miR-135b-5p may be identified as a unique diagnostic biomarker for SONFH.
Collapse
Affiliation(s)
- Meng Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Delong Chen
- Department of Orthopaedic Surgery, Clifford Hospital, Jinan UniversityGuangzhou 510006, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Gangyu Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Yueqi Wang
- Guangzhou Orthopaedic HospitalGuangzhou 510045, China
| | - Qingwen Zhang
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Wei He
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Haibin Wang
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Peng Chen
- Hip Center, Guangzhou University of Chinese MedicineGuangzhou 510405, China
- Orthopedics Department, The First Affiliated Hospital, Guangzhou University of Chinese MedicineGuangzhou 510405, China
| |
Collapse
|
19
|
Zheng W, Gu X, Sun X, Wu Q, Dan H. FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2641-2649. [PMID: 31240956 DOI: 10.1080/21691401.2019.1631838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types, however, the role of FAK on BMP9-induced osteogenic differentiation in SMSCs has not been characted. The purpose of current study is to explore the mechanism of FAK on the BMP9-induced osteogenesis of SMSCs in vitro and in vivo. Methods: The optimal dose of BMP9 was determined by incubation in different BMP9 concentrations, then cells were transfected with siRNA-induced FAK knockdown in BMP9-induced osteogenesis. Cell proliferation, migration, the osteogenic capacity, and the underlying mechanism were further detected in vitro. Imaging and pathological examination were conducted to observe the bone formation in vivo. Results: Our findings suggested that BMP9 could obviously promote FAK phosphorylation in osteogenic conditions. In contrast, FAK knockdown significantly decreased the cell proliferation, migration, the osteogenic capacity of SMSCs. To be specific, FAK knockdown could markedly inhibit the Wnt and MAPK signal pathway of SMSCs induced by BMP9. Besides, FAK knockdown could also effectively inhibit BMP-9-induced bone formation in vivo. Conclusion: FAK plays a pivotal role in promoting BMP9-induced osteogenesis of SMSCs, which is probably via activating Wnt and MAPK pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xueping Gu
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xingwei Sun
- b Department of Intervention, The Second Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Qin Wu
- c Department of Ultrasonography, Suzhou Science and Technology Town Hospital, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , PR China.,d Department of Ultrasound, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Hu Dan
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| |
Collapse
|
20
|
Onodera Y, Teramura T, Takehara T, Fukuda K. Transforming Growth Factor β-Activated Kinase 1 Regulates Mesenchymal Stem Cell Proliferation Through Stabilization of Yap1/Taz Proteins. Stem Cells 2019; 37:1595-1605. [PMID: 31461199 PMCID: PMC6916189 DOI: 10.1002/stem.3083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) are multipotent stem cells capable of differentiation into a variety of cell types, proliferation, and production of clinically useful secretory factors. These advantages make BMMSCs highly useful for cell transplantation therapy. However, the molecular network underlying BMMSC proliferation remains poorly understood. Here, we showed that TGFβ-activated kinase 1 (Tak1) is a critical molecule that regulates the activation of cell cycling and that Tak1 inhibition leads to quiescence in BMMSCs both in vivo and in vitro. Mechanistically, Tak1 was phosphorylated by growth factor stimulations, allowing it to bind and stabilize Yap1/Taz, which could then be localized to the nucleus. We also demonstrated that the quiescence induction by inhibiting Tak1 increased oxidized stress tolerance and improved BMMSC engraftment in intramuscular and intrabone marrow cell transplantation models. This study reveals a novel pathway controlling BMMSC proliferation and suggests a useful method to improve the therapeutic effect of BMMSC transplantation. Stem Cells 2019;37:1595-1605.
Collapse
Affiliation(s)
- Yuta Onodera
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| | - Kanji Fukuda
- Division of Cell Biology for Regenerative MedicineInstitute of Advanced Clinical Medicine, Kindai University Faculty of MedicineOsakaJapan
| |
Collapse
|
21
|
Zheng W, Chen Q, Zhang Y, Xia R, Gu X, Hao Y, Yu Z, Sun X, Hu D. BMP9 promotes osteogenic differentiation of SMSCs by activating the JNK/Smad2/3 signaling pathway. J Cell Biochem 2019; 121:2851-2863. [PMID: 31680322 DOI: 10.1002/jcb.29519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022]
Abstract
Synovial mesenchymal stem cells (SMSCs) with high proliferation and multi differentiation ability, and low immunogenicity have attracted research attention for their potential application in tissue engineering. Once their ability of osteogenesis is strengthened, it will be of practical value to apply the SMSCs in the field of bone regeneration. The current study aimed to investigate the osteogenic characteristics of SMSCs induced by bone morphogenetic protein 9 (BMP9) both in vitro and in vivo and to elucidate the mechanism underlying these characteristics. Specifically, different BMPs were assessed to determine the protein that would be the most favorable for stimulating osteogenic differentiation of SMSCs following their separation. The BMP9-enhanced osteogenesis of SMSCs was fully investigated in vitro and in vivo, and the c-Jun N-terminal kinase (JNK)/Smad2/3 signaling pathway stimulated by BMP9 was further explored. Our data suggested that BMP9 could significantly promote gene and protein expression of runt-related transcription factor 2, alkaline phosphatase, osteopontin, and osteocalcin, and SP600125, a JNK-specific inhibitor, could effectively decrease this tendency. Similar results were also confirmed in rats with cranial defects. In conclusion, our study indicated that BMP9 promotes bone formation both in vitro and in vivo possibly by activating the JNK/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Chen
- Laboratory Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yu Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueping Gu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zepeng Yu
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dan Hu
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
22
|
Wu P, Zhang Y, Xing Y, Xu W, Guo H, Deng F, Ma X, Li Y. The balance of Bmp6 and Wnt10b regulates the telogen-anagen transition of hair follicles. Cell Commun Signal 2019; 17:16. [PMID: 30791955 PMCID: PMC6385416 DOI: 10.1186/s12964-019-0330-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The periodic growth of hair follicles is regulated by the balance of activators and inhibitors. The BMP signaling pathway plays an important role during hair follicle regeneration, but the exact BMP protein that controls this process has not been revealed. METHODS The expression of BMP6 was determined via in situ hybridization and immunofluorescence. The in vivo effect of BMP6 overexpression was studied by using a previously established adenovirus injection model. The hair follicle regeneration was assessed by gross observation, H&E staining and 5-bromo-2-deoxyuridine (BrdU) tracing. The expression patterns of BMP6 signaling and Wnt10b signaling in both AdBMP6-treated and AdWnt10b-treated skins were determined by in situ hybridization and immunofluorescence. RESULTS BMP6 was expressed differently in the stages of hair follicle cycle. The telogen-anagen transition of hair follicles was inhibited by adenovirus-mediated overexpression of BMP6. In the in vivo model, the BMP6 signaling was inhibited by Wnt10b and the Wnt10b signaling was inhibited by BMP6. The activation of hair follicle stem cells (HFSCs) was also competitively regulated by Wnt10b and BMP6. CONCLUSIONS Combined with previously reported data of Wnt10b, our findings indicate that BMP6 and Wnt10b are major inhibitors and activators respectively and their balance regulates the telogen-anagen transition of hair follicles. To the best of our knowledge, our data provide previously unreported insights into the regulation of hair follicle cycling and provide new clues for the diagnosis and therapies of hair loss.
Collapse
Affiliation(s)
- Pan Wu
- Department of Cell Biology, Army Medical University, Gaotanyan street No. 30, Shapingba, Chongqing, 400038 China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yizhan Xing
- Department of Cell Biology, Army Medical University, Gaotanyan street No. 30, Shapingba, Chongqing, 400038 China
| | - Wei Xu
- Department of Dermatology, Chongqing First People’s Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Haiying Guo
- Department of Cell Biology, Army Medical University, Gaotanyan street No. 30, Shapingba, Chongqing, 400038 China
| | - Fang Deng
- Department of Cell Biology, Army Medical University, Gaotanyan street No. 30, Shapingba, Chongqing, 400038 China
| | - Xiaogen Ma
- Department of Cell Biology, Army Medical University, Gaotanyan street No. 30, Shapingba, Chongqing, 400038 China
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Gaotanyan street No. 30, Shapingba, Chongqing, 400038 China
| |
Collapse
|