1
|
Zhai PL, Chen MM, Wang Q, Zhao JJ, Tang XM, Lu CN, Liu J, Yang QX, Xiang ML, Tang QH, Gu B, Zhang SP, Tang SP, Fu D. Multi-omics analysis identifies a liquid-liquid phase separation-related subtypes in head and neck squamous cell carcinoma. Front Oncol 2025; 15:1509810. [PMID: 40078192 PMCID: PMC11897011 DOI: 10.3389/fonc.2025.1509810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Background Growing evidence indicates that abnormal liquid-liquid phase separation (LLPS) can disrupt biomolecular condensates, contributing to cancer development and progression. However, the influence of LLPS on the prognosis of head and neck squamous cell carcinoma (HNSCC) patients and its effects on the tumor immune microenvironment (TIME) are not yet fully understood. Therefore, we aimed to categorize patients with HNSCC based on LLPS-related genes and explored their multidimensional heterogeneity. Methods We integrated the transcriptomic data of 3,541 LLPS-related genes to assess the LLPS patterns in 501 patients with HNSCC within The Cancer Genome Atlas cohort. Subsequently, we explored the differences among the three LLPS subtypes using multi-omics analysis. We also developed an LLPS-related prognostic risk signature (LPRS) to facilitate personalized and integrative assessments and then screened and validated potential therapeutic small molecule compounds targeting HNSCC via experimental analyses. Result By analyzing the expression profiles of 85 scaffolds, 355 regulators, and 3,101 clients of LLPS in HNSCC, we identified three distinct LLPS subtypes: LS1, LS2, and LS3. We confirmed notable differences among these subtypes in terms of prognosis, functional enrichment, genomic alterations, TIME patterns, and responses to immunotherapy. Additionally, we developed the LPRS, a prognostic signature for personalized integrative assessments, which demonstrated strong predictive capability for HNSCC prognosis across multiple cohorts. The LPRS also showed significant correlations with the clinicopathological features and TIME patterns in HNSCC patients. Furthermore, the LPRS effectively predicted responses to immune checkpoint inhibitor therapy and facilitated the screening of potential small-molecule compounds for treating HNSCC patients. Conclusion This study presents a new classification system for HNSCC patients grounded in LLPS. The LPRS developed in this research offers improved personalized prognosis and could optimize immunotherapy strategies for HNSCC.
Collapse
Affiliation(s)
- Peng-Lei Zhai
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Min Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Jun Zhao
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Xiao-Mei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui-Ni Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Xin Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Liang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, China
| | - Biao Gu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Shu-Ping Zhang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Si-Ping Tang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Da Fu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Ranty-Roby S, Pontvianne F, Quentin M, Favery B. The overlooked manipulation of nucleolar functions by plant pathogen effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1445097. [PMID: 39175483 PMCID: PMC11339880 DOI: 10.3389/fpls.2024.1445097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
Pathogens need to manipulate plant functions to facilitate the invasion of their hosts. They do this by secreting a cocktail of molecules called effectors. Studies of these molecules have mostly focused on the mechanisms underlying their recognition and the subsequent transcriptional reprogramming of cells, particularly in the case of R gene-dependent resistance. However, the roles of these effectors are complex, as they target all cell compartments and their plant targets remain largely uncharacterized. An understanding of the mechanisms involved would be a considerable asset for plant breeding. The nucleolus is the site of many key cellular functions, such as ribosome biogenesis, cellular stress regulation and many other functions that could be targets for pathogenicity. However, little attention has been paid to effectors targeting nucleolar functions. In this review, we aim to fill this gap by providing recent findings on pathogen effectors that target and manipulate nucleolar functions and dynamics to promote infection. In particular, we look at how some effectors hijack ribosome biogenesis, the modulation of transcription or alternative splicing, all key functions occurring at least partially in the nucleolus. By shedding light on the role of the plant nucleolus in pathogen interactions, this review highlights the importance of understanding nucleolar biology in the context of plant immunity and the mechanisms manipulated by plant pathogens.
Collapse
Affiliation(s)
- Sarah Ranty-Roby
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
| | | | - Michaël Quentin
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
| | - Bruno Favery
- INRAE, Université Côte d’Azur, CNRS, Institut Sophia Agrobiotech (ISA), Sophia Antipolis F-06903, Sophia Antipolis, France
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Zheng L, Zhou P, Pan Y, Li B, Shen R, Lan P. Proteomic profile of the germinating seeds reveals enhanced seedling growth in Arabidopsis rpp1a mutant. PLANT MOLECULAR BIOLOGY 2023; 113:105-120. [PMID: 37804450 DOI: 10.1007/s11103-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Ribosomal phosphoprotein P1 (RPP1) is an integral component of the P-protein stalk in the 60S subunit of eukaryotic ribosomes and is required for the efficient elongation of translation. Previously, Arabidopsis RPP1A was revealed to be involved in the regulation of seed size and seed storage protein accumulation. In this work, the seedling growth analysis shows that the knockout mutation of Arabidopsis RPP1A significantly promoted seedling growth, particularly in the shoots. The label-free quantitative proteomic analysis demonstrated that a total of 593 proteins were differentially accumulated between the germinating seeds of the wild-type Col-0 and rpp1a mutant. And these proteins were significantly enriched in the intracellular transport, nitrogen compound transport, protein transport, and organophosphate metabolic process. The abundance of proteins involved in the RNA and protein processing processes, including ncRNA processing and protein folding, were significantly increased in the rpp1a mutant. Mutation in RPP1A highlighted the effects on the ribosome, energy metabolism, and nitrogen metabolism. The abundance of enzymes involved in glycolysis and pyruvate mechanism was decreased in the germinating seeds of the rpp1a mutant. Whereas the processes of amino acid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of cofactors were enhanced in the germinating seeds of the rpp1a mutant. Taken together, the lack of RPP1A triggered changes in other ribosomal proteins, and the higher amino acid contents in the seedlings of the rpp1a mutant probably contributed to enhanced biosynthesis, processing, and transport of proteins, resulting in accelerated growth. Our results show the novel role of a P-protein and shed new light on the regulatory mechanism of seedling growth.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peijun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Fakih Z, Plourde MB, Germain H. Differential Participation of Plant Ribosomal Proteins from the Small Ribosomal Subunit in Protein Translation under Stress. Biomolecules 2023; 13:1160. [PMID: 37509195 PMCID: PMC10377644 DOI: 10.3390/biom13071160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Upon exposure to biotic and abiotic stress, plants have developed strategies to adapt to the challenges imposed by these unfavorable conditions. The energetically demanding translation process is one of the main elements regulated to reduce energy consumption and to selectively synthesize proteins involved in the establishment of an adequate response. Emerging data have shown that ribosomes remodel to adapt to stresses. In Arabidopsis thaliana, ribosomes consist of approximately eighty-one distinct ribosomal proteins (RPs), each of which is encoded by two to seven genes. Recent research has revealed that a mutation in a given single RP in plants can not only affect the functions of the RP itself but can also influence the properties of the ribosome, which could bring about changes in the translation to varying degrees. However, a pending question is whether some RPs enable ribosomes to preferentially translate specific mRNAs. To reveal the role of ribosomal proteins from the small subunit (RPS) in a specific translation, we developed a novel approach to visualize the effect of RPS silencing on the translation of a reporter mRNA (GFP) combined to the 5'UTR of different housekeeping and defense genes. The silencing of genes encoding for NbRPSaA, NbRPS5A, and NbRPS24A in Nicotiana benthamiana decreased the translation of defense genes. The NbRACK1A-silenced plant showed compromised translations of specific antioxidant enzymes. However, the translations of all tested genes were affected in NbRPS27D-silenced plants. These findings suggest that some RPS may be potentially involved in the control of protein translation.
Collapse
Affiliation(s)
- Zainab Fakih
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Mélodie B Plourde
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics and Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada
| |
Collapse
|
6
|
Fernandes R, Ostendorp A, Ostendorp S, Mehrmann J, Falke S, Graewert MA, Weingartner M, Kehr J, Hoth S. Structural and functional analysis of a plant nucleolar RNA chaperone-like protein. Sci Rep 2023; 13:9656. [PMID: 37316549 DOI: 10.1038/s41598-023-36426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023] Open
Abstract
Ribosome biogenesis is a key process in all eukaryotic cells that requires hundreds of ribosome biogenesis factors (RBFs), which are essential to build the mature ribosomes consisting of proteins and rRNAs. The processing of the required rRNAs has been studied extensively in yeast and mammals, but in plants much is still unknown. In this study, we focused on a RBF from A. thaliana that we named NUCLEOLAR RNA CHAPERONE-LIKE 1 (NURC1). NURC1 was localized in the nucleolus of plant cell nuclei, and other plant RBF candidates shared the same localization. SEC-SAXS experiments revealed that NURC1 has an elongated and flexible structure. In addition, SEC-MALLS experiments confirmed that NURC1 was present in its monomeric form with a molecular weight of around 28 kDa. RNA binding was assessed by performing microscale thermophoresis with the Arabidopsis internal transcribed spacer 2 (ITS2) of the polycistronic pre-rRNA precursor, which contains the 5.8S, 18S, and 25S rRNA. NURC1 showed binding activity to the ITS2 with a dissociation constant of 228 nM and exhibited RNA chaperone-like activity. Our data suggested that NURC1 may have a function in pre-rRNA processing and thus ribosome biogenesis.
Collapse
Affiliation(s)
- Rita Fernandes
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Anna Ostendorp
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Steffen Ostendorp
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Judith Mehrmann
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Sven Falke
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Magdalena Weingartner
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Julia Kehr
- Molecular Plant Genetics, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany
| | - Stefan Hoth
- Molecular Plant Physiology, Institute of Plant Science and Microbiology, Department of Biology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
7
|
Dai S, Liu S, Zhou C, Yu F, Zhu G, Zhang W, Deng H, Burlingame A, Yu W, Wang T, Li N. Capturing the hierarchically assorted modules of protein-protein interactions in the organized nucleome. MOLECULAR PLANT 2023; 16:930-961. [PMID: 36960533 DOI: 10.1016/j.molp.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
Nuclear proteins are major constituents and key regulators of nucleome topological organization and manipulators of nuclear events. To decipher the global connectivity of nuclear proteins and the hierarchically organized modules of their interactions, we conducted two rounds of cross-linking mass spectrometry (XL-MS) analysis, one of which followed a quantitative double chemical cross-linking mass spectrometry (in vivoqXL-MS) workflow, and identified 24,140 unique crosslinks in total from the nuclei of soybean seedlings. This in vivo quantitative interactomics enabled the identification of 5340 crosslinks that can be converted into 1297 nuclear protein-protein interactions (PPIs), 1220 (94%) of which were non-confirmative (or novel) nuclear PPIs compared with those in repositories. There were 250 and 26 novel interactors of histones and the nucleolar box C/D small nucleolar ribonucleoprotein complex, respectively. Modulomic analysis of orthologous Arabidopsis PPIs produced 27 and 24 master nuclear PPI modules (NPIMs) that contain the condensate-forming protein(s) and the intrinsically disordered region-containing proteins, respectively. These NPIMs successfully captured previously reported nuclear protein complexes and nuclear bodies in the nucleus. Surprisingly, these NPIMs were hierarchically assorted into four higher-order communities in a nucleomic graph, including genome and nucleolus communities. This combinatorial pipeline of 4C quantitative interactomics and PPI network modularization revealed 17 ethylene-specific module variants that participate in a broad range of nuclear events. The pipeline was able to capture both nuclear protein complexes and nuclear bodies, construct the topological architectures of PPI modules and module variants in the nucleome, and probably map the protein compositions of biomolecular condensates.
Collapse
Affiliation(s)
- Shuaijian Dai
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chen Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wenhao Zhang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Weichuan Yu
- The HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518057, China; Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Tingliang Wang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; The HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
8
|
Muñoz-Díaz E, Sáez-Vásquez J. Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. FRONTIERS IN PLANT SCIENCE 2022; 13:984163. [PMID: 36082296 PMCID: PMC9445803 DOI: 10.3389/fpls.2022.984163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/04/2022] [Indexed: 06/01/2023]
Abstract
The existence of the nucleus distinguishes prokaryotes and eukaryotes. Apart from containing most of the genetic material, the nucleus possesses several nuclear bodies composed of protein and RNA molecules. The nucleus is separated from the cytoplasm by a double membrane, regulating the trafficking of molecules in- and outwards. Here, we investigate the composition and function of the different plant nuclear bodies and molecular clues involved in nuclear trafficking. The behavior of the nucleolus, Cajal bodies, dicing bodies, nuclear speckles, cyclophilin-containing bodies, photobodies and DNA damage foci is analyzed in response to different abiotic stresses. Furthermore, we research the literature to collect the different protein localization signals that rule nucleocytoplasmic trafficking. These signals include the different types of nuclear localization signals (NLSs) for nuclear import, and the nuclear export signals (NESs) for nuclear export. In contrast to these unidirectional-movement signals, the existence of nucleocytoplasmic shuttling signals (NSSs) allows bidirectional movement through the nuclear envelope. Likewise, nucleolar signals are also described, which mainly include the nucleolar localization signals (NoLSs) controlling nucleolar import. In contrast, few examples of nucleolar export signals, called nucleoplasmic localization signals (NpLSs) or nucleolar export signals (NoESs), have been reported. The existence of consensus sequences for these localization signals led to the generation of prediction tools, allowing the detection of these signals from an amino acid sequence. Additionally, the effect of high temperatures as well as different post-translational modifications in nuclear and nucleolar import and export is discussed.
Collapse
Affiliation(s)
- Eduardo Muñoz-Díaz
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France
| |
Collapse
|
9
|
Li B, Zheng L, Wang R, Xue C, Shen R, Lan P. A proteomic analysis of Arabidopsis ribosomal phosphoprotein P1A mutant. J Proteomics 2022; 262:104594. [PMID: 35483651 DOI: 10.1016/j.jprot.2022.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
Abstract
Ribosomal proteins are involved in the regulation of plant growth and development. However, the regulatory processes of most ribosomal proteins remain unclear. In this study, Arabidopsis plants with the mutation in ribosomal phosphoprotein P1A (RPP1A) produce larger and heavier seeds than wild-type plants. A comparative quantitative label-free proteomic analysis revealed that a total of 215 proteins were differentially accumulated between the young siliques of the wild type and rpp1a mutant. Knockout of RPP1A significantly reduced the abundance of proteins involved in carboxylic acid metabolism and lipid biosynthesis. Consistent with this, a metabolic analysis showed that the organic acids in the tricarboxylic acid cycle and the carbohydrates in the pentose phosphate pathway were severely reduced in the mature rpp1a mutant seeds. In contrast, the abundance of proteins related to seed maturation, especially seed storage proteins, was markedly increased during seed development. Indeed, seed storage proteins were accumulated in the mature rpp1a mutant seeds, and the seed nitrogen and sulfur contents were also increased. These results indicate that more carbon intermediates probably enter the nitrogen flow for the enhanced synthesis of seed storage proteins, which might subsequently contribute to the enlarged seed size in the rpp1a mutant. SIGNIFICANCE: Ribosomes are responsible for protein synthesis and are generally perceived as the housekeeping components in the cells. In this study, the knockout of RPP1A leads to an increased seed size through repressing carbon metabolism and lipid biosynthesis, and increasing the synthesis of seed storage proteins. Meanwhile, the abundance of seed storage proteins and the nitrogen and sulfur concentrations were increased in the mature rpp1a mutant seeds. The results provide a novel insight into the genetic regulatory networks for the control of seed size and seed storage protein accumulation, and this knowledge may facilitate the improvement of crop seed size.
Collapse
Affiliation(s)
- Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wang T, Chang Y, Zhao K, Dong Q, Yang J. Maize RNA 3'-terminal phosphate cyclase-like protein promotes 18S pre-rRNA cleavage and is important for kernel development. THE PLANT CELL 2022; 34:1957-1979. [PMID: 35167702 PMCID: PMC9048941 DOI: 10.1093/plcell/koac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Plant ribosomes contain four specialized ribonucleic acids, the 5S, 5.8S, 18S, and 25S ribosomal RNAs (rRNAs). Maturation of the latter three rRNAs requires cooperative processing of a single transcript by several endonucleases and exonucleases at specific sites. In maize (Zea mays), the exact nucleases and components required for rRNA processing remain poorly understood. Here, we characterized a conserved RNA 3'-terminal phosphate cyclase (RCL)-like protein, RCL1, that functions in 18S rRNA maturation. RCL1 is highly expressed in the embryo and endosperm during early seed development. Loss of RCL1 function resulted in lethality due to aborted embryo cell differentiation. We also observed pleiotropic defects in the rcl1 endosperm, including abnormal basal transfer cell layer growth and aleurone cell identity, and reduced storage reserve accumulation. The rcl1 seeds had lower levels of mature 18S rRNA and the related precursors were altered in abundance compared with wild type. Analysis of transcript levels and protein accumulation in rcl1 revealed that the observed lower levels of zein and starch synthesis enzymes mainly resulted from effects at the transcriptional and translational levels, respectively. These results demonstrate that RCL1-mediated 18S pre-rRNA processing is essential for ribosome function and messenger RNA translation during maize seed development.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yumei Chang
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Kai Zhao
- School of Life Sciences, The National Engineering Laboratory of Crop Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Qing Dong
- Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | | |
Collapse
|
11
|
Zheng J, Wu Z, Qiu Y, Wang X, Jiang X. An integrative multi-omics analysis based on liquid–liquid phase separation delineates distinct subtypes of lower-grade glioma and identifies a prognostic signature. J Transl Med 2022; 20:55. [PMID: 35093128 PMCID: PMC8800244 DOI: 10.1186/s12967-022-03266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Emerging evidences have indicated that the aberrant liquid–liquid phase separation (LLPS) leads to the dysfunction of biomolecular condensates, thereby contributing to the tumorigenesis and progression. Nevertheless, it remains unclear whether or how the LLPS of specific molecules affects the prognosis and tumor immune microenvironment (TIME) of patients with lower-grade glioma (LGG).
Methods
We integrated the transcriptome information of 3585 LLPS-related genes to comprehensively evaluate the LLPS patterns of 423 patients with LGG in The Cancer Genome Atlas (TCGA) cohort. Then, we systematically demonstrated the differences among four LLPS subtypes based on multi-omics analyses. In addition, we constructed the LLPS-related prognostic risk score (LPRS) for individualized integrative assessment.
Results
Based on the expression profiles of 85 scaffolds, 355 regulators, and 3145 clients in LGG, we identified four LLPS subtypes, namely LS1, LS2, LS3 and LS4.
We confirmed that there were significant differences in prognosis, clinicopathological features, cancer hallmarks, genomic alterations, TIME patterns and immunotherapeutic responses among four LLPS subtypes. In addition, a prognostic signature called LPRS was constructed for individualized integrative assessment. LPRS exhibited a robust predictive capacity for prognosis of LGG patients in multiple cohorts. Moreover, LPRS was found to be correlated with clinicopathological features, cancer hallmarks, genomic alterations and TIME patterns of LGG patients. The predictive power of LPRS in response to immune checkpoint inhibitor (ICI) therapy was also prominent.
Conclusions
This study provided a novel classification of LGG patients based on LLPS. The constructed LPRS might facilitate individualized prognosis prediction and better immunotherapy options for LGG patients.
Collapse
|
12
|
Telomerase Interaction Partners-Insight from Plants. Int J Mol Sci 2021; 23:ijms23010368. [PMID: 35008793 PMCID: PMC8745574 DOI: 10.3390/ijms23010368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.
Collapse
|
13
|
Ayash M, Abukhalaf M, Thieme D, Proksch C, Heilmann M, Schattat MH, Hoehenwarter W. LC-MS Based Draft Map of the Arabidopsis thaliana Nuclear Proteome and Protein Import in Pattern Triggered Immunity. FRONTIERS IN PLANT SCIENCE 2021; 12:744103. [PMID: 34858452 PMCID: PMC8630587 DOI: 10.3389/fpls.2021.744103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Despite its central role as the ark of genetic information and gene expression the plant nucleus is surprisingly understudied. We isolated nuclei from the Arabidopsis thaliana dark grown cell culture left untreated and treated with flg22 and nlp20, two elicitors of pattern triggered immunity (PTI) in plants, respectively. An liquid chromatography mass spectrometry (LC-MS) based discovery proteomics approach was used to measure the nuclear proteome fractions. An enrichment score based on the relative abundance of cytoplasmic, mitochondrial and Golgi markers in the nuclear protein fraction allowed us to curate the nuclear proteome producing high quality catalogs of around 3,000 nuclear proteins under untreated and both PTI conditions. The measurements also covered low abundant proteins including more than 100 transcription factors and transcriptional co-activators. We disclose a list of several hundred potentially dual targeted proteins including proteins not yet found before for further study. Protein import into the nucleus in plant immunity is known. Here we sought to gain a broader impression of this phenomenon employing our proteomics data and found 157 and 73 proteins to possibly be imported into the nucleus upon stimulus with flg22 and nlp20, respectively. Furthermore, the abundance of 93 proteins changed significantly in the nucleus following elicitation of immunity. These results suggest promiscuous ribosome assembly and a role of prohibitins and cytochrome C in the nucleus in PTI.
Collapse
Affiliation(s)
- Mohamed Ayash
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mohammad Abukhalaf
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Domenika Thieme
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Carsten Proksch
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mareike Heilmann
- Institute for Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | - Wolfgang Hoehenwarter
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
14
|
Li T, Zhu D, Han Z, Zhang J, Zhang M, Yan Y. Label-Free Quantitative Proteome Analysis Reveals the Underlying Mechanisms of Grain Nuclear Proteins Involved in Wheat Water-Deficit Response. FRONTIERS IN PLANT SCIENCE 2021; 12:748487. [PMID: 34759942 PMCID: PMC8572964 DOI: 10.3389/fpls.2021.748487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this study, we performed the first nuclear proteome analysis of wheat developing grains under water deficit by using a label-free based quantitative proteomic approach. In total, we identified 625 unique proteins as differentially accumulated proteins (DAPs), of which 398 DAPs were predicted to be localized in nucleus. Under water deficit, 146 DAPs were up-regulated and mainly involved in the stress response and oxidation-reduction process, while 252 were down-regulated and mainly participated in translation, the cellular amino metabolic process, and the oxidation-reduction process. The cis-acting elements analysis of the key nuclear DAPs encoding genes demonstrated that most of these genes contained the same cis-acting elements in the promoter region, mainly including ABRE involved in abscisic acid response, antioxidant response element, MYB responsive to drought regulation and MYC responsive to early drought. The cis-acting elements related to environmental stress and hormones response were relatively abundant. The transcription expression profiling of the nuclear up-regulated DAPs encoding genes under different organs, developmental stages and abiotic stresses was further detected by RNA-seq and Real-time quantitative polymerase chain reaction, and more than 50% of these genes showed consistency between transcription and translation expression. Finally, we proposed a putative synergistic responsive network of wheat nuclear proteome to water deficit, revealing the underlying mechanisms of wheat grain nuclear proteome in response to water deficit.
Collapse
Affiliation(s)
- Tingting Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Dong Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhisheng Han
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Junwei Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
15
|
Shanmugam T, Streit D, Schroll F, Kovacevic J, Schleiff E. Dynamics and thermal sensitivity of ribosomal RNA maturation paths in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab434. [PMID: 34591082 DOI: 10.1093/jxb/erab434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Ribosome biogenesis is a constitutive fundamental process for cellular function. Its rate of production depends on the rate of maturation of precursor ribosomal RNA (pre-rRNA). The rRNA maturation paths are marked by four dominant rate-limiting intermediates with cell-type variation of the processivity rate. We have identified that high temperature stress in plants, while halting the existing pre-rRNA maturation schemes, also transiently triggers an atypical pathway for 35S pre-rRNA processing. This pathway leads to production of an aberrant precursor rRNA, reminiscent of yeast 24S, encompassing 18S and 5.8S rRNA that do not normally co-occur together at sub-unit levels; this response is elicited specifically by high and not low temperatures. We show this response to be conserved in two other model crop plant species (Rice and Tomato). This pathway persists even after returning to normal growth conditions for 1 hour and is reset between 1-6 hours after stress treatment, likely, due to resumption of normal 35S pre-rRNA synthesis and processing. The heat-induced ITS2 cleavage-derived precursors and stalled P-A2-like precursors were heterogeneous in nature with a fraction containing polymeric (A) tails. Furthermore, high temperature treatment and subsequent fractionation resulted in polysome and precursor rRNA depletion.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Deniz Streit
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Schroll
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Jelena Kovacevic
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
- Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
16
|
Streit D, Schleiff E. The Arabidopsis 2'-O-Ribose-Methylation and Pseudouridylation Landscape of rRNA in Comparison to Human and Yeast. FRONTIERS IN PLANT SCIENCE 2021; 12:684626. [PMID: 34381476 PMCID: PMC8351944 DOI: 10.3389/fpls.2021.684626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Eukaryotic ribosome assembly starts in the nucleolus, where the ribosomal DNA (rDNA) is transcribed into the 35S pre-ribosomal RNA (pre-rRNA). More than two-hundred ribosome biogenesis factors (RBFs) and more than two-hundred small nucleolar RNAs (snoRNA) catalyze the processing, folding and modification of the rRNA in Arabidopsis thaliana. The initial pre-ribosomal 90S complex is formed already during transcription by association of ribosomal proteins (RPs) and RBFs. In addition, small nucleolar ribonucleoprotein particles (snoRNPs) composed of snoRNAs and RBFs catalyze the two major rRNA modification types, 2'-O-ribose-methylation and pseudouridylation. Besides these two modifications, rRNAs can also undergo base methylations and acetylation. However, the latter two modifications have not yet been systematically explored in plants. The snoRNAs of these snoRNPs serve as targeting factors to direct modifications to specific rRNA regions by antisense elements. Today, hundreds of different sites of modifications in the rRNA have been described for eukaryotic ribosomes in general. While our understanding of the general process of ribosome biogenesis has advanced rapidly, the diversities appearing during plant ribosome biogenesis is beginning to emerge. Today, more than two-hundred RBFs were identified by bioinformatics or biochemical approaches, including several plant specific factors. Similarly, more than two hundred snoRNA were predicted based on RNA sequencing experiments. Here, we discuss the predicted and verified rRNA modification sites and the corresponding identified snoRNAs on the example of the model plant Arabidopsis thaliana. Our summary uncovers the plant modification sites in comparison to the human and yeast modification sites.
Collapse
Affiliation(s)
- Deniz Streit
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| |
Collapse
|
17
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
18
|
Hsu PJ, Tan MC, Shen HL, Chen YH, Wang YY, Hwang SG, Chiang MH, Le QV, Kuo WS, Chou YC, Lin SY, Jauh GY, Cheng WH. The nucleolar protein SAHY1 is involved in pre-rRNA processing and normal plant growth. PLANT PHYSIOLOGY 2021; 185:1039-1058. [PMID: 33793900 PMCID: PMC8133687 DOI: 10.1093/plphys/kiaa085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 05/29/2023]
Abstract
Although the nucleolus is involved in ribosome biogenesis, the functions of numerous nucleolus-localized proteins remain unclear. In this study, we genetically isolated Arabidopsis thaliana salt hypersensitive mutant 1 (sahy1), which exhibits slow growth, short roots, pointed leaves, and sterility. SAHY1 encodes an uncharacterized protein that is predominantly expressed in root tips, early developing seeds, and mature pollen grains and is mainly restricted to the nucleolus. Dysfunction of SAHY1 primarily causes the accumulation of 32S, 18S-A3, and 27SB pre-rRNA intermediates. Coimmunoprecipitation experiments further revealed the interaction of SAHY1 with ribosome proteins and ribosome biogenesis factors. Moreover, sahy1 mutants are less sensitive to protein translation inhibitors and show altered expression of structural constituents of ribosomal genes and ribosome subunit profiles, reflecting the involvement of SAHY1 in ribosome composition and ribosome biogenesis. Analyses of ploidy, S-phase cell cycle progression, and auxin transport and signaling indicated the impairment of mitotic activity, translation of auxin transport carrier proteins, and expression of the auxin-responsive marker DR5::GFP in the root tips or embryos of sahy1 plants. Collectively, these data demonstrate that SAHY1, a nucleolar protein involved in ribosome biogenesis, plays critical roles in normal plant growth in association with auxin transport and signaling.
Collapse
Affiliation(s)
- Pei-jung Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Chen Tan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Huei Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Ying Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - San-Gwang Hwang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hau Chiang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Quang-Vuong Le
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Shuo Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Chan Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung County,Taiwan
| | - Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Hang R, Wang Z, Yang C, Luo L, Mo B, Chen X, Sun J, Liu C, Cao X. Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in arabidopsis. MOLECULAR PLANT 2021; 14:223-236. [PMID: 33069875 DOI: 10.1016/j.molp.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Ribosome biogenesis, which takes place mainly in the nucleolus, involves coordinated expression of pre-ribosomal RNAs (pre-rRNAs) and ribosomal proteins, pre-rRNA processing, and subunit assembly with the aid of numerous assembly factors. Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing; however, the underlying molecular mechanism remains unknown. Here, we report that AtPRMT3 interacts with Ribosomal Protein S2 (RPS2), facilitating processing of the 90S/Small Subunit (SSU) processome and repressing nucleolar stress. We isolated an intragenic suppressor of atprmt3-2, which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3, and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3, showing pleiotropic developmental defects and aberrant pre-rRNA processing. RPS2B binds directly to pre-rRNAs in the nucleus, and such binding is enhanced in atprmt3-2. Consistently, multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2, which accounts for early pre-rRNA processing defects and results in nucleolar stress. Collectively, our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Sureka R, Mishra R. Identification of Evolutionarily Conserved Nuclear Matrix Proteins and Their Prokaryotic Origins. J Proteome Res 2020; 20:518-530. [PMID: 33289389 DOI: 10.1021/acs.jproteome.0c00550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to prokaryotic cells, a typical eukaryotic cell is much more complex along with its endomembrane system and membrane-bound organelles. Although the endosymbiosis theories convincingly explain the evolution of membrane-bound organelles such as mitochondria and chloroplasts, very little is understood about the evolutionary origins of the nucleus, the defining feature of eukaryotes. Most studies on nuclear evolution have not been able to take into consideration the underlying structural framework of the nucleus, attributed to the nuclear matrix (NuMat), a ribonucleoproteinaceous structure. This can largely be attributed to the lack of annotation of its core components. Since NuMat has been shown to provide a structural platform for facilitating a variety of nuclear functions such as replication, transcription, and splicing, it is important to identify its protein components to better understand these processes. In this study, we address this issue using the developing embryos of Drosophila melanogaster and Danio rerio and identify 362 core NuMat proteins that are conserved between the two organisms. We further compare our results with publicly available Mus musculus NuMat dataset and Homo sapiens cellular localization dataset to define the core homologous NuMat proteins consisting of 252 proteins. We find that of them, 86 protein groups have originated from pre-existing proteins in prokaryotes. While 36 were conserved across all eukaryotic supergroups, 14 new proteins evolved before the evolution of the last eukaryotic common ancestor and together, these 50 proteins out of the 252 core conserved NuMat proteins are conserved across all eukaryotes, indicating their indispensable nature for nuclear function for over 1.5 billion years of eukaryotic history. Our analysis paves the way to understand the evolution of the complex internal nuclear architecture and its functions.
Collapse
Affiliation(s)
- Rahul Sureka
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
21
|
Pandey S, Prasad A, Sharma N, Prasad M. Linking the plant stress responses with RNA helicases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110607. [PMID: 32900445 DOI: 10.1016/j.plantsci.2020.110607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 05/21/2023]
Abstract
RNA helicases are omnipresent plant proteins across all kingdoms and have been demonstrated to play an essential role in all cellular processes involving nucleic acids. Currently, these proteins emerged as a new tool for plant molecular biologists to modulate plant stress responses. Here, we review the crucial role of RNA helicases triggered by biotic, abiotic, and multiple stress conditions. In this review, the emphasis has been given on the role of these proteins upon viral stress. Further, we have explored RNA helicase mediated regulation of RNA metabolism, starting from ribosome biogenesis to its decay upon stress induction. We also highlighted the cross-talk between RNA helicase, phytohormones, and ROS. Different overexpression and transgenic studies have been provided in the text to indicate the stress tolerance abilities of these proteins.
Collapse
Affiliation(s)
- Saurabh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, Farrona S. Tidying-up the plant nuclear space: domains, functions, and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5160-5178. [PMID: 32556244 PMCID: PMC8604271 DOI: 10.1093/jxb/eraa282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova
de Lisboa, Oeiras, Portugal
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, Versailles, France
| | - Iva Mozgová
- Biology Centre of the Czech Academy of Sciences, České
Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de
Perpignan Via Domitia, Perpignan, France
| | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ahmet L Tek
- Agricultural Genetic Engineering Department, Niğde Ömer Halisdemir
University, Niğde, Turkey
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of
Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart,
Germany
| | - Paul Fransz
- University of Amsterdam, Amsterdam, The
Netherlands
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway,
Galway, Ireland
| |
Collapse
|
23
|
Streit D, Shanmugam T, Garbelyanski A, Simm S, Schleiff E. The Existence and Localization of Nuclear snoRNAs in Arabidopsis thaliana Revisited. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1016. [PMID: 32806552 PMCID: PMC7464842 DOI: 10.3390/plants9081016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Ribosome biogenesis is one cell function-defining process. It depends on efficient transcription of rDNAs in the nucleolus as well as on the cytosolic synthesis of ribosomal proteins. For newly transcribed rRNA modification and ribosomal protein assembly, so-called small nucleolar RNAs (snoRNAs) and ribosome biogenesis factors (RBFs) are required. For both, an inventory was established for model systems like yeast and humans. For plants, many assignments are based on predictions. Here, RNA deep sequencing after nuclei enrichment was combined with single molecule species detection by northern blot and in vivo fluorescence in situ hybridization (FISH)-based localization studies. In addition, the occurrence and abundance of selected snoRNAs in different tissues were determined. These approaches confirm the presence of most of the database-deposited snoRNAs in cell cultures, but some of them are localized in the cytosol rather than in the nucleus. Further, for the explored snoRNA examples, differences in their abundance in different tissues were observed, suggesting a tissue-specific function of some snoRNAs. Thus, based on prediction and experimental confirmation, many plant snoRNAs can be proposed, while it cannot be excluded that some of the proposed snoRNAs perform alternative functions than are involved in rRNA modification.
Collapse
Affiliation(s)
- Deniz Streit
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Thiruvenkadam Shanmugam
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Asen Garbelyanski
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
- Institute of Bioinformatics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany; (D.S.); (T.S.); (A.G.); (S.S)
- Frankfurt Institute of Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Mair A, Xu SL, Branon TC, Ting AY, Bergmann DC. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 2019; 8:e47864. [PMID: 31535972 PMCID: PMC6791687 DOI: 10.7554/elife.47864] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022] Open
Abstract
Defining specific protein interactions and spatially or temporally restricted local proteomes improves our understanding of all cellular processes, but obtaining such data is challenging, especially for rare proteins, cell types, or events. Proximity labeling enables discovery of protein neighborhoods defining functional complexes and/or organellar protein compositions. Recent technological improvements, namely two highly active biotin ligase variants (TurboID and miniTurbo), allowed us to address two challenging questions in plants: (1) what are in vivo partners of a low abundant key developmental transcription factor and (2) what is the nuclear proteome of a rare cell type? Proteins identified with FAMA-TurboID include known interactors of this stomatal transcription factor and novel proteins that could facilitate its activator and repressor functions. Directing TurboID to stomatal nuclei enabled purification of cell type- and subcellular compartment-specific proteins. Broad tests of TurboID and miniTurbo in Arabidopsis and Nicotiana benthamiana and versatile vectors enable customization by plant researchers.
Collapse
Affiliation(s)
- Andrea Mair
- Department of BiologyStanford UniversityStanfordUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Shou-Ling Xu
- Department of Plant BiologyCarnegie Institution for ScienceStanfordUnited States
| | - Tess C Branon
- Department of BiologyStanford UniversityStanfordUnited States
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
| | - Alice Y Ting
- Department of BiologyStanford UniversityStanfordUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Dominique C Bergmann
- Department of BiologyStanford UniversityStanfordUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
25
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
26
|
Palm D, Streit D, Shanmugam T, Weis BL, Ruprecht M, Simm S, Schleiff E. Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Res 2019; 47:1880-1895. [PMID: 30576513 PMCID: PMC6393314 DOI: 10.1093/nar/gky1261] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/04/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
rRNA processing and assembly of ribosomal proteins during maturation of ribosomes involve many ribosome biogenesis factors (RBFs). Recent studies identified differences in the set of RBFs in humans and yeast, and the existence of plant-specific RBFs has been proposed as well. To identify such plant-specific RBFs, we characterized T-DNA insertion mutants of 15 Arabidopsis thaliana genes encoding nuclear proteins with nucleotide binding properties that are not orthologues to yeast or human RBFs. Mutants of nine genes show an altered rRNA processing ranging from inhibition of initial 35S pre-rRNA cleavage to final maturation events like the 6S pre-rRNA processing. These phenotypes led to their annotation as 'involved in rRNA processing' - IRP. The irp mutants are either lethal or show developmental and stress related phenotypes. We identified IRPs for maturation of the plant-specific precursor 5'-5.8S and one affecting the pathway with ITS2 first cleavage of the 35S pre-rRNA transcript. Moreover, we realized that 5'-5.8S processing is essential, while a mutant causing 6S accumulation shows only a weak phenotype. Thus, we demonstrate the importance of the maturation of the plant-specific precursor 5'-5.8S for plant development as well as the occurrence of an ITS2 first cleavage pathway in fast dividing tissues.
Collapse
Affiliation(s)
- Denise Palm
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Deniz Streit
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Thiruvenkadam Shanmugam
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Benjamin L Weis
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Maike Ruprecht
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, D-60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, D-60438 Frankfurt, Germany
- To whom correspondence should be addressed. Tel: +49 69 798 29285; Fax: +49 69 798 29286;
| |
Collapse
|
27
|
Kovacevic J, Palm D, Jooss D, Bublak D, Simm S, Schleiff E. Co-orthologues of ribosome biogenesis factors in A. thaliana are differentially regulated by transcription factors. PLANT CELL REPORTS 2019; 38:937-949. [PMID: 31087154 DOI: 10.1007/s00299-019-02416-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Different genes coding for one ribosome biogenesis factor are differentially expressed and are likely under the control of distinct transcription factors, which contributes to the regulatory space for ribosome maturation. Maturation of ribosomes including rRNA processing and modification, rRNA folding and ribosome protein association requires the function of many ribosome biogenesis factors (RBFs). Recent studies document plant-specific variations of the generally conserved process of ribosome biogenesis. For instance, distinct rRNA maturation pathways and intermediates have been identified, the existence of plant specific RBFs has been proposed and several RBFs are encoded by multiple genes. The latter in combination with the discussed ribosome heterogeneity points to a possible function of the different proteins representing one RBF in diversification of ribosomal compositions. Such factor-based regulation would require a differential regulation of their expression, may be even controlled by different transcription factors. We analyzed the expression profiles of genes coding for putative RBFs and transcription factors. Most of the genes coding for RBFs are expressed in a comparable manner, while different genes coding for a single RBF are often differentially expressed. Based on a selected set of genes we document a function of the transcription factors AtMYC1, AtMYC2, AtbHLH105 and AtMYB26 on the regulation of different RBFs. Moreover, on the example of the RBFs LSG1 and BRX1, both encoded by two genes, we give a first hint on a differential transcription factor dependence of expression. Consistent with this observation, the phenotypic analysis of RBF mutants suggests a relation between LSG1-1 and BRX1-1 expression and the transcription factor MYC1. In summary, we propose that the multiple genes coding for one RBF are required to enlarge the regulatory space for ribosome biogenesis.
Collapse
Affiliation(s)
- Jelena Kovacevic
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Denise Palm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Domink Jooss
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, Biocenter/Max von Laue Straße 9/N200/R3.02, 60438, Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Li PC, Li K, Wang J, Zhao CZ, Zhao SZ, Hou L, Xia H, Ma CL, Wang XJ. The AAA-ATPase MIDASIN 1 Functions in Ribosome Biogenesis and Is Essential for Embryo and Root Development. PLANT PHYSIOLOGY 2019; 180:289-304. [PMID: 30755475 PMCID: PMC6501072 DOI: 10.1104/pp.18.01225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/30/2019] [Indexed: 05/04/2023]
Abstract
Ribosome biogenesis is an orchestrated process that relies on many assembly factors. The AAA-ATPase Midasin 1 (Mdn1) functions as a ribosome assembly factor in yeast (Saccharomyces cerevisiae), but the roles of MDN1 in Arabidopsis (Arabidopsis thaliana) are poorly understood. Here, we showed that the Arabidopsis null mutant of MDN1 is embryo-lethal. Using the weak mutant mdn1-1, which maintains viability, we found that MDN1 is critical for the regular pattern of auxin maxima in the globular embryo and functions in root meristem maintenance. By detecting the subcellular distribution of ribosome proteins, we noted that mdn1-1 impairs nuclear export of the pre-60S ribosomal particle. The processing of ribosomal precusor RNAs, including 35S, 27SB, and 20S, is also affected in this mutant. MDN1 physically interacts with PESCADILLO2 (PES2), an essential assembly factor of the 60S ribosome, and the observed mislocalization of PES2 in mdn1-1 further implied that MDN1 plays an indispensable role in 60S ribosome biogenesis. Therefore, the observed hypersensitivity of mdn1-1 to a eukaryotic translation inhibitor and high-sugar conditions might be associated with the defect in ribosome biogenesis. Overall, this work establishes a role of Arabidopsis MDN1 in ribosome biogenesis, which agrees with its roles in embryogenesis and root development.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Ke Li
- College of Life Science, Shandong University, Qingdao 266237, PR China
| | - Juan Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Chuan-Zhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Shu-Zhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Chang-Le Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xing-Jun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| |
Collapse
|
29
|
Subba P, Narayana Kotimoole C, Prasad TSK. Plant Proteome Databases and Bioinformatic Tools: An Expert Review and Comparative Insights. ACTA ACUST UNITED AC 2019; 23:190-206. [PMID: 31009332 DOI: 10.1089/omi.2019.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| |
Collapse
|
30
|
Fragkostefanakis S, Simm S, El-Shershaby A, Hu Y, Bublak D, Mesihovic A, Darm K, Mishra SK, Tschiersch B, Theres K, Scharf C, Schleiff E, Scharf KD. The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato. PLANT, CELL & ENVIRONMENT 2019; 42:874-890. [PMID: 30187931 DOI: 10.1111/pce.13434] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/23/2018] [Indexed: 05/08/2023]
Abstract
Plants code for a multitude of heat stress transcription factors (Hsfs). Three of them act as central regulators of heat stress (HS) response in tomato (Solanum lycopersicum). HsfA1a regulates the initial response, and HsfA2 controls acquired thermotolerance. HsfB1 is a transcriptional repressor but can also act as co-activator of HsfA1a. Currently, the mode of action and the relevance of the dual function of HsfB1 remain elusive. We examined this in HsfB1 overexpression or suppression transgenic tomato lines. Proteome analysis revealed that HsfB1 overexpression stimulates the co-activator function of HsfB1 and consequently the accumulation of HS-related proteins under non-stress conditions. Plants with enhanced levels of HsfB1 show aberrant growth and development but enhanced thermotolerance. HsfB1 suppression has no significant effect prior to stress. Upon HS, HsfB1 suppression strongly enhances the induction of heat shock proteins due to the higher activity of other HS-induced Hsfs, resulting in increased thermotolerance compared with wild-type. Thereby, HsfB1 acts as co-activator of HsfA1a for several Hsps, but as a transcriptional repressor on other Hsfs, including HsfA1b and HsfA2. The dual function explains the activation of chaperones to enhance protection and regulate the balance between growth and stress response upon deviations from the homeostatic levels of HsfB1.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Asmaa El-Shershaby
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Katrin Darm
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine, Greifswald, Germany
| | - Shravan Kumar Mishra
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | | | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine, Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Micol-Ponce R, Sarmiento-Mañús R, Ruiz-Bayón A, Montacié C, Sáez-Vasquez J, Ponce MR. Arabidopsis RIBOSOMAL RNA PROCESSING7 Is Required for 18S rRNA Maturation. THE PLANT CELL 2018; 30:2855-2872. [PMID: 30361235 PMCID: PMC6305980 DOI: 10.1105/tpc.18.00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 05/24/2023]
Abstract
Ribosome biogenesis is fundamental to growth and development in eukaryotes and is linked to human diseases and cancer. Arabidopsis thaliana MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED 2 (MAS2) participates in splicing and 45S ribosomal DNA (rDNA) expression. In a screen for MAS2 interactors, we identified RIBOSOMAL RNA PROCESSING 7 (RRP7), an ortholog of yeast rRNA processing protein 7 (Rrp7), which is required for 18S ribosomal RNA (rRNA) maturation. Arabidopsis rrp7 mutants exhibit a pleiotropic phenotype including slow growth, altered shoot phyllotaxy, aberrant venation in lateral organs, partial infertility, and abscisic acid hypersensitivity in seedlings. In Arabidopsis, RRP7 localizes mainly to the nucleolus, the site of the 45S rDNA transcription that produces a 45S pre-rRNA primary transcript, precursor of the 25S, 18S and 5.8S rRNAs. Lack of RRP7 function perturbs 18S rRNA maturation, causes nucleolar hypertrophy, and results in an increased 25S/18S rRNA ratio. Arabidopsis contains hundreds of 45S rDNA genes whose expression is epigenetically regulated, and deregulated, in rrp7 mutants. Double mutant analysis revealed synergistic interactions between RRP7 alleles and alleles of MAS2, NUCLEOLIN1 (NUC1), and HISTONE DEACETYLASE 6 (HDA6), which encode epigenetic regulators of 45S rDNA transcription. Our results reveal the evolutionarily conserved but divergent roles of RRP7 as a ribosome biogenesis factor.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Alejandro Ruiz-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Charlotte Montacié
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
| | - Julio Sáez-Vasquez
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
32
|
Palm D, Streit D, Ruprecht M, Simm S, Scharf C, Schleiff E. Late ribosomal protein localization in Arabidopsis thaliana differs to that in Saccharomyces cerevisiae. FEBS Open Bio 2018; 8:1437-1444. [PMID: 30186745 PMCID: PMC6120241 DOI: 10.1002/2211-5463.12487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/07/2022] Open
Abstract
Ribosome biogenesis is essential for cellular function and involves rRNA synthesis, rRNA processing and modification, and ribosomal protein assembly. Ribosome biogenesis factors and small nucleolar RNA assist these events. Ribosomal maturation takes place in the nucleolus, the nucleoplasm, and the cytosol in a coordinated and controlled manner. For example, some ribosomal proteins are thought to be assembled in the cytoplasm based on the observations in Saccharomyces cerevisiae. Here, we used cellular fractionation to demonstrate that cleavage of the 20S intermediate, the precursor to mature 18S rRNA, does not occur in the nucleoplasm of Arabidopsis thaliana. It most likely occurs in the cytoplasm. Further, we verified the proposed localization of RPS10e, RPS26e, and RPL24a/b in the nucleus and RPP1 in the nucleolus of A. thaliana by ribosome profiling, immunofluorescence, and analysis of the localization of GFP fusion proteins. Our results suggest that the order of events during ribosomal protein assembly in the ribosome biogenesis pathway differs between plants and yeast.
Collapse
Affiliation(s)
- Denise Palm
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
- Buchman Institute for Molecular Life SciencesGoethe University Frankfurt am MainGermany
| | - Deniz Streit
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
| | - Maike Ruprecht
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
| | - Stefan Simm
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
- Frankfurt Institute of Advanced StudiesFrankfurt am MainGermany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck SurgeryUniversity of GreifswaldGermany
| | - Enrico Schleiff
- Institute for Molecular BiosciencesGoethe University Frankfurt am MainGermany
- Buchman Institute for Molecular Life SciencesGoethe University Frankfurt am MainGermany
- Frankfurt Institute of Advanced StudiesFrankfurt am MainGermany
| |
Collapse
|
33
|
Hang R, Wang Z, Deng X, Liu C, Yan B, Yang C, Song X, Mo B, Cao X. Ribosomal RNA Biogenesis and Its Response to Chilling Stress in Oryza sativa. PLANT PHYSIOLOGY 2018; 177:381-397. [PMID: 29555785 PMCID: PMC5933117 DOI: 10.1104/pp.17.01714] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 05/20/2023]
Abstract
Ribosome biogenesis is crucial for plant growth and environmental acclimation. Processing of ribosomal RNAs (rRNAs) is an essential step in ribosome biogenesis and begins with transcription of the rDNA. The resulting precursor-rRNA (pre-rRNA) transcript undergoes systematic processing, where multiple endonucleolytic and exonucleolytic cleavages remove the external and internal transcribed spacers (ETS and ITS). The processing sites and pathways for pre-rRNA processing have been deciphered in Saccharomyces cerevisiae and, to some extent, in Xenopus laevis, mammalian cells, and Arabidopsis (Arabidopsis thaliana). However, the processing sites and pathways remain largely unknown in crops, particularly in monocots such as rice (Oryza sativa), one of the most important food resources in the world. Here, we identified the rRNA precursors produced during rRNA biogenesis and the critical endonucleolytic cleavage sites in the transcribed spacer regions of pre-rRNAs in rice. We further found that two pre-rRNA processing pathways, distinguished by the order of 5' ETS removal and ITS1 cleavage, coexist in vivo. Moreover, exposing rice to chilling stress resulted in the inhibition of rRNA biogenesis mainly at the pre-rRNA processing level, suggesting that these energy-intensive processes may be reduced to increase acclimation and survival at lower temperatures. Overall, our study identified the pre-rRNA processing pathway in rice and showed that ribosome biogenesis is quickly inhibited by low temperatures, which may shed light on the link between ribosome biogenesis and environmental acclimation in crop plants.
Collapse
MESH Headings
- Cold Temperature
- Models, Biological
- Oryza/genetics
- Oryza/physiology
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Small/metabolism
- Stress, Physiological
Collapse
Affiliation(s)
- Runlai Hang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
34
|
Beine-Golovchuk O, Firmino AAP, Dąbrowska A, Schmidt S, Erban A, Walther D, Zuther E, Hincha DK, Kopka J. Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. PLANT PHYSIOLOGY 2018; 176:2251-2276. [PMID: 29382692 PMCID: PMC5841729 DOI: 10.1104/pp.17.01448] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 05/21/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) REI1-LIKE (REIL) proteins, REIL1 and REIL2, are homologs of a yeast ribosome biogenesis factor that participates in late cytoplasmic 60S ribosomal subunit maturation. Here, we report that the inhibited growth of the reil1-1 reil2-1 mutant at 10°C can be rescued by the expression of amino-terminal FLUORESCENT PROTEIN (FP)-REIL fusions driven by the UBIQUITIN10 promoter, allowing the analysis of REIL function in planta. Arabidopsis REIL1 appears to be functionally conserved, based on the cytosolic localization of FP-REIL1 and the interaction of native REIL1 with the 60S subunit in wild-type plants. In contrast to its yeast homologs, REIL1 also was present in translating ribosome fractions. Systems analysis revealed that wild-type Arabidopsis remodels the cytosolic translation machinery when grown at 10°C by accumulating cytosolic ribosome subunits and inducing the expression of cytosolic ribosomal RNA, ribosomal genes, ribosome biogenesis factors, and translation initiation or elongation factors. In the reil1-1 reil2-1 mutant, all processes associated with inhibited growth were delayed, although the plants maintained cellular integrity or acquired freezing tolerance. REIL proteins also were implicated in plant-specific processes: nonacclimated reil1-1 reil2-1 exhibited cold-acclimation responses, including activation of the DREB/CBF regulon. In addition, acclimated reil1-1 reil2-1 plants failed to activate FLOWERING LOCUS T expression in mature leaves. Therefore, in the wild type, REIL function may contribute to temperature perception by suppressing premature cold responses during growth at nonstressful temperatures. In conclusion, we suggest that Arabidopsis REIL proteins influence cold-induced plant ribosome remodeling and enhance the accumulation of cytosolic ribosome subunits after cold shift either by de novo synthesis or by recycling them from the translating ribosome fraction.
Collapse
Affiliation(s)
- Olga Beine-Golovchuk
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | | | - Adrianna Dąbrowska
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Stefanie Schmidt
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Komatsu S, Hashiguchi A. Subcellular Proteomics: Application to Elucidation of Flooding-Response Mechanisms in Soybean. Proteomes 2018; 6:E13. [PMID: 29495455 PMCID: PMC5874772 DOI: 10.3390/proteomes6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Soybean, which is rich in protein and oil, is cultivated in several climatic zones; however, its growth is markedly decreased by flooding. Proteomics is a useful tool for understanding the flooding-response mechanism in soybean. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and during stress. Under flooding, proteins related to signaling, stress and the antioxidative system are increased in the plasma membrane; scavenging enzymes for reactive-oxygen species are suppressed in the cell wall; protein translation is suppressed through inhibition of proteins related to preribosome biogenesis and mRNA processing in the nucleus; levels of proteins involved in the electron transport chain are reduced in the mitochondrion; and levels of proteins related to protein folding are decreased in the endoplasmic reticulum. This review discusses the advantages of a gel-free/label-free proteomic technique and methods of plant subcellular purification. It also summarizes cellular events in soybean under flooding and discusses future prospects for generation of flooding-tolerant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
36
|
Kojima K, Tamura J, Chiba H, Fukada K, Tsukaya H, Horiguchi G. Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial-Abaxial Patterning in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 8:2240. [PMID: 29375609 PMCID: PMC5767255 DOI: 10.3389/fpls.2017.02240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 05/25/2023]
Abstract
Leaf abaxial-adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2). Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2) which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1), has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial-abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2 triple mutants although they showed severe growth defects. These results suggest that the leaf abaxialization phenotype induced by ribosome-related mutations is not merely the result of a general growth defect and that there may be a sensitive process in the ribosome biogenesis pathway that affects adaxial-abaxial patterning when compromised by a mutation.
Collapse
Affiliation(s)
- Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Junya Tamura
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroto Chiba
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kanae Fukada
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| |
Collapse
|
37
|
Liu Y, Imai R. Function of Plant DExD/H-Box RNA Helicases Associated with Ribosomal RNA Biogenesis. FRONTIERS IN PLANT SCIENCE 2018; 9:125. [PMID: 29472942 PMCID: PMC5809497 DOI: 10.3389/fpls.2018.00125] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Ribosome biogenesis is a highly complex process that requires several cofactors, including DExD/H-box RNA helicases (RHs). RHs are a family of ATPases that rearrange the secondary structures of RNA and thus remodel ribonucleoprotein complexes. DExD/H-box RHs are found in most organisms and play critical roles in a variety of RNA-involved cellular events. In human and yeast cells, many DExD/H box RHs participate in multiple steps of ribosome biogenesis and regulate cellular proliferation and stress responses. In plants, several DExD/H-box RHs have been demonstrated to be associated with plant development and abiotic stress tolerance through their functions in modulating pre-rRNA processing. In this review, we summarize the pleiotropic roles of DExD/H-box RHs in rRNA biogenesis and other biological functions. We also describe the overall function of the DExD/H-box RH family in ribosome biogenesis based on data from human and yeast.
Collapse
|
38
|
Martins L, Trujillo-Hernandez JA, Reichheld JP. Thiol Based Redox Signaling in Plant Nucleus. FRONTIERS IN PLANT SCIENCE 2018; 9:705. [PMID: 29892308 PMCID: PMC5985474 DOI: 10.3389/fpls.2018.00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are well-described by-products of cellular metabolic activities, acting as signaling molecules and regulating the redox state of proteins. Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and their redox state affects structural and biochemical capacities of many proteins. While thiol redox regulation has been largely studied in several cell compartments like in the plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent works have revealed that proteins with oxidizable thiols are important for the regulation of many nuclear functions, including gene expression, transcription, epigenetics, and chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different nuclear subcompartments, further supporting that thiol-dependent systems are active in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field, taking examples of redox regulated nuclear proteins and focusing on major thiol redox systems acting in the nucleus.
Collapse
Affiliation(s)
- Laura Martins
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - José Abraham Trujillo-Hernandez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
- *Correspondence: Jean-Philippe Reichheld,
| |
Collapse
|
39
|
Montacié C, Durut N, Opsomer A, Palm D, Comella P, Picart C, Carpentier MC, Pontvianne F, Carapito C, Schleiff E, Sáez-Vásquez J. Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1815. [PMID: 29104584 PMCID: PMC5655116 DOI: 10.3389/fpls.2017.01815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/06/2017] [Indexed: 05/23/2023]
Abstract
In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity.
Collapse
Affiliation(s)
- Charlotte Montacié
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Nathalie Durut
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Alison Opsomer
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Denise Palm
- Institute for Molecular Biosciences, Cluster of Excellence Macromolecular Complexes, Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Pascale Comella
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Frederic Pontvianne
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Cluster of Excellence Macromolecular Complexes, Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, UMR 5096, Perpignan, France
- Laboratoire Génome et Développement des Plantes, University of Perpignan Via Domitia, UMR 5096, Perpignan, France
| |
Collapse
|
40
|
Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. PLANT PHYSIOLOGY 2017; 173:1692-1708. [PMID: 28115582 PMCID: PMC5338658 DOI: 10.1104/pp.16.01743] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth.
Collapse
Affiliation(s)
- Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.);
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Birgit Möller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Romina Plötner
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Gerd Hause
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| |
Collapse
|
41
|
Ohtani M. Plant snRNP Biogenesis: A Perspective from the Nucleolus and Cajal Bodies. FRONTIERS IN PLANT SCIENCE 2017; 8:2184. [PMID: 29354141 PMCID: PMC5758608 DOI: 10.3389/fpls.2017.02184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Small nuclear ribonucleoproteins (snRNPs) are protein-RNA complexes composed of specific snRNP-associated proteins along with small nuclear RNAs (snRNAs), which are non-coding RNA molecules abundant in the nucleus. snRNPs mainly function as core components of the spliceosome, the molecular machinery for pre-mRNA splicing. Thus, snRNP biogenesis is a critical issue for plants, essential for the determination of a cell's activity through the regulation of gene expression. The complex process of snRNP biogenesis is initiated by transcription of the snRNA in the nucleus, continues in the cytoplasm, and terminates back in the nucleus. Critical steps of snRNP biogenesis, such as chemical modification of the snRNA and snRNP maturation, occur in the nucleolus and its related sub-nuclear structures, Cajal bodies. In this review, I discuss roles for the nucleolus and Cajal bodies in snRNP biogenesis, and a possible linkage between the regulation of snRNP biogenesis and plant development and environmental responses.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Misato Ohtani,
| |
Collapse
|