1
|
Zhang Y, Yang S, Zheng X, Tan X. Cyanobacterial type I CRISPR-Cas systems: distribution, mechanisms, and genome editing applications. Front Bioeng Biotechnol 2025; 13:1552030. [PMID: 40084131 PMCID: PMC11903412 DOI: 10.3389/fbioe.2025.1552030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Cyanobacteria, renowned for their photosynthetic capabilities, serve as efficient microbial chassis capable of converting carbon dioxide into a spectrum of bio-chemicals. However, conventional genetic manipulation strategies have proven incompatible with the precise and systematic modifications required in the field of cyanobacterial synthetic biology. Here, we present an in-depth analysis of endogenous CRISPR-Cas systems within cyanobacterial genomes, with a particular focus on the Type I systems, which are the most widely distributed. We provide a comprehensive summary of the reported DNA defense mechanisms mediated by cyanobacterial Type I CRISPR-Cas systems and their current applications in genome editing. Furthermore, we offer insights into the future applications of these systems in the context of cyanobacterial genome editing, underscoring their potential to revolutionize synthetic biology approaches.
Collapse
Affiliation(s)
- Yongjiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Shuxiao Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xianliang Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
- AngelYeast Co., Ltd., Yichang, Hubei, China
- National Key Laboratory of Agricultural Microbiology, AngelYeast Co., Ltd., Yichang, Hubei, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Chacon Machado L, Peters JE. A family of Tn7-like transposons evolved to target CRISPR repeats. Mob DNA 2025; 16:5. [PMID: 39966887 PMCID: PMC11837452 DOI: 10.1186/s13100-025-00344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Tn7 family transposons are mobile genetic elements known for precise target site selection, with some co-opting CRISPR-Cas systems for RNA-guided transposition. We identified a novel group of Tn7-like transposons in Cyanobacteria that preferentially target CRISPR arrays, suggesting a new functional interaction between these elements and CRISPR-Cas systems. Using bioinformatics tools, we characterized their phylogeny, target specificity, and sub-specialization. The array-targeting elements are phylogenetically close to tRNA-targeting elements. The distinct target preference coincides with loss of a C-terminal region in the TnsD protein which is responsible for recognizing target sites when compared to closely related elements. Notably, elements are found integrated into a fixed position within CRISPR spacer regions, a behavior that might minimize negative impacts on the host defense system. These transposons were identified in both plasmid and genomic CRISPR arrays, indicating that their preferred target provides a means for both safe insertion in the host chromosome and a mechanism for dissemination. Attempts to reconstitute these elements in E. coli were unsuccessful, indicating possible dependence on native host factors. Our findings expand the diversity of interactions between Tn7-like transposons and CRISPR systems.
Collapse
Affiliation(s)
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Brenes-Álvarez M, Ropp HR, Papagiannidis D, Potel CM, Stein F, Scholz I, Steglich C, Savitski MM, Vioque A, Muro-Pastor AM, Hess WR. R-DeeP/TripepSVM identifies the RNA-binding OB-fold-like protein PatR as regulator of heterocyst patterning. Nucleic Acids Res 2025; 53:gkae1247. [PMID: 39698830 PMCID: PMC11797042 DOI: 10.1093/nar/gkae1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far. Here we used quantitative mass spectrometry to analyze the differential fractionation of RNA-protein complexes after RNase treatment in density gradients yielding 333 RNA-associated proteins, while a bioinformatic prediction yielded 311 RBP candidates in Nostoc sp. PCC 7120. We validated in vivo the RNA-binding capacity of six RBP candidates. Some participate in essential physiological aspects, such as photosynthesis (Alr2890), thylakoid biogenesis (Vipp1) or heterocyst differentiation (PrpA, PatU3), but their association with RNA was unknown. Validated RBPs Asl3888 and Alr1700 were not previously characterized. Alr1700 is an RBP with two oligonucleotide/oligosaccharide-binding (OB)-fold-like domains that is differentially expressed in heterocysts and interacts with non-coding regulatory RNAs. Deletion of alr1700 led to complete deregulation of the cell differentiation process, a striking increase in the number of heterocyst-like cells, and was ultimately lethal in the absence of combined nitrogen. These observations characterize this RBP as a master regulator of the heterocyst patterning and differentiation process, leading us to rename Alr1700 to PatR.
Collapse
Affiliation(s)
- Manuel Brenes-Álvarez
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Halie R Ropp
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | | - Clement M Potel
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ingeborg Scholz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Hwang J, Ye DY, Jung GY, Jang S. Mobile genetic element-based gene editing and genome engineering: Recent advances and applications. Biotechnol Adv 2024; 72:108343. [PMID: 38521283 DOI: 10.1016/j.biotechadv.2024.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Genome engineering has revolutionized several scientific fields, ranging from biochemistry and fundamental research to therapeutic uses and crop development. Diverse engineering toolkits have been developed and used to effectively modify the genome sequences of organisms. However, there is a lack of extensive reviews on genome engineering technologies based on mobile genetic elements (MGEs), which induce genetic diversity within host cells by changing their locations in the genome. This review provides a comprehensive update on the versatility of MGEs as powerful genome engineering tools that offers efficient solutions to challenges associated with genome engineering. MGEs, including DNA transposons, retrotransposons, retrons, and CRISPR-associated transposons, offer various advantages, such as a broad host range, genome-wide mutagenesis, efficient large-size DNA integration, multiplexing capabilities, and in situ single-stranded DNA generation. We focused on the components, mechanisms, and features of each MGE-based tool to highlight their cellular applications. Finally, we discussed the current challenges of MGE-based genome engineering and provided insights into the evolving landscape of this transformative technology. In conclusion, the combination of genome engineering with MGE demonstrates remarkable potential for addressing various challenges and advancing the field of genetic manipulation, and promises to revolutionize our ability to engineer and understand the genomes of diverse organisms.
Collapse
Affiliation(s)
- Jaeseong Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
6
|
Yousefi L, Kadkhoda H, Shirmohammadi M, Moaddab SY, Ghotaslou R, Tahereh pirzadeh, Sadeghi J, Somi MH, Ahangarzadeh Rezaee M, Ganbarov K, Samadi Kafil H. CRISPR-like sequences association with antibiotic resistance and biofilm formation in Helicobacter pylori clinical isolates. Heliyon 2024; 10:e26809. [PMID: 38449645 PMCID: PMC10915373 DOI: 10.1016/j.heliyon.2024.e26809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Role of clustered regularly interspaced short palindromic repeats (CRISPR)-like sequences in antibiotic resistance and biofilm formation isn't clear. This study investigated association of CRISPR-like sequences with antibiotic resistance and biofilm formation in H. pylori isolates. Thirty-six of H. pylori isolates were studied for existence of CRISPR-like sequences using PCR method and their correlation with biofilm formation and antibiotic resistance. Microtiter-plate technique was utilized for investigating antibiotic resistance profile of isolates against amoxicillin, tetracycline, metronidazole and clarithromycin. Biofilm formation of isolates was analyzed by microtiter-plate-based-method. Out of 23 CRISPR-like positive isolates, 19 had ability of biofilm formation and 7 of 13 CRISPR-like negative isolates were able to form biofilm (Pvalue = 0.445). In CRISPR-like positive isolates, 11 (48%), 18 (78%), 18 (78%) and 23 (100%) were resistant to amoxicillin, tetracycline, metronidazole and clarithromycin, respectively. Since CRISPR-like sequences have role in antibiotic resistance, may be applied as genetic markers of antibiotic resistance. But there was no substantial correlation between biofilm formation and existence of CRISPR-like sequences. These results indicate possible importance of CRISPR-like sequences on acquisition of resistance to antibiotics in this bacterium.
Collapse
Affiliation(s)
- Leila Yousefi
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Shirmohammadi
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh pirzadeh
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Z. Khalilov str., 23 AZ1148, Baku, Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Castillo M, Guevara G, Baldanta S, Rodríguez PS, Agudo L, Nogales J, Carrasco AD, Arribas-Aguilar F, Pérez-Pérez J, García JL, Galán B, Navarro Llorens JM. Characterization of Limnospira platensis PCC 9108 R-M and CRISPR-Cas systems. Microbiol Res 2024; 279:127572. [PMID: 38101163 DOI: 10.1016/j.micres.2023.127572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The filamentous cyanobacterium Limnospira platensis, formerly known as Arthrospira platensis or spirulina, is one of the most commercially important species of microalgae. Due to its high nutritional value, pharmacological and industrial applications it is extensively cultivated on a large commercial scale. Despite its widespread use, its precise manipulation is still under development due to the lack of effective genetic protocols. Genetic transformation of Limnospira has been attempted but the methods reported have not been generally reproducible in other laboratories. Knowledge of the transformation defense mechanisms is essential for understanding its physiology and for broadening their applications. With the aim to understand more about the genetic defenses of L. platensis, in this work we have identified the restriction-modification and CRISPR-Cas systems and we have cloned and characterized thirteen methylases. In parallel, we have also characterized the methylome and orphan methyltransferases using genome-wide analysis of DNA methylation patterns and RNA-seq. The identification and characterization of these enzymes will be a valuable resource to know how this strain avoids being genetically manipulated and for further genomics studies.
Collapse
Affiliation(s)
- María Castillo
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Govinda Guevara
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Sara Baldanta
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Patricia Suárez Rodríguez
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Lucía Agudo
- Department of Systems Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain.
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain.
| | - Asunción Díaz Carrasco
- DNA Sequencing facility, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Fernando Arribas-Aguilar
- SECUGEN SL, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Julián Pérez-Pérez
- SECUGEN SL, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - José Luis García
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Beatriz Galán
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Juana María Navarro Llorens
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
9
|
Basu S, Bhattacharya D, Pramanik A, Saha M, Mukherjee J. In-silico whole-genome sequence analysis of a halotolerant filamentous mangrove cyanobacterium revealed CRISPR-Cas systems with unique properties. JOURNAL OF PHYCOLOGY 2023; 59:1339-1346. [PMID: 37795780 DOI: 10.1111/jpy.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Novel CRISPR systems capable of cleaving both DNA and RNA are progressively emerging as attractive tools for genome manipulation of prokaryotic and eukaryotic organisms. We report specific characteristics of CRISPR systems present in Oxynema aestuarii AP17, a halotolerant, filamentous cyanobacterium and the second known member of the Oxynema genus. In-silico analyses of its whole-genome sequence revealed the presence of multiple Type I and Type III CRISPR loci with one Type I-G system previously unreported in cyanobacteria. We further identified the leader sequences at the 5' end of multiple CRISPR loci, many of which were distinct from previously reported cyanobacterial CRISPR leaders. Phylogenetic analyses of the O. aestuarii AP17 Cas1 proteins revealed two protein sequences that were unique and distantly related to other cyanobacterial Cas1 protein sequences. Our findings are significant because novel Class 1 CRISPR systems possess multi-subunit effectors and are highly flexible for repurposing by protein domain fusions made to the effector complex. Additionally, Type III CRISPRs are particularly useful for genome editing in certain extremophiles for which mesophilic Type II CRISPRs are ineffective.
Collapse
Affiliation(s)
- Shayontani Basu
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | - Arnab Pramanik
- Jagadis Bose National Science Talent Search, Kolkata, India
| | - Malay Saha
- Department of Botany, Sovarani Memorial College, Howrah, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, India
| |
Collapse
|
10
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 2023; 382:eadj8543. [PMID: 37972161 PMCID: PMC10771339 DOI: 10.1126/science.adj8543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 11/19/2023]
Abstract
CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to catalyze RNA-guided transposition of large genetic payloads. Type V-K CASTs offer potential technology advantages but lack accuracy, and the molecular basis for this drawback has remained elusive. Here, we reveal that type V-K CASTs maintain an RNA-independent, "untargeted" transposition pathway alongside RNA-dependent integration, driven by the local availability of TnsC filaments. Using cryo-electron microscopy, single-molecule experiments, and high-throughput sequencing, we found that a minimal, CRISPR-less transpososome preferentially directs untargeted integration at AT-rich sites, with additional local specificity imparted by TnsB. By exploiting this knowledge, we suppressed untargeted transposition and increased type V-K CAST specificity up to 98.1% in cells without compromising on-target integration efficiency. These findings will inform further engineering of CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Ma B, Lu C, Wang Y, Yu J, Zhao K, Xue R, Ren H, Lv X, Pan R, Zhang J, Zhu Y, Xu J. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat Commun 2023; 14:7318. [PMID: 37951952 PMCID: PMC10640626 DOI: 10.1038/s41467-023-43000-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Soil harbors a vast expanse of unidentified microbes, termed as microbial dark matter, presenting an untapped reservo)ir of microbial biodiversity and genetic resources, but has yet to be fully explored. In this study, we conduct a large-scale excavation of soil microbial dark matter by reconstructing 40,039 metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs) as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity across the tree of life. We also illustrate the pivotal role of uSGBs in augmenting soil microbiome's functional landscape and intra-species genome diversity, providing large proportions of the 43,169 biosynthetic gene clusters and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs contributed 84.6% of previously unexplored viral-host associations from the SMAG catalogue. The SMAG catalogue provides an useful genomic resource for further studies investigating soil microbial biodiversity and genetic resources.
Collapse
Affiliation(s)
- Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Caiyu Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jingwen Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Ran Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Hao Ren
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongguan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Taton A, Gilderman TS, Ernst DC, Omaga CA, Cohen LA, Rey-Bedon C, Golden JW, Golden SS. Synechococcus elongatus Argonaute reduces natural transformation efficiency and provides immunity against exogenous plasmids. mBio 2023; 14:e0184323. [PMID: 37791787 PMCID: PMC10653904 DOI: 10.1128/mbio.01843-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE S. elongatus is an important cyanobacterial model organism for the study of its prokaryotic circadian clock, photosynthesis, and other biological processes. It is also widely used for genetic engineering to produce renewable biochemicals. Our findings reveal an SeAgo-based defense mechanism in S. elongatus against the horizontal transfer of genetic material. We demonstrate that deletion of the ago gene facilitates genetic studies and genetic engineering of S. elongatus.
Collapse
Affiliation(s)
- Arnaud Taton
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Tami S. Gilderman
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Dustin C. Ernst
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Carla A. Omaga
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Lucas A. Cohen
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Camilo Rey-Bedon
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - James W. Golden
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Susan S. Golden
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548620. [PMID: 37503092 PMCID: PMC10370016 DOI: 10.1101/2023.07.14.548620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike canonical CRISPR-Cas systems that rely on RNA-guided nucleases for target cleavage, CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to facilitate RNA-guided transposition of large genetic payloads. Type V-K CASTs offer several potential upsides for genome engineering, due to their compact size, easy programmability, and unidirectional integration. However, these systems are substantially less accurate than type I-F CASTs, and the molecular basis for this difference has remained elusive. Here we reveal that type V-K CASTs undergo two distinct mobilization pathways with remarkably different specificities: RNA-dependent and RNA-independent transposition. Whereas RNA-dependent transposition relies on Cas12k for accurate target selection, RNA-independent integration events are untargeted and primarily driven by the local availability of TnsC filaments. The cryo-EM structure of the untargeted complex reveals a TnsB-TnsC-TniQ transpososome that encompasses two turns of a TnsC filament and otherwise resembles major architectural aspects of the Cas12k-containing transpososome. Using single-molecule experiments and genome-wide meta-analyses, we found that AT-rich sites are preferred substrates for untargeted transposition and that the TnsB transposase also imparts local specificity, which collectively determine the precise insertion site. Knowledge of these motifs allowed us to direct untargeted transposition events to specific hotspot regions of a plasmid. Finally, by exploiting TnsB's preference for on-target integration and modulating the availability of TnsC, we suppressed RNA-independent transposition events and increased type V-K CAST specificity up to 98.1%, without compromising the efficiency of on-target integration. Collectively, our results reveal the importance of dissecting target site selection mechanisms and highlight new opportunities to leverage CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
14
|
Ziemann M, Reimann V, Liang Y, Shi Y, Ma H, Xie Y, Li H, Zhu T, Lu X, Hess WR. CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems. Nat Commun 2023; 14:924. [PMID: 36801863 PMCID: PMC9938897 DOI: 10.1038/s41467-023-36542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Certain CRISPR-Cas elements integrate into Tn7-like transposons, forming CRISPR-associated transposon (CAST) systems. How the activity of these systems is controlled in situ has remained largely unknown. Here we characterize the MerR-type transcriptional regulator Alr3614 that is encoded by one of the CAST (AnCAST) system genes in the genome of cyanobacterium Anabaena sp. PCC 7120. We identify a number of Alr3614 homologs across cyanobacteria and suggest naming these regulators CvkR for Cas V-K repressors. Alr3614/CvkR is translated from leaderless mRNA and represses the AnCAST core modules cas12k and tnsB directly, and indirectly the abundance of the tracr-CRISPR RNA. We identify a widely conserved CvkR binding motif 5'-AnnACATnATGTnnT-3'. Crystal structure of CvkR at 1.6 Å resolution reveals that it comprises distinct dimerization and potential effector-binding domains and that it assembles into a homodimer, representing a discrete structural subfamily of MerR regulators. CvkR repressors are at the core of a widely conserved regulatory mechanism that controls type V-K CAST systems.
Collapse
Affiliation(s)
- Marcus Ziemann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Viktoria Reimann
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany
| | - Yajing Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yue Shi
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Honglei Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,Shandong Energy Institute, Qingdao, 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuman Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, No.189 Songling Road, Qingdao, 266101, China. .,Shandong Energy Institute, Qingdao, 266101, China. .,Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, Genetics and Experimental Bioinformatics, University of Freiburg, Schänzlestr. 1, Freiburg, D-79104, Germany.
| |
Collapse
|
15
|
Emerging Trends of Nanotechnology and Genetic Engineering in Cyanobacteria to Optimize Production for Future Applications. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122013. [PMID: 36556378 PMCID: PMC9781209 DOI: 10.3390/life12122013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to revolutionize various fields of research and development. Multiple nanoparticles employed in a nanotechnology process are the magic elixir that provides unique features that are not present in the component's natural form. In the framework of contemporary research, it is inappropriate to synthesize microparticles employing procedures that include noxious elements. For this reason, scientists are investigating safer ways to produce genetically improved Cyanobacteria, which has many novel features and acts as a potential candidate for nanoparticle synthesis. In recent decades, cyanobacteria have garnered significant interest due to their prospective nanotechnological uses. This review will outline the applications of genetically engineered cyanobacteria in the field of nanotechnology and discuss its challenges and future potential. The evolution of cyanobacterial strains by genetic engineering is subsequently outlined. Furthermore, the recombination approaches that may be used to increase the industrial potential of cyanobacteria are discussed. This review provides an overview of the research undertaken to increase the commercial avenues of cyanobacteria and attempts to explain prospective topics for future research.
Collapse
|
16
|
Kalwani P, Rath D, Ballal A. Loss of 2-Cys-Prx affects cellular ultrastructure, disturbs redox poise and impairs photosynthesis in cyanobacteria. PLANT, CELL & ENVIRONMENT 2022; 45:2972-2986. [PMID: 35909079 DOI: 10.1111/pce.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In a striking similarity to plant chloroplasts, the cyanobacterium Anabaena displays very low catalase activity, but expresses several peroxiredoxins (Prxs), including the typical 2-Cys-Prx (annotated as Alr4641), that detoxify H2 O2 . Due to the presence of multiple Prxs, the precise contribution of Alr4641 to the oxidative stress response of Anabaena is not well-defined. To unambiguously assess its in vivo function, the Alr4641 protein was knocked down using the CRISPRi approach in Anabaena PCC 7120. The knockdown strain (An-KD4641), which showed over 85% decrease in the content of Alr4641, was viable, but grew slower than the control strain (An-dCas9). An-KD4641 showed elevated levels of reactive oxygen species and the expression of several redox-responsive genes was analogous to that of An-dCas9 subjected to oxidative stress. The knockdown strain displayed reduced filament size, altered thylakoid ultrastructure, a marked drop in the ratio of phycocyanin to chlorophyll a and decreased photosynthetic parameters compared to An-dCas9. In comparison to the control strain, exposure to H2 O2 had a more severe effect on the photosynthetic parameters or survival of An-KD4641. Thus, in the absence of adequate catalase activity, 2-Cys-Prx appears to be the principal Prx responsible for maintaining redox homoeostasis in diverse photosynthetic systems ranging from chloroplasts to cyanobacteria.
Collapse
Affiliation(s)
- Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Devashish Rath
- Applied Genomics Section, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
17
|
Selão TT. Exploring cyanobacterial diversity for sustainable biotechnology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3057-3071. [PMID: 35467729 DOI: 10.1093/jxb/erac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are an evolutionarily ancient and diverse group of microorganisms. Their genetic diversity has
allowed them to occupy and play vital roles in a wide range of ecological niches, from desert soil crusts to tropical oceans. Owing to bioprospecting efforts and the development of new platform technologies enabling their study and manipulation, our knowledge of cyanobacterial metabolism is rapidly expanding. This review explores our current understanding of the genetic and metabolic features of cyanobacteria, from the more established cyanobacterial model strains to the newly isolated/described species, particularly the fast-growing, highly productive, and genetically amenable strains, as promising chassis for renewable biotechnology. It also discusses emerging technologies for their study and manipulation, enabling researchers to harness the astounding diversity of the cyanobacterial genomic and metabolic treasure trove towards the establishment of a sustainable bioeconomy.
Collapse
Affiliation(s)
- Tiago Toscano Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| |
Collapse
|
18
|
Sengupta A, Liu D, Pakrasi HB. CRISPR-Cas mediated genome engineering of cyanobacteria. Methods Enzymol 2022; 676:403-432. [DOI: 10.1016/bs.mie.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Jungblut AD, Raymond F, Dion MB, Moineau S, Mohit V, Nguyen GQ, Déraspe M, Francovic-Fontaine É, Lovejoy C, Culley AI, Corbeil J, Vincent WF. Genomic diversity and CRISPR-Cas systems in the cyanobacterium Nostoc in the High Arctic. Environ Microbiol 2021; 23:2955-2968. [PMID: 33760341 DOI: 10.1111/1462-2920.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
Nostoc (Nostocales, Cyanobacteria) has a global distribution in the Polar Regions. However, the genomic diversity of Nostoc is little known and there are no genomes available for polar Nostoc. Here we carried out the first genomic analysis of the Nostoc commune morphotype with a recent sample from the High Arctic and a herbarium specimen collected during the British Arctic Expedition (1875-76). Comparisons of the polar genomes with 26 present-day non-polar members of the Nostocales family highlighted that there are pronounced genetic variations among Nostoc strains and species. Osmoprotection and other stress genes were found in all Nostoc strains, but the two Arctic strains had markedly higher numbers of biosynthetic gene clusters for uncharacterised non-ribosomal peptide synthetases, suggesting a high diversity of secondary metabolites. Since viral-host interactions contribute to microbial diversity, we analysed the CRISPR-Cas systems in the Arctic and two temperate Nostoc species. There were a large number of unique repeat-spacer arrays in each genome, indicating diverse histories of viral attack. All Nostoc strains had a subtype I-D system, but the polar specimens also showed evidence of a subtype I-B system that has not been previously reported in cyanobacteria, suggesting diverse cyanobacteria-virus interactions in the Arctic.
Collapse
Affiliation(s)
- Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Frédéric Raymond
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.,School of Nutrition and Institute on Nutrition and Functional Foods, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Moïra B Dion
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vani Mohit
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de Biologie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Guillaume Quang Nguyen
- School of Nutrition and Institute on Nutrition and Functional Foods, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Maxime Déraspe
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Élina Francovic-Fontaine
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Connie Lovejoy
- Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de Biologie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Québec-Océan, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Alexander I Culley
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Groupe de Recherche en Écologie Buccale, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Jacques Corbeil
- Department of Molecular Medicine and Big Data Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Warwick F Vincent
- Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Takuvik Joint International Laboratory and Institute of Integrative Biology and Systems, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de Biologie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
20
|
|
21
|
Shmakov SA, Utkina I, Wolf YI, Makarova KS, Severinov KV, Koonin EV. CRISPR Arrays Away from cas Genes. CRISPR J 2020; 3:535-549. [PMID: 33346707 PMCID: PMC7757702 DOI: 10.1089/crispr.2020.0062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CRISPR-Cas systems typically consist of a CRISPR array and cas genes that are organized in one or more operons. However, a substantial fraction of CRISPR arrays are not adjacent to cas genes. Definitive identification of such isolated CRISPR arrays runs into the problem of false-positives, with unrelated types of repetitive sequences mimicking CRISPR. We developed a computational pipeline to eliminate false CRISPR predictions and found that up to 25% of the CRISPR arrays in complete bacterial and archaeal genomes are located away from cas genes. Most of the repeats in these isolated arrays are identical to repeats in cas-adjacent CRISPR arrays in the same or closely related genomes, indicating an evolutionary relationship between isolated arrays and arrays in typical CRISPR-cas loci. The spacers in isolated CRISPR arrays show nearly as many matches to viral genomes as spacers from complete CRISPR-cas loci, suggesting that the isolated arrays were either functionally active recently or continue to function. Reconstruction of evolutionary events in closely related bacterial genomes suggests three routes of evolution of isolated CRISPR arrays: (1) loss of cas genes in a CRISPR-cas locus, (2) de novo generation of arrays from off-target spacer integration into sequences resembling the corresponding repeats, and (3) transfer by mobile genetic elements. Both combination of de novo emerging arrays with cas genes and regain of cas genes by isolated arrays via recombination likely contribute to functional diversification in CRISPR-Cas evolution.
Collapse
Affiliation(s)
- Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Irina Utkina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Skolkovo Institute of Science and Technology, Skolkovo, Russia; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin V. Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia; and Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
22
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
23
|
Pattharaprachayakul N, Lee M, Incharoensakdi A, Woo HM. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme Microb Technol 2020; 140:109619. [PMID: 32912679 DOI: 10.1016/j.enzmictec.2020.109619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that are capable of converting CO2 to value-added chemicals. Engineering of cyanobacteria with synthetic biology tools, including the CRISPR-Cas system, has allowed an opportunity for biological CO2 utilization. Here, we described natural CRISPR-Cas systems for understanding cyanobacterial genomics and synthetic CRISPR-Cas systems for metabolic engineering applications. The natural CRISPR-Cas systems in cyanobacteria have been identified as Class 1, with type I and III, and some Class 2, with type V, as an adaptive immune system against viral invasion. As synthetic tools, CRISPR-Cas9 and -Cas12a have been successfully established in cyanobacteria to delete a target gene without a selection marker. Deactivated Cas9 and Cas12a have also been used to repress genes for metabolic engineering. In addition, a perspective on how advanced CRISPR-Cas systems and a pool of the guide RNAs can be advantageous for precise genome engineering and understanding of unknown functions was discussed for advanced engineering of cyanobacteria.
Collapse
Affiliation(s)
- Napisa Pattharaprachayakul
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Mieun Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
24
|
Reimann V, Ziemann M, Li H, Zhu T, Behler J, Lu X, Hess WR. Specificities and functional coordination between the two Cas6 maturation endonucleases in Anabaena sp. PCC 7120 assign orphan CRISPR arrays to three groups. RNA Biol 2020; 17:1442-1453. [PMID: 32453626 DOI: 10.1080/15476286.2020.1774197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many bacteria and archaea possess an RNA-guided adaptive and inheritable immune system that consists of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. In most CRISPR-Cas systems, the maturation of CRISPR-derived small RNAs (crRNAs) is essential for functionality. Cas6 endonucleases function as the most frequent CRISPR RNA maturation enzymes. In the cyanobacterium Anabaena sp. PCC 7120, ten CRISPR loci are present, but only two cas gene cassettes plus a Tn7-associated eleventh array. In this study, we deleted the two cas6 genes alr1482 (Type III-D) or alr1566 (Type I-D) and tested the specificities of the two corresponding enzymes in the resulting mutant strains, as recombinant proteins and in a cell-free transcription-translation system. The results assign the direct repeats (DRs) to three different groups. While Alr1566 is specific for one group, Alr1482 has a higher preference for the DRs of the second group but can also cleave those of the first group. We found that this cross-recognition limits crRNA accumulation for the Type I-D system in vivo. We also show that the DR of the cas gene-free CRISPR array of cyanophage N-1 is processed by these enzymes, suggesting that it is fully competent in association with host-encoded Cas proteins. The data support the functionality of CRISPR arrays that frequently appear fragmented to multiple genomic loci in multicellular cyanobacteria and disfavour other possibilities, such as the nonfunctionality of these orphan repeat-spacer arrays. Our results show the functional coordination of Cas6 endonucleases with both neighbouring and remote repeat-spacer arrays in the CRISPR-Cas system of cyanobacteria.
Collapse
Affiliation(s)
- Viktoria Reimann
- Faculty of Biology, Institute of Biology III, University of Freiburg , Germany
| | - Marcus Ziemann
- Faculty of Biology, Institute of Biology III, University of Freiburg , Germany
| | - Hui Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences , Qingdao, China.,College of Life Sciences, University of Chinese Academy of Sciences , Beijing, China
| | - Tao Zhu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences , Qingdao, China
| | - Juliane Behler
- Faculty of Biology, Institute of Biology III, University of Freiburg , Germany
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences , Qingdao, China
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg , Germany
| |
Collapse
|
25
|
Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, Hatti-Kaul R. Omics for Bioprospecting and Drug Discovery from Bacteria and Microalgae. Antibiotics (Basel) 2020; 9:antibiotics9050229. [PMID: 32375367 PMCID: PMC7277505 DOI: 10.3390/antibiotics9050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
"Omics" represent a combinatorial approach to high-throughput analysis of biological entities for various purposes. It broadly encompasses genomics, transcriptomics, proteomics, lipidomics, and metabolomics. Bacteria and microalgae exhibit a wide range of genetic, biochemical and concomitantly, physiological variations owing to their exposure to biotic and abiotic dynamics in their ecosystem conditions. Consequently, optimal conditions for adequate growth and production of useful bacterial or microalgal metabolites are critically unpredictable. Traditional methods employ microbe isolation and 'blind'-culture optimization with numerous chemical analyses making the bioprospecting process laborious, strenuous, and costly. Advances in the next generation sequencing (NGS) technologies have offered a platform for the pan-genomic analysis of microbes from community and strain downstream to the gene level. Changing conditions in nature or laboratory accompany epigenetic modulation, variation in gene expression, and subsequent biochemical profiles defining an organism's inherent metabolic repertoire. Proteome and metabolome analysis could further our understanding of the molecular and biochemical attributes of the microbes under research. This review provides an overview of recent studies that have employed omics as a robust, broad-spectrum approach for screening bacteria and microalgae to exploit their potential as sources of drug leads by focusing on their genomes, secondary metabolite biosynthetic pathway genes, transcriptomes, and metabolomes. We also highlight how recent studies have combined molecular biology with analytical chemistry methods, which further underscore the need for advances in bioinformatics and chemoinformatics as vital instruments in the discovery of novel bacterial and microalgal strains as well as new drug leads.
Collapse
Affiliation(s)
- Reuben Maghembe
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
| | - Donath Damian
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
| | - Abdalah Makaranga
- Department of Biological and Marine Sciences, Marian University College, P.O. Box 47, Bagamoyo, Tanzania;
- International Center for Genetic Engineering and Biotechnology (ICGEB), Omics of Algae Group, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Stephen Samwel Nyandoro
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania;
| | - Sylvester Leonard Lyantagaye
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 25179, Dar es Salaam, Tanzania; (R.M.); (D.D.); (S.L.L.)
- Department of Biochemistry, Mbeya College of Health and Allied Sciences, University of Dar es Salaam, P.O. Box 608, Mbeya, Tanzania
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, 22100 Lund, Sweden
- Correspondence: (S.K.); (R.H.-K.); Tel.: +49-2317554086 (S.K.); +46-462224840 (R.H.-K.)
| |
Collapse
|
26
|
Novel molecular aspects of the CRISPR backbone protein ‘Cas7’ from cyanobacteria. Biochem J 2020; 477:971-983. [DOI: 10.1042/bcj20200026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
Abstract
The cyanobacterium Anabaena PCC 7120 shows the presence of Type I-D CRISPR system that can potentially confer adaptive immunity. The Cas7 protein (Alr1562), which forms the backbone of the type I-D surveillance complex, was characterized from Anabaena. Alr1562, showed the presence of the non-canonical RNA recognition motif and two intrinsically disordered regions (IDRs). When overexpressed in E. coli, the Alr1562 protein was soluble and could be purified by affinity chromatography, however, deletion of IDRs rendered Alr1562 completely insoluble. The purified Alr1562 was present in the dimeric or a RNA-associated higher oligomeric form, which appeared as spiral structures under electron microscope. With RNaseA and NaCl treatment, the higher oligomeric form converted to the lower oligomeric form, indicating that oligomerization occurred due to the association of Alr1562 with RNA. The secondary structure of both these forms was largely similar, resembling that of a partially folded protein. The dimeric Alr1562 was more prone to temperature-dependent aggregation than the higher oligomeric form. In vitro, the Alr1562 bound more specifically to a minimal CRISPR unit than to the non-specific RNA. Residues required for binding of Alr1562 to RNA, identified by protein modeling-based approaches, were mutated for functional validation. Interestingly, these mutant proteins, showing reduced ability to bind RNA were predominantly present in dimeric form. Alr1562 was detected with specific antiserum in Anabaena, suggesting that the type I-D system is expressed and may be functional in vivo. This is the first report that describes the characterization of a Cas protein from any photosynthetic organism.
Collapse
|
27
|
Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, de Lorenzo V, Solé R. Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome. Life (Basel) 2020; 10:E14. [PMID: 32050455 PMCID: PMC7175242 DOI: 10.3390/life10020014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
What is the potential for synthetic biology as a way of engineering, on a large scale, complex ecosystems? Can it be used to change endangered ecological communities and rescue them to prevent their collapse? What are the best strategies for such ecological engineering paths to succeed? Is it possible to create stable, diverse synthetic ecosystems capable of persisting in closed environments? Can synthetic communities be created to thrive on planets different from ours? These and other questions pervade major future developments within synthetic biology. The goal of engineering ecosystems is plagued with all kinds of technological, scientific and ethic problems. In this paper, we consider the requirements for terraformation, i.e., for changing a given environment to make it hospitable to some given class of life forms. Although the standard use of this term involved strategies for planetary terraformation, it has been recently suggested that this approach could be applied to a very different context: ecological communities within our own planet. As discussed here, this includes multiple scales, from the gut microbiome to the entire biosphere.
Collapse
Affiliation(s)
- Nuria Conde-Pueyo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain;
- Barcelona Graduate School of Mathematics (BGSMath), Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Miguel Berdugo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Fernando T. Maestre
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Victor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
28
|
Vijay D, Akhtar MK, Hess WR. Genetic and metabolic advances in the engineering of cyanobacteria. Curr Opin Biotechnol 2019; 59:150-156. [DOI: 10.1016/j.copbio.2019.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/28/2022]
|
29
|
Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F. RNA-guided DNA insertion with CRISPR-associated transposases. Science 2019; 365:48-53. [PMID: 31171706 PMCID: PMC6659118 DOI: 10.1126/science.aax9181] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas nucleases are powerful tools for manipulating nucleic acids; however, targeted insertion of DNA remains a challenge, as it requires host cell repair machinery. Here we characterize a CRISPR-associated transposase from cyanobacteria Scytonema hofmanni (ShCAST) that consists of Tn7-like transposase subunits and the type V-K CRISPR effector (Cas12k). ShCAST catalyzes RNA-guided DNA transposition by unidirectionally inserting segments of DNA 60 to 66 base pairs downstream of the protospacer. ShCAST integrates DNA into targeted sites in the Escherichia coli genome with frequencies of up to 80% without positive selection. This work expands our understanding of the functional diversity of CRISPR-Cas systems and establishes a paradigm for precision DNA insertion.
Collapse
Affiliation(s)
- Jonathan Strecker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alim Ladha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary Gardner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan L Schmid-Burgk
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Teikari JE, Popin RV, Hou S, Wahlsten M, Hess WR, Sivonen K. Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Sci Rep 2019; 9:4888. [PMID: 30894564 PMCID: PMC6426976 DOI: 10.1038/s41598-019-40883-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022] Open
Abstract
The Baltic Sea is a shallow basin of brackish water in which the spatial salinity gradient is one of the most important factors contributing to species distribution. The Baltic Sea is infamous for its annual cyanobacterial blooms comprised of Nodularia spumigena, Aphanizomenon spp., and Dolichospermum spp. that cause harm, especially for recreational users. To broaden our knowledge of the cyanobacterial adaptation strategies for brackish water environments, we sequenced the entire genome of Dolichospermum sp. UHCC 0315, a species occurring not only in freshwater environments but also in brackish water. Comparative genomics analyses revealed a close association with Dolichospermum sp. UHCC 0090 isolated from a lake in Finland. The genome closure of Dolichospermum sp. UHCC 0315 unraveled a mixture of two subtypes in the original culture, and subtypes exhibited distinct buoyancy phenotypes. Salinity less than 3 g L-1 NaCl enabled proper growth of Dolichospermum sp. UHCC 0315, whereas growth was arrested at moderate salinity (6 g L-1 NaCl). The concentrations of toxins, microcystins, increased at moderate salinity, whereas RNA sequencing data implied that Dolichospermum remodeled its primary metabolism in unfavorable high salinity. Based on our results, the predicted salinity decrease in the Baltic Sea may favor toxic blooms of Dolichospermum spp.
Collapse
Affiliation(s)
- Jonna E Teikari
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Rafael V Popin
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Shengwei Hou
- Genetics & Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland.
| |
Collapse
|