1
|
Liu J, Yao D, Zhou F, Li K, Sun W, Wang S, Cai C, Xu X. RBM24-mediated biogenesis of circ23679 protects cardiomyocytes against apoptosis via sponging miR-15b-5p. Int J Biol Macromol 2025; 310:143242. [PMID: 40250678 DOI: 10.1016/j.ijbiomac.2025.143242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Circular RNAs (circRNAs) have emerged as significant members of gene regulatory networks and play important roles in normal heart biology and cardiac diseases. RNA binding proteins (RBPs) are key regulatory factors in circRNA formation; however, the mechanisms by which RBP regulate circRNA production remain unclear. RNA binding motif protein 24 (RBM24) is essential for alternative splicing of genes related to cardiac function, and its loss leads to dilated cardiomyopathy and heart failure. In this study, we performed circRNA profiling on hearts from wild-type and Rbm24 knockout mice, identifying the differential expression of circRNAs. We demonstrated that RBM24 could directly bind to pre-mRNA, facilitating the inclusion of specific exons to provide a substrate for circ23679 production. Moreover, RBM24-regulated circRNA production depended on its phosphorylation status. Further, we showed that RBM24-mediated circ23679 acted as a sponge of miR-15b-5p, and a deficient in circ23679-mediated 'sponging events' could drive cardiac apoptosis. Conversely, circ23679 overexpression inhibited cardiac apoptosis and alleviated the disease phenotype in mouse models of heart failure. Thus, our study not only proposes a novel model in which RBPs provide the substrate for circRNA formation but also reveals that RBM24-dependent circRNA production is a crucial post-transcriptional regulatory circuit in cardiac pathogenesis.
Collapse
Affiliation(s)
- Jing Liu
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China.
| | - Dongbo Yao
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Fangwen Zhou
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Keyue Li
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Wenhao Sun
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Shanshan Wang
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Can Cai
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China
| | - Xiuqin Xu
- The Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province 361100, PR China.
| |
Collapse
|
2
|
Sun J, Wang S, Peng S, Gao T, Gao Z. RBM24 regulates apoptosis rates by modulating global transcriptome profile in CAL27 cells. Sci Rep 2025; 15:12069. [PMID: 40200085 PMCID: PMC11978760 DOI: 10.1038/s41598-025-96932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
RNA binding proteins (RBPs) are key factors regulating post-transcriptional events. Categorized as RBPs, RBM24 expression levels have been shown to be a prognosis-related pivotal gene in oral squamous cell carcinoma. We analyzed the binding targets and regulated post-transcriptional events of RBM24 in RBM24-overexpressing cell lines and controls using iRIP-seq and RNA-seq. RBM24-overexpressing cells showed significant changes in gene expression, which are involved in biological pathways related to apoptosis and immune inflammation. RBM24-regulated genes that undergo alternative splicing are primarily engaged in biological processes related to DNA damage repair and RNA metabolism. More notably, we found that RBM24 binds to lncRNAs in addition to pre-mRNAs. These results indicated that RBM24 could play a key role in cancer progression by finding clinical therapeutic targets for Oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 450000, China
| | - Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 450000, China
| | - Tingting Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Yang H, Sun L, Bai X, Cai B, Tu Z, Fang C, Bian Y, Zhang X, Han X, Lv D, Zhang C, Li B, Luo S, Du B, Li L, Yao Y, Dong Z, Huang Z, Su G, Li H, Wang QK, Zhang M. Dysregulated RBM24 phosphorylation impairs APOE translation underlying psychological stress-induced cardiovascular disease. Nat Commun 2024; 15:10181. [PMID: 39580475 PMCID: PMC11585567 DOI: 10.1038/s41467-024-54519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Psychological stress contributes to cardiovascular disease (CVD) and sudden cardiac death, yet its molecular basis remains obscure. RNA binding protein RBM24 plays a critical role in cardiac development, rhythm regulation, and cellular stress. Here, we show that psychological stress activates RBM24 S181 phosphorylation through eIF4E2-GSK3β signaling, which causally links psychological stress to CVD by promoting APOE translation (apolipoprotein E). Using an Rbm24 S181A KI mouse model, we show that impaired S181 phosphorylation leads to cardiac contractile dysfunction, atrial fibrillation, dyslipidemia, reduced muscle strength, behavioral abnormalities, and sudden death under acute and chronic psychological stressors. The impaired S181 phosphorylation of RBM24 inhibits cardiac translation, including APOE translation. Notably, cardiomyocyte-specific expression of APOE rescues cardiac electrophysiological abnormalities and contractile dysfunction, through preventing ROS stress and mitochondrial dysfunction. Moreover, RBM24-S181 phosphorylation acts as a serum marker for chronic stress in human. These results provide a functional link between RBM24 phosphorylation, eIF4E-regulated APOE translation, and psychological-stress-induced CVD.
Collapse
Affiliation(s)
- He Yang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Sun
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Bai
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bingcheng Cai
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Fang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Bian
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyu Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xudong Han
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dayin Lv
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chi Zhang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Bingbing Du
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Li
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Yao
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuowei Huang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430010, China
| | - Guanhua Su
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
- School of Biotechnology of Shandong Polytechnic, Jinan, Shandong, 250101, China.
| | - Qing K Wang
- Center for Human Genome Research, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Yao D, Wang X, Liu J, Xu XQ. Rbm24 modulates neuronal RNA splicing to restrict cognitive dysfunction. Int J Biol Macromol 2024; 276:133853. [PMID: 39004256 DOI: 10.1016/j.ijbiomac.2024.133853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Synaptic dysfunction is associated with early neurodegenerative changes and cognitive deficits. Neuronal cell-specific alternative splicing (AS) programs exclusively encode unique neuron- and synapse-specific proteins. However, it remains unclear whether splicing disturbances in neurons influence the pathogenesis of cognitive impairment. Here, we observed that RNA-binding motif protein 24 (RBM24) expression was decreased in Alzheimer's disease (AD) patients. Using conditional RBM24 knockout mice, we demonstrated that deletion of RBM24 in the brain resulted in learning and memory impairment. Electrophysiological recordings from hippocampal slices from mice lacking RBM24 revealed multiple defects in excitatory synaptic function and plasticity. Furthermore, RNA sequencing and splicing analysis showed that RBM24 regulates a network of genes related to cognitive function. Deletion of RBM24 disrupted the AS of synapse-associated genes, including GluR2 and Prrt1, the major disease genes involved in cognitive impairment and memory loss, leading to cognitive dysfunction. Together, our results suggest that the regulation of mRNA splicing by RBM24 is a key process involved in maintaining normal synaptic function and provide novel mechanistic insights into the pathogenesis of AD.
Collapse
Affiliation(s)
- Dongbo Yao
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiaoxia Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| |
Collapse
|
5
|
Wang K, Liu XY, Liu SF, Wang XX, Wei YH, Zhu JR, Liu J, Xu XQ, Wen L. Rbm24/Notch1 signaling regulates adult neurogenesis in the subventricular zone and mediates Parkinson-associated olfactory dysfunction. Theranostics 2024; 14:4499-4518. [PMID: 39113792 PMCID: PMC11303084 DOI: 10.7150/thno.96045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: Adult neurogenesis in the subventricular zone (SVZ) is essential for maintaining neural homeostasis, and its dysregulation contributes to anosmia and delayed tissue healing in neurological disorders, such as Parkinson's disease (PD). Despite intricate regulatory networks identified in SVZ neurogenesis, the molecular mechanisms dynamically maintaining neural stem/progenitor cells (NSPCs) in response to physiological and pathological stimuli remain incompletely elucidated. Methods: We generated an RNA binding motif protein 24 (Rbm24) knockout model to investigate its impact on adult neurogenesis in the SVZ, employing immunofluorescence, immunoblot, electrophysiology, RNA-sequencing, and in vitro experiments. Further investigations utilized a PD mouse model, along with genetic and pharmacological manipulations, to elucidate Rbm24 involvement in PD pathology. Results: Rbm24, a multifaceted post-transcriptional regulator of cellular homeostasis, exhibited broad expression in the SVZ from development to aging. Deletion of Rbm24 significantly impaired NSPC proliferation in the adult SVZ, ultimately resulting in collapsed neurogenesis in the olfactory bulb. Notably, Rbm24 played a specific role in maintaining Notch1 mRNA stability in adult NSPCs. The Rbm24/Notch1 signaling axis was significantly downregulated in the SVZ of PD mice. Remarkably, overexpression of Rbm24 rescued disruption of adult neurogenesis and olfactory dysfunction in PD mice, and these effects were hindered by DAPT, a potent inhibitor of Notch1. Conclusions: Our findings highlight the critical role of the Rbm24/Notch1 signaling axis in regulating adult SVZ neurogenesis under physiological and pathological circumstances. This provides valuable insights into the dynamic regulation of NSPC homeostasis and offers a potential targeted intervention for PD and related neurological disorders.
Collapse
Affiliation(s)
- Ke Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xing-Yang Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Xia Wang
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Yi-Hua Wei
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jun-Rong Zhu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Lei Wen
- Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
- Center for Brain Sciences, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
6
|
Cui L, Zheng Y, Xu R, Lin Y, Zheng J, Lin P, Guo B, Sun S, Zhao X. Alternative pre-mRNA splicing in stem cell function and therapeutic potential: A critical review of current evidence. Int J Biol Macromol 2024; 268:131781. [PMID: 38657924 DOI: 10.1016/j.ijbiomac.2024.131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuyu Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Ciampi L, Serrano L, Irimia M. Unique transcriptomes of sensory and non-sensory neurons: insights from Splicing Regulatory States. Mol Syst Biol 2024; 20:296-310. [PMID: 38438733 PMCID: PMC10987577 DOI: 10.1038/s44320-024-00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 03/06/2024] Open
Abstract
Alternative Splicing (AS) programs serve as instructive signals of cell type specificity, particularly within the brain, which comprises dozens of molecularly and functionally distinct cell types. Among them, retinal photoreceptors stand out due to their unique transcriptome, making them a particularly well-suited system for studying how AS shapes cell type-specific molecular functions. Here, we use the Splicing Regulatory State (SRS) as a novel framework to discuss the splicing factors governing the unique AS pattern of photoreceptors, and how this pattern may aid in the specification of their highly specialized sensory cilia. In addition, we discuss how other sensory cells with ciliated structures, for which data is much scarcer, also rely on specific SRSs to implement a proteome specialized in the detection of sensory stimuli. By reviewing the general rules of cell type- and tissue-specific AS programs, firstly in the brain and subsequently in specialized sensory neurons, we propose a novel paradigm on how SRSs are established and how they can diversify. Finally, we illustrate how SRSs shape the outcome of mutations in splicing factors to produce cell type-specific phenotypes that can lead to various human diseases.
Collapse
Affiliation(s)
- Ludovica Ciampi
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Manuel Irimia
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
8
|
Wang G, Gu Y, Liu Z. Deciphering the genetic interactions between Pou4f3, Gfi1, and Rbm24 in maintaining mouse cochlear hair cell survival. eLife 2024; 12:RP90025. [PMID: 38483314 PMCID: PMC10939501 DOI: 10.7554/elife.90025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Mammals harbor a limited number of sound-receptor hair cells (HCs) that cannot be regenerated after damage. Thus, investigating the underlying molecular mechanisms that maintain HC survival is crucial for preventing hearing impairment. Intriguingly, Pou4f3-/- or Gfi1-/- HCs form initially but then rapidly degenerate, whereas Rbm24-/- HCs degenerate considerably later. However, the transcriptional cascades involving Pou4f3, Gfi1, and Rbm24 remain undescribed. Here, we demonstrate that Rbm24 expression is completely repressed in Pou4f3-/- HCs but unaltered in Gfi1-/- HCs, and further that the expression of both POU4F3 and GFI1 is intact in Rbm24-/- HCs. Moreover, by using in vivo mouse transgenic reporter assays, we identify three Rbm24 enhancers to which POU4F3 binds. Lastly, through in vivo genetic testing of whether Rbm24 restoration alleviates the degeneration of Pou4f3-/- HCs, we show that ectopic Rbm24 alone cannot prevent Pou4f3-/- HCs from degenerating. Collectively, our findings provide new molecular and genetic insights into how HC survival is regulated.
Collapse
Affiliation(s)
- Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunpeng Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
9
|
Wang Y, Zhang C, Peng W, Du H, Xi Y, Xu Z. RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing and mRNA stability. J Cell Physiol 2023; 238:1095-1110. [PMID: 36947695 DOI: 10.1002/jcp.31003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
As the sensory receptor cells in vertebrate inner ear and lateral lines, hair cells are characterized by the hair bundle that consists of one tubulin-based kinocilium and dozens of actin-based stereocilia on the apical surface of each hair cell. Hair cell development is tightly regulated, and deficits in this process usually lead to hearing loss and/or balance dysfunctions. RNA-binding motif protein 24 (RBM24) is an RNA-binding protein that is specifically expressed in the hair cells in the inner ear. Previously, we showed that RBM24 affects hair cell development in zebrafish by regulating messenger RNA (mRNA) stability. In the present work, we further investigate the role of RBM24 in hearing and balance using conditional knockout mice. Our results show that Rbm24 knockout results in severe hearing and balance deficits. Hair cell development is significantly affected in Rbm24 knockout cochlea, as the hair bundles are poorly developed and eventually degenerated. Hair bundle disorganization is also observed in Rbm24 knockout vestibular hair cells, although to a lesser extent. Consistently, significant hair cell loss is observed in the cochlea but not vestibule. RNAseq analysis identified several genes whose mRNA stability or pre-mRNA alternative splicing is affected by Rbm24 knockout. Among them are Cdh23, Pcdh15, and Myo7a, which have been shown to play important roles in stereocilia development as well as mechano-electrical transduction. Taken together, our present work suggests that RBM24 is required for mouse hair cell development through regulating pre-mRNA alternative splicing as well as mRNA stability.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Cuiqiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wu Peng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
10
|
Kim KS, Koo HY, Bok J. Alternative splicing in shaping the molecular landscape of the cochlea. Front Cell Dev Biol 2023; 11:1143428. [PMID: 36936679 PMCID: PMC10018040 DOI: 10.3389/fcell.2023.1143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
The cochlea is a complex organ comprising diverse cell types with highly specialized morphology and function. Until now, the molecular underpinnings of its specializations have mostly been studied from a transcriptional perspective, but accumulating evidence points to post-transcriptional regulation as a major source of molecular diversity. Alternative splicing is one of the most prevalent and well-characterized post-transcriptional regulatory mechanisms. Many molecules important for hearing, such as cadherin 23 or harmonin, undergo alternative splicing to produce functionally distinct isoforms. Some isoforms are expressed specifically in the cochlea, while some show differential expression across the various cochlear cell types and anatomical regions. Clinical phenotypes that arise from mutations affecting specific splice variants testify to the functional relevance of these isoforms. All these clues point to an essential role for alternative splicing in shaping the unique molecular landscape of the cochlea. Although the regulatory mechanisms controlling alternative splicing in the cochlea are poorly characterized, there are animal models with defective splicing regulators that demonstrate the importance of RNA-binding proteins in maintaining cochlear function and cell survival. Recent technological breakthroughs offer exciting prospects for overcoming some of the long-standing hurdles that have complicated the analysis of alternative splicing in the cochlea. Efforts toward this end will help clarify how the remarkable diversity of the cochlear transcriptome is both established and maintained.
Collapse
Affiliation(s)
- Kwan Soo Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jinwoong Bok,
| |
Collapse
|
11
|
Martin JL, Dawson SJ, Gale JE. An emerging role for stress granules in neurodegenerative disease and hearing loss. Hear Res 2022; 426:108634. [PMID: 36384053 DOI: 10.1016/j.heares.2022.108634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
Stress granules (SGs) are membrane-less cytosolic assemblies that form in response to stress (e.g., heat, oxidative stress, hypoxia, viral infection and UV). Composed of mRNA, RNA binding proteins and signalling proteins, SGs minimise stress-related damage and promote cell survival. Recent research has shown that the stress granule response is vital to the cochlea's response to stress. However, emerging evidence suggests stress granule dysfunction plays a key role in the pathophysiology of multiple neurodegenerative diseases, several of which present with hearing loss as a symptom. Hearing loss has been identified as the largest potentially modifiable risk factor for dementia. The underlying reason for the link between hearing loss and dementia remains to be established. However, several possible mechanisms have been proposed including a common pathological mechanism. Here we will review the role of SGs in the pathophysiology of neurodegenerative diseases and explore possible links and emerging evidence that they may play an important role in maintenance of hearing and may be a common mechanism underlying age-related hearing loss and dementia.
Collapse
Affiliation(s)
- Jack L Martin
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| |
Collapse
|
12
|
Liu J, Wang K, Liu X, Pan L, Zhou W, Huang J, Liu H, Su Z, Xu XQ. RBM24 controls cardiac QT interval through CaMKIIδ splicing. Cell Mol Life Sci 2022; 79:613. [PMID: 36454480 PMCID: PMC11802997 DOI: 10.1007/s00018-022-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
Calcium/calmodulin-dependent kinase II delta (CaMKIIδ) is the predominant cardiac isoform and it is alternatively spliced to generate multiple variants. Variable variants allow for distinct localization and potentially different functions in the heart. Dysregulation of CaMKIIδ splicing has been demonstrated to be involved in the pathogenesis of heart diseases, such as cardiac hypertrophy, arrhythmia, and diastolic dysfunction. However, the mechanisms that regulate CaMKIIδ are incompletely understood. Here, we show that RNA binding motif protein 24 (RBM24) is a key splicing regulator of CaMKIIδ. RBM24 ablation leads to the aberrant shift of CaMKIIδ towards the δ-C isoform, which is known to activate the L-type Ca current. In line with this, we found marked alteration in Ca2+ handling followed by prolongation of the ventricular cardiac action potential and QT interval in RBM24 knockout mice, and these changes could be attenuated by treatment with an inhibitor of CaMKIIδ. Importantly, knockdown of RBM24 in human embryonic stem cell-derived cardiomyocytes showed similar electrophysiological abnormalities, suggesting the important role of RBM24 in the human heart. Thus, our data suggest that RBM24 is a critical regulator of CaMKIIδ to control the cardiac QT interval, highlighting the key role of splicing regulation in cardiac rhythm.
Collapse
Affiliation(s)
- Jing Liu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Ke Wang
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Xingyang Liu
- School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Lei Pan
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Wanlu Zhou
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Jingru Huang
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
| | - Hongli Liu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China
| | - Zhiying Su
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China
| | - Xiu Qin Xu
- The Institute of Stem Cell and Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361100, Fujian, People's Republic of China.
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, People's Republic of China.
| |
Collapse
|
13
|
Emerging Roles of RNA-Binding Proteins in Inner Ear Hair Cell Development and Regeneration. Int J Mol Sci 2022; 23:ijms232012393. [PMID: 36293251 PMCID: PMC9604452 DOI: 10.3390/ijms232012393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level. They play major roles in the tissue- and stage-specific expression of protein isoforms as well as in the maintenance of protein homeostasis. The inner ear is a bi-functional organ, with the cochlea and the vestibular system required for hearing and for maintaining balance, respectively. It is relatively well documented that transcription factors and signaling pathways are critically involved in the formation of inner ear structures and in the development of hair cells. Accumulating evidence highlights emerging functions of RBPs in the post-transcriptional regulation of inner ear development and hair cell function. Importantly, mutations of splicing factors of the RBP family and defective alternative splicing, which result in inappropriate expression of protein isoforms, lead to deafness in both animal models and humans. Because RBPs are critical regulators of cell proliferation and differentiation, they present the potential to promote hair cell regeneration following noise- or ototoxin-induced damage through mitotic and non-mitotic mechanisms. Therefore, deciphering RBP-regulated events during inner ear development and hair cell regeneration can help define therapeutic strategies for treatment of hearing loss. In this review, we outline our evolving understanding of the implications of RBPs in hair cell formation and hearing disease with the aim of promoting future research in this field.
Collapse
|
14
|
Wang Y, Li W, Zhang C, Peng W, Xu Z. RBM24 is localized to stress granules in cells under various stress conditions. Biochem Biophys Res Commun 2022; 608:96-101. [PMID: 35395551 DOI: 10.1016/j.bbrc.2022.03.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/02/2022]
Abstract
Stress granules (SGs) are formed when untranslated messenger ribonucleoproteins (mRNPs) accumulate in cells under stress, and are thought to minimize stress-induced damage and promote cell survival. RBM24 (RNA-binding motif protein 24) is an RNA-binding protein that plays pivotal roles in regulating the stability or translation initiation of target mRNAs as well as alternative splicing of target pre-mRNAs. Its important physiological functions are highlighted by the fact that Rbm24 knockout mice or zebrafish suffer from dysfunction of heart, eye, and inner ear. Here we show that RBM24 is recruited into SGs under various stress conditions, suggesting that it might protect its target RNAs in cells under stress. However, SG formation is unaffected when Rbm24 expression is down-regulated. Nevertheless, RBM24 overexpression in cultured cells is sufficient to induce SG formation, suggesting that RBM24 might play an important role in SG formation. In conclusion, our present work reveals that RBM24 is a SG component, which implies that RBM24 could protect its target mRNAs in stressed cells.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Cuiqiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Wu Peng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China; Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
15
|
Xia RM, Liu T, Li WG, Xu XQ. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med 2021; 11:e383. [PMID: 34709758 PMCID: PMC8506628 DOI: 10.1002/ctm2.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RNA-binding motif protein 24 (RBM24) functions as a splicing regulator, which is critical for organ development and is dysregulated in human cancers. Here, we aim to uncover the biological function of RBM24 in colorectal tumourigenesis. METHODS Xenograft tumour model, Rbm24 knockout and Apcmin/+ mouse models were utilised. Colorectal cancer cells overexpressing or silencing RBM24 were established. RNA immunoprecipitation (RIP) assay was conducted to detect protein-RNA associations. Gene expression was measured by immunohistochemistry, western blotting, or quantitative PCR (qPCR). RESULTS Rbm24-knockout mice developed spontaneous colorectal adenomas with lower expression of phosphatase and tensin homolog (PTEN). Immunohistochemical staining for the proliferation markers Ki-67 and pHH3 and BrdU assay showed intestinal hyperplasia in Rbm24-knockout mice compared to wild-type mice. RBM24 expression in colorectal adenoma tissues of Apcmin/+ mouse was downregulated compared with adjacent normal samples and was positively correlated with PTEN expression. In vitro, RBM24 overexpression suppressed cell proliferation, migration, invasion and increased sensitivity to 5-FU or cisplatin in CRC cells. Mechanistically, RBM24 maintained PTEN mRNA stability by directly binding to the GT-rich region at positions 8101-8251 in the 3'-UTR of PTEN mRNA, prolonging the half-life of PTEN mRNA, thereby increasing PTEN expression. Hence, low expression of RBM24 downregulated PTEN mRNA, causing the activation of PI3K-Akt signalling in CRC cells. Furthermore, RBM24 expression in CRC tissues was lower than adjacent normal samples. RBM24 expression was positively correlated with PTEN expression and negatively correlated with Ki-67 level. CRC patients with high RBM24 expression had a favourable outcome. CONCLUSIONS Taken together, RBM24 expression is markedly lower in colorectal tumours than in para-carcinoma tissues. Rbm24-knockout mice develop spontaneous colorectal adenomas. RBM24 directly binds and stabilises PTEN mRNA, which could cause the suppression of CRC cell proliferation, migration and invasion, thereby repressing colorectal tumourigenesis. These findings support the tumour-suppressive role of RBM24. Targeting RBM24 holds strong promise for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Rong Mu Xia
- Institute of Stem Cell and Regenerative MedicineSchool of MedicineXiamen UniversityXiamenFujianPeople's Republic of China
| | - Tao Liu
- Department of Hepatobiliary SurgerySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamenFujianPeople's Republic of China
| | - Wen Gang Li
- Institute of Stem Cell and Regenerative MedicineSchool of MedicineXiamen UniversityXiamenFujianPeople's Republic of China
- Department of Hepatobiliary SurgerySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamenFujianPeople's Republic of China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative MedicineSchool of MedicineXiamen UniversityXiamenFujianPeople's Republic of China
| |
Collapse
|
16
|
Li N, Xi Y, Du H, Zhou H, Xu Z. Annexin A4 Is Dispensable for Hair Cell Development and Function. Front Cell Dev Biol 2021; 9:680155. [PMID: 34150775 PMCID: PMC8209329 DOI: 10.3389/fcell.2021.680155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
Annexin A4 (ANXA4) is a Ca2+-dependent phospholipid-binding protein that is specifically expressed in the cochlear and vestibular hair cells, but its function in the hair cells remains unknown. In the present study, we show that besides localizing on the plasma membrane, ANXA4 immunoreactivity is also localized at the tips of stereocilia in the hair cells. In order to investigate the role of ANXA4 in the hair cells, we established Anxa4 knockout mice using CRISPR/Cas9 technique. Unexpectedly, the development of both cochlear and vestibular hair cells is normal in Anxa4 knockout mice. Moreover, stereocilia morphology of Anxa4 knockout mice is normal, so is the mechano-electrical transduction (MET) function. Consistently, the auditory and vestibular functions are normal in the knockout mice. In conclusion, we show here that ANXA4 is dispensable for the development and function of hair cells, which might result from functional redundancy between ANXA4 and other annexin(s) in the hair cells.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hao Zhou
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|