1
|
Asada N, Ginsberg P, Paust HJ, Song N, Riedel JH, Turner JE, Peters A, Kaffke A, Engesser J, Wang H, Zhao Y, Khatri R, Gild P, Dahlem R, Diercks BP, Das S, Ignatova Z, Huber TB, Prinz I, Gagliani N, Mittrücker HW, Krebs CF, Panzer U. The integrated stress response pathway controls cytokine production in tissue-resident memory CD4 + T cells. Nat Immunol 2025; 26:557-566. [PMID: 40050432 PMCID: PMC11957990 DOI: 10.1038/s41590-025-02105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/04/2025] [Indexed: 03/12/2025]
Abstract
Tissue-resident memory T (TRM) cells are a specialized T cell population that reside in tissues and provide a rapid protective response upon activation. Here, we showed that human and mouse CD4+ TRM cells existed in a poised state and stored messenger RNAs encoding proinflammatory cytokines without protein production. At steady state, cytokine mRNA translation in TRM cells was suppressed by the integrated stress response (ISR) pathway. Upon activation, the central ISR regulator, eIF2α, was dephosphorylated and stored cytokine mRNA was translated for immediate cytokine production. Genetic or pharmacological activation of the ISR-eIF2α pathway reduced cytokine production and ameliorated autoimmune kidney disease in mice. Consistent with these results, the ISR pathway in CD4+ TRM cells was downregulated in patients with immune-mediated diseases of the kidney and the intestine compared to healthy controls. Our results indicated that stored cytokine mRNA and translational regulation in CD4+ TRM cells facilitate rapid cytokine production during local immune response.
Collapse
Affiliation(s)
- Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pauline Ginsberg
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Riedel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anett Peters
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Kaffke
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Engesser
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Huiying Wang
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Robin Khatri
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, Center for Biomedical AI, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Philipp Gild
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Pan CR, Knutson SD, Huth SW, MacMillan DWC. µMap proximity labeling in living cells reveals stress granule disassembly mechanisms. Nat Chem Biol 2025; 21:490-500. [PMID: 39215100 PMCID: PMC11868469 DOI: 10.1038/s41589-024-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Phase-separated condensates are membrane-less intracellular structures comprising dynamic protein interactions that organize essential biological processes. Understanding the composition and dynamics of these organelles advances our knowledge of cellular behaviors and disease pathologies related to granule dysregulation. In this study, we apply microenvironment mapping with a HaloTag-based platform (HaloMap) to characterize intracellular stress granule dynamics in living cells. After validating the robustness and sensitivity of this approach, we then profile the stress granule proteome throughout the formation and disassembly and under pharmacological perturbation. These experiments reveal several ubiquitin-related modulators, including the HECT (homologous to E6AP C terminus) E3 ligases ITCH and NEDD4L, as well as the ubiquitin receptor toll-interacting protein TOLLIP, as key mediators of granule disassembly. In addition, we identify an autophagy-related pathway that promotes granule clearance. Collectively, this work establishes a general photoproximity labeling approach for unraveling intracellular protein interactomes and uncovers previously unexplored regulatory mechanisms of stress granule dynamics.
Collapse
Affiliation(s)
- Chenmengxiao Roderick Pan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Gombás BG, Németh‐Szatmári O, Nagy‐Mikó B, Villányi Z. Role of Assemblysomes in Cellular Stress Responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70009. [PMID: 40110655 PMCID: PMC11923940 DOI: 10.1002/wrna.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Assemblysomes are recently discovered intracellular RNA-protein complexes that play important roles in cellular stress response, regulation of gene expression, and also in co-translational protein assembly. In this review, a wide spectrum overview of assemblysomes is provided, including their discovery, mechanism of action, characteristics, and potential applications in several fields. Assemblysomes are distinct liquid-liquid phase-separated condensates; they have certain unique properties differentiating them from other cellular granules. They are composed of ribosome-nascent protein chain complexes and are resistant to cycloheximide and EDTA. The discovery and observation of intracellular condensates, like assemblysomes, have further expanded our knowledge of cellular stress response mechanisms, particularly in DNA repair processes and defense against proteotoxicity. Ribosome profiling experiments and next-generation sequencing of cDNA libraries extracted from EDTA-resistant pellets-of ultracentrifuged cell lysates-have shed light on the composition and dynamics of assemblysomes, revealing their role as repositories for pre-made stress-responsive ribosome-nascent chain complexes. This review gives an exploration of assemblysomes' potential clinical applications from multiple aspects, including their usefulness as diagnostic biomarkers for chemotherapy resistance and their implications in cancer therapy. In addition, in this overview, we raise some theoretical ideas of industrial and agricultural applications connected to these membraneless organelles. However, we see several challenges. On one hand, we need to understand the complexity of assemblysomes' multiple functions and regulations; on the other hand, it is essential to bridge the gap between fundamental research and practical applications. Overall, assemblysome research can be perceived as a promising upcomer in the improvement of biomedical settings as well as those connected to agricultural and industrial aspects.
Collapse
Affiliation(s)
- Bence György Gombás
- Department of Biochemistry and Molecular BiologyUniversity of SzegedSzegedHungary
| | | | - Bence Nagy‐Mikó
- Department of Biochemistry and Molecular BiologyUniversity of SzegedSzegedHungary
| | - Zoltán Villányi
- Department of Biochemistry and Molecular BiologyUniversity of SzegedSzegedHungary
- Delta Bio 2000 LtdSzegedHungary
| |
Collapse
|
4
|
Kim J, Song CH. Stress Granules in Infectious Disease: Cellular Principles and Dynamic Roles in Immunity and Organelles. Int J Mol Sci 2024; 25:12950. [PMID: 39684660 DOI: 10.3390/ijms252312950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid-liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles in regulating gene expression to help cells adapt to stress conditions. Various mRNAs and proteins are aggregated into SGs, particularly those associated with the protein translation machinery, which are frequently found in SGs. When induced by infections, SGs modulate immune cell activity, supporting the cellular response against infection. The roles of SGs differ in viral versus microbial infections, and depending on the type of immune cell involved, SGs function differently in response to infection. In this review, we summarize our current understanding of the implication of SGs in immunity and cellular organelles in the context of infectious diseases. Importantly, we explore insights into the regulatory functions of SGs in the context of host cells under infection.
Collapse
Affiliation(s)
- Jaewhan Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
5
|
Lohmann J, Herzog O, Rosenzweig K, Weingartner M. Thermal adaptation in plants: understanding the dynamics of translation factors and condensates. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4258-4273. [PMID: 38630631 DOI: 10.1093/jxb/erae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Plants, as sessile organisms, face the crucial challenge of adjusting growth and development with ever-changing environmental conditions. Protein synthesis is the fundamental process that enables growth of all organisms. Since elevated temperature presents a substantial threat to protein stability and function, immediate adjustments of protein synthesis rates are necessary to circumvent accumulation of proteotoxic stress and to ensure survival. This review provides an overview of the mechanisms that control translation under high-temperature stress by the modification of components of the translation machinery in plants, and compares them to yeast and metazoa. Recent research also suggests an important role for cytoplasmic biomolecular condensates, named stress granules, in these processes. Current understanding of the role of stress granules in translational regulation and of the molecular processes associated with translation that might occur within stress granules is also discussed.
Collapse
Affiliation(s)
- Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Oliver Herzog
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Kristina Rosenzweig
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
6
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
7
|
Nguyen DTM, Koppers M, Farías GG. Endoplasmic reticulum - condensate interactions in protein synthesis and secretion. Curr Opin Cell Biol 2024; 88:102357. [PMID: 38626704 DOI: 10.1016/j.ceb.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024]
Abstract
In the past decade, a growing amount of evidence has demonstrated that organelles do not act autonomously and independently but rather communicate with each other to coordinate different processes for proper cellular function. With a highly extended network throughout the cell, the endoplasmic reticulum (ER) plays a central role in interorganelle communication through membrane contact sites. Here, we highlight recent evidence indicating that the ER also forms contacts with membrane-less organelles. These interactions contribute to the dynamic assembly and disassembly of condensates and controlled protein secretion. Additionally, emerging evidence suggests their involvement in mRNA localization and localized translation. We further explore exciting future directions of this emerging theme in the organelle contact site field.
Collapse
Affiliation(s)
- Dan T M Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Max Koppers
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Koizumi T, Fujimoto A, Kawaguchi H, Kurosaki T, Kitamura A. Stress Granule Dysfunction via Chromophore-Associated Light Inactivation. ACS OMEGA 2024; 9:21298-21306. [PMID: 38764671 PMCID: PMC11097178 DOI: 10.1021/acsomega.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Stress granules (SGs) are cytoplasmic condensates composed of various proteins and RNAs that protect translation-associated machinery from harmful conditions during stress. However, the method of spatiotemporal inactivation of condensates such as SGs in live cells to study cellular phenotypes is still in the process of being demonstrated. Here, we show that the inactivation of SGs by chromophore-associated light inactivation (CALI) using a genetically encoded red fluorescence protein (SuperNova-Red) as a photosensitizer leads to differences in cell viability during recovery from hyperosmotic stress. CALI delayed the disassembly kinetics of SGs during recovery from hyperosmotic stress. Consequently, CALI could inactivate the SGs, and the cellular fate due to SGs could be analyzed. Furthermore, CALI is an effective spatiotemporal knockdown method for intracellular condensates/aggregates and would contribute to the elucidation of importance of such condensates/aggregates.
Collapse
Affiliation(s)
- Takumi Koizumi
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Ai Fujimoto
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Haruka Kawaguchi
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tsumugi Kurosaki
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Akira Kitamura
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- PRIME, Japan
Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-004, Japan
| |
Collapse
|
9
|
Kearly A, Nelson ADL, Skirycz A, Chodasiewicz M. Composition and function of stress granules and P-bodies in plants. Semin Cell Dev Biol 2024; 156:167-175. [PMID: 36464613 DOI: 10.1016/j.semcdb.2022.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Stress Granules (SGs) and Processing-bodies (P-bodies) are biomolecular condensates formed in the cell with the highly conserved purpose of maintaining balance between storage, translation, and degradation of mRNA. This balance is particularly important when cells are exposed to different environmental conditions and adjustments have to be made in order for plants to respond to and tolerate stressful conditions. While P-bodies are constitutively present in the cell, SG formation is a stress-induced event. Typically thought of as protein-RNA aggregates, SGs and P-bodies are formed by a process called liquid-liquid phase separation (LLPS), and both their function and composition are very dynamic. Both foci are known to contain proteins involved in translation, protein folding, and ATPase activity, alluding to their roles in regulating mRNA and protein expression levels. From an RNA perspective, SGs and P-bodies primarily consist of mRNAs, though long non-coding RNAs (lncRNAs) have also been observed, and more focus is now being placed on the specific RNAs associated with these aggregates. Recently, metabolites such as nucleotides and amino acids have been reported in purified plant SGs with implications for the energetic dynamics of these condensates. Thus, even though the field of plant SGs and P-bodies is relatively nascent, significant progress has been made in understanding their composition and biological role in stress responses. In this review, we discuss the most recent discoveries centered around SG and P-body function and composition in plants.
Collapse
Affiliation(s)
- Alyssa Kearly
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | | | | | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
10
|
Ren Z, Tang W, Peng L, Zou P. Profiling stress-triggered RNA condensation with photocatalytic proximity labeling. Nat Commun 2023; 14:7390. [PMID: 37968266 PMCID: PMC10651888 DOI: 10.1038/s41467-023-43194-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Stress granules (SGs) are highly dynamic cytoplasmic membrane-less organelles that assemble when cells are challenged by stress. RNA molecules are sorted into SGs where they play important roles in maintaining the structural stability of SGs and regulating gene expression. Herein, we apply a proximity-dependent RNA labeling method, CAP-seq, to comprehensively investigate the content of SG-proximal transcriptome in live mammalian cells. CAP-seq captures 457 and 822 RNAs in arsenite- and sorbitol-induced SGs in HEK293T cells, respectively, revealing that SG enrichment is positively correlated with RNA length and AU content, but negatively correlated with translation efficiency. The high spatial specificity of CAP-seq dataset is validated by single-molecule FISH imaging. We further apply CAP-seq to map dynamic changes in SG-proximal transcriptome along the time course of granule assembly and disassembly processes. Our data portray a model of AU-rich and translationally repressed SG nanostructure that are memorized long after the removal of stress.
Collapse
Affiliation(s)
- Ziqi Ren
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Luxin Peng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China.
| |
Collapse
|
11
|
Yang W, Zhang M, Li J, Qu S, Zhou F, Liu M, Li L, Liu Z, Zen K. YTHDF1 mitigates acute kidney injury via safeguarding m 6A-methylated mRNAs in stress granules of renal tubules. Redox Biol 2023; 67:102921. [PMID: 37857002 PMCID: PMC10587769 DOI: 10.1016/j.redox.2023.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Acute kidney injury (AKI) presents a daunting challenge with limited therapeutic options. To explore the contribution of N6-methyladenosine (m6A) in AKI development, we have investigated m6A-modified mRNAs within renal tubular cells subjected to injuries induced by diverse stressors. Notably, while the overall level of m6A-modified RNA remains unaltered in renal tubular cells facing stress, a distinct phenomenon emerges-mRNAs bearing m6A methylation exhibit a pronounced tendency to accumulate within stress granules (SGs), structures induced in response to these challenges. Cumulation of m6A-modified mRNA in SGs is orchestrated by YTHDF1, a m6A 'reader' closely associated with SGs. Strikingly, AKI patients and various mouse AKI models showcase elevated levels of renal tubular YTHDF1. Depleting YTHDF1 within renal tubular cells leads to a marked reduction in m6A-modified mRNA accumulation within SGs, accompanied by an escalation in cell apoptosis under stress challenges. The significance of YTHDF1's protective role is further underscored by findings in AKI mouse models triggered by cisplatin or renal ischemia-reperfusion treatments. In particular, renal tubular-specific YTHDF1 knockout mice exhibit heightened AKI severity when contrasted with their wild-type counterparts. Mechanistic insights reveal that YTHDF1 fulfills a crucial function by safeguarding m6A-modified mRNAs that favor cell survival-exemplified by SHPK1-within SGs amid stress-challenged renal tubular cells. Our findings collectively shed light on the pivotal role of YTHDF1 in shielding renal tubules against AKI, through its adeptness in recruiting and preserving m6A-modified mRNAs within stress-induced SGs.
Collapse
Affiliation(s)
- Wenwen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Jiacheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Shuang Qu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fenglian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China
| | - Minghui Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Limin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China.
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu, 210046, China.
| |
Collapse
|
12
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
13
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|