1
|
Warrier AV, Vg M, R L N, Krishnan N, Kumari P, Ittycheria SS, Srinivas P. Xenoestrogen and Its Interaction with Human Genes and Cellular Proteins: An In-Silico Study. Asian Pac J Cancer Prev 2024; 25:2077-2087. [PMID: 38918670 PMCID: PMC11382847 DOI: 10.31557/apjcp.2024.25.6.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Breast cancer represents one of the leading causes of death worldwide. Apart from genetic factors, the sex hormone estrogen plays a pivotal role in breast cancer development. We are exposed to a plethora of estrogen mimics on a daily basis via various routes. Nevertheless, how xenoestrogens, the exogenous estrogen mimics, modulate cancer-associated signaling pathways and interact with specific genes is still underexplored. Hence, this study aims to explore the direct or indirect binding partners of xenoestrogens and their expression upon exposure to these estrogenic compounds. METHODS The collection of genes linked to the xenoestrogens Octylphenol, Nonylphenol, Bisphenol-A, and 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane were gathered from the Comparative Toxicogenomics Database. Venny 2.1 was utilized to pinpoint the genes shared by these xenoestrogens. Subsequently, the shared genes underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using the Database for Annotation, Visualization, and Integrated Discovery bioinformatics resource. A xenoestrogen-protein interaction network was constructed using Search Tool for Interactions of Chemicals. The expressions of common genes were studied with the microarray dataset GSE5200 from the Gene Expression Omnibus database. Also, the expression of a common gene set within different breast cancer subtypes was identified using the University of California, Santa Cruz Xena. RESULTS The genes linked to xenoestrogens were identified, and 13 genes were found to interact with all four xenoestrogens. Through DAVID analysis, the genes chosen are found to be enriched for various functions and pathways, including pathways in cancer, chemical carcinogenesis-receptor activation, and estrogen signaling pathways. The results of the Comparative Toxicogenomics Database and the chemical-protein interaction network derived from STITCH were similar. Microarray data analysis showed significantly high expression of all 13 genes in another study, with Bisphenol-A and Nonylphenol treated MCF-7 cells, most of the genes are expressed in luminal A or basal breast cancer subtype. CONCLUSION In summary, the genes associated with the four xenoestrogens were mostly linked to pathways related to tumorigenesis, and the expression of these genes was found to be higher in breast cancer.
Collapse
Affiliation(s)
- Arathy V Warrier
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Manasa Vg
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neetha R L
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neethu Krishnan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Prianka Kumari
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shreya Sara Ittycheria
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Jiang M, Chattopadhyay AN, Geng Y, Rotello VM. An array-based nanosensor for detecting cellular responses in macrophages induced by femtomolar levels of pesticides. Chem Commun (Camb) 2022; 58:2890-2893. [PMID: 35141736 PMCID: PMC10587896 DOI: 10.1039/d1cc07100a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Environmental agents can induce cellular responses at concentrations far below the limits of detection for current viability and biomarker-based cell sensing platforms. Hypothesis-free cell sensor platforms can be engineered to maximize sensitivity to phenotypic changes, providing a tool for lowering the threshold for detecting cellular changes. Pesticides are one of the most prevalent sources of chemical exposure due to their use in food and agriculture fields. We report here a FRET-based nanosensor array engineered to maximize responses to changes at cell surfaces after pesticide exposure. This sensor array robustly detected macrophage responses to femtomolar concentrations of common pesticides-orders of magnitude lower concentrations than traditional toxicological and biomarker-based strategies. Significantly, this platform was able to classify these responses by pesticide class, demonstrating the ability to distinguish between changes induced by these different agents. Taken together, hypothesis-free cell surface sensing is a promising tool for detecting the effects of ultra-trace environmental chemicals on human health, as well as detecting threshold responses for use in drug discovery and diagnostics.
Collapse
Affiliation(s)
- Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Avellaneda E, Lim A, Moeller S, Marquez J, Escalante Cobb P, Zambrano C, Patel A, Sanchez V, Godde K, Broussard C. HPTE-Induced Embryonic Thymocyte Death and Alteration of Differentiation Is Not Rescued by ERα or GPER Inhibition but Is Exacerbated by Concurrent TCR Signaling. Int J Mol Sci 2021; 22:ijms221810138. [PMID: 34576301 PMCID: PMC8471014 DOI: 10.3390/ijms221810138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Organochlorine pesticides, such as DDT, methoxychlor, and their metabolites, have been characterized as endocrine disrupting chemicals (EDCs); suggesting that their modes of action involve interaction with or abrogation of endogenous endocrine function. This study examined whether embryonic thymocyte death and alteration of differentiation induced by the primary metabolite of methoxychlor, HPTE, rely upon estrogen receptor binding and concurrent T cell receptor signaling. Estrogen receptor inhibition of ERα or GPER did not rescue embryonic thymocyte death induced by HPTE or the model estrogen diethylstilbestrol (DES). Moreover, adverse effects induced by HPTE or DES were worsened by concurrent TCR and CD2 differentiation signaling, compared with EDC exposure post-signaling. Together, these data suggest that HPTE- and DES-induced adverse effects on embryonic thymocytes do not rely solely on ER alpha or GPER but may require both. These results also provide evidence of a potential collaborative signaling mechanism between TCR and estrogen receptors to mediate adverse effects on embryonic thymocytes, as well as highlight a window of sensitivity that modulates EDC exposure severity.
Collapse
Affiliation(s)
- Eddie Avellaneda
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Atalie Lim
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Sara Moeller
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Jacqueline Marquez
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Priscilla Escalante Cobb
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Cristina Zambrano
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Aaditya Patel
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - Victoria Sanchez
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
| | - K. Godde
- Department of Sociology/Anthropology, University of La Verne, La Verne, CA 91750, USA;
| | - Christine Broussard
- Department of Biology, University of La Verne, La Verne, CA 91750, USA; (E.A.); (A.L.); (S.M.); (J.M.); (P.E.C.); (A.P.); (V.S.)
- Correspondence:
| |
Collapse
|
4
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. NF-κB-An Important Player in Xenoestrogen Signaling in Immune Cells. Cells 2021; 10:1799. [PMID: 34359968 PMCID: PMC8304139 DOI: 10.3390/cells10071799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the immune system is critical for an effective defense against pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism are strictly regulated by an intracellular network of signaling pathways. In the case of immune cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways may be crucial for the proper development of the immune system. In this review, we summarize the effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role of these aspects of signaling in the development and further functioning of the immune system in this paper.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (E.J.); (W.R.-W.)
| | | | | |
Collapse
|
5
|
Yuan X, Pan Z, Jin C, Ni Y, Fu Z, Jin Y. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. CHEMOSPHERE 2019; 227:425-434. [PMID: 31003127 DOI: 10.1016/j.chemosphere.2019.04.088] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Pesticide pollution residues have become increasingly common health hazards over the last several decades because of the wide use of pesticides. The gastrointestinal tract is the first physical and biological barrier to contaminated food and is therefore the first exposure site. Interestingly, a number of studies have shown that the gut microbiota plays a key role in the toxicity of pesticides and has a profound relationship with environmental animal and human health. For instance, intake of the pesticide of chlorpyrifos can promote obesity and insulin resistance through influencing gut and gut microbiota of mice. In this review, we discussed the possible effects of different kinds of widely used pesticides on the gut microbiota in different experimental models and analyzed their possible subsequent effects on the health of the host. More and more studies indicated that the gut microbiota of animals played a very important role in pesticides-induced toxicity, suggesting that gut micriobita was also the unintended recipient of pesticides. We hope that more attention can focus on the relationship between pesticides, gut microbiota and environmental health risk assessment in near future.
Collapse
Affiliation(s)
- Xianling Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
6
|
Paiola M, Moreira C, Duflot A, Knigge T, Monsinjon T. Oestrogen differentially modulates lymphoid and myeloid cells of the European sea bass in vitro by specifically regulating their redox biology. FISH & SHELLFISH IMMUNOLOGY 2019; 86:713-723. [PMID: 30513382 DOI: 10.1016/j.fsi.2018.11.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 05/02/2023]
Abstract
Besides their obvious role in sex determination and reproduction, oestrogens display a prominent and complex immunomodulatory role across all vertebrates. To date, our knowledge on the oestrogenic immunomodulation in non-mammalian species is, however, scarce. In both teleosts and mammals, the direct immunomodulatory function of oestrogen is underscored by the presence of multiple oestrogen receptor subtypes in the various immune cells. For a better understanding of the regulatory processes, we investigated the oestrogen receptor expression in two major lymphoid organs of European sea bass: the head-kidney and the spleen. All oestrogen receptor subtypes, including nuclear and membrane oestrogen receptors, were present in both immune organs as well as in the isolated leucocytes. The same findings have been previously made for the thymus. To determine the oestrogen responsiveness of the different immune cell populations and to evaluate the importance of non-genomic and genomic pathways, we assessed the kinetics and the concentration dependent effects of 17β-oestradiol on isolated leucocytes from the head-kidney, the spleen and the thymus in vitro. Given the importance of reactive oxygen species as signalling and defence components in mammalian immune cells, the oxidative burst capacity, the redox status and the viability of both lymphoid and myeloid cells were measured by flow cytometry. The treatment with 17β-oestradiol specifically modulated these parameters depending on (1) the time kinetic, (2) the concentration of 17β-oestradiol, (3) the immune cell population (lymphoid and myeloid cells) as well as (4) the lymphoid organs from which they originated. The observed in vitro oestrogenic effects as well the presence of various oestrogen receptor subtypes in the immune cells of sea bass suggest a complex and direct oestrogenic action via multiple interconnected oestrogen-signalling pathways. Additionally, our study suggests that the oestrogenic regulation of the sea bass immune function involves a direct and tissue specific modulation of the immune cell redox biology comprising redox signalling, NADPH-oxidase activity and H2O2-permeability, thus changing oxidative burst capacity and immature T cell fate because oestrogen impacted thymocyte viability. Importantly, immune cells from both primary and secondary lymphoid organs have shown specific in vitro oestrogen-responsiveness. As established in mammals, oestrogen is likely to be specifically and directly involved in immature T cell differentiation and mature immunocompetent cell function in sea bass too.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France.
| |
Collapse
|