1
|
Mersal EA, Morsi AA, Alkahtani J, Alhalal R, Alessa S, Shehab A, Sakr EM, Sabir DK, Dawood AF, Abdelmoneim AM. Pirfenidone targeted mechanisms for alleviating methotrexate-induced testiculopathy in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2003-2014. [PMID: 39222241 DOI: 10.1007/s00210-024-03407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Testicular injury and affected spermatogenesis are major complications of methotrexate (MTX) use. Oxidative stress is one contributing process leading to inflammation and apoptosis induction. Pirfenidone (PFD) is a well-known anti-fibrotic drug prescribed for interstitial lung fibrosis, in addition to anti-inflammatory, antioxidative, and antiapoptotic capabilities. The study aimed to explore the potential protection afforded by PFD in a rat model of MTX-induced testiculopathy. The experimental design included four groups, each containing seven adult Wistar rats: control, PFD (500 mg/kg/day, orally)-, MTX (0.5 mg/kg, intraperitoneal, twice weekly)-, and PFD/MTX-treated groups. Treatment continued for 4 weeks. Blood and testicular samples were harvested for biochemical, histological, immunohistochemical, and polymerase chain reaction (PCR) analyses. Also, the testicular damage and spermatogenic activity were graded by the testicular injury and Johnsen scoring system, respectively. PFD positively affected the serum testosterone (TST) level, reduced the testicular inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β)], reduced the testicular oxidative burden, increased superoxide dismutase (SOD), and protected the testicular histological structure. In addition, antifibrotic effects, anti-caspase-3, and PCNA enhancement activity were recorded. PFD exhibited a protective potential and mitigated the MTX-induced testiculopathy via suppression of testicular oxidative stress, inflammation, fibrosis, and apoptosis and retaining the testicular proliferative efficacy as confirmed by histological, immunohistochemical, and biochemical methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed M Abdelmoneim
- Department of Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
2
|
Ciapała K, Pawlik K, Ciechanowska A, Makuch W, Mika J. Astaxanthin has a beneficial influence on pain-related symptoms and opioid-induced hyperalgesia in mice with diabetic neuropathy-evidence from behavioral studies. Pharmacol Rep 2024; 76:1346-1362. [PMID: 39528765 PMCID: PMC11582234 DOI: 10.1007/s43440-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The treatment of painful diabetic neuropathy is still a clinical problem. The aim of this study was to determine whether astaxanthin, a substance that inhibits mitogen-activated protein kinases, activates nuclear factor erythroid 2-related factor 2 and influences N-methyl-D-aspartate receptor, affects nociceptive transmission in mice with diabetic neuropathy. METHODS The studies were performed on streptozotocin-induced mouse diabetic neuropathic pain model. Single intrathecal and intraperitoneal administrations of astaxanthin at various doses were conducted in both males and females. Additionally, repeated twice-daily treatment with astaxanthin (25 mg/kg) and morphine (30 mg/kg) were performed. Hypersensitivity was evaluated with von Frey and cold plate tests. RESULTS This behavioral study provides the first evidence that in a mouse model of diabetic neuropathy, single injections of astaxanthin similarly reduce tactile and thermal hypersensitivity in both male and female mice, regardless of the route of administration. Moreover, repeated administration of astaxanthin slightly delays the development of morphine tolerance and significantly suppresses the occurrence of opioid-induced hyperalgesia, although it does not affect blood glucose levels, body weight, or motor coordination. Surprisingly, astaxanthin administered repeatedly produces a better analgesic effect when administered alone than in combination with morphine, and its potency becomes even more pronounced over time. CONCLUSIONS These behavioral results provide a basis for further evaluation of the potential use of astaxanthin in the clinical treatment of diabetic neuropathy and suggest that the multidirectional action of this substance may have positive effects on relieving neuropathic pain in diabetes.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
3
|
Lorestani F, Movahedian A, Mohammadalipour A, Hashemnia M, Aarabi MH. Astaxanthin prevents nephrotoxicity through Nrf2/HO-1 pathway. Can J Physiol Pharmacol 2024; 102:128-136. [PMID: 37683291 DOI: 10.1139/cjpp-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Renal toxicity is one of the side effects of methotrexate (MTX). Therefore, this study explored the use of astaxanthin (AST), as a natural carotenoid, against MTX-induced nephrotoxicity emphasizing the changes in oxidative stress and the expression of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1). During the 10 days of the experiment, male Wistar rats in different groups received MTX (10 mg/kg) on days 6, 8, and 10 and three doses of AST (25, 50, and 75 mg/kg) during the entire course. Renal failure caused by MTX was observed in significant histopathological changes and a significant increase in serum levels of creatinine, urea, and uric acid (p < 0.05). Oxidative change induced by MTX injection was also observed by remarkably increasing the tissue level of malondialdehyde (MDA) and decreasing the activity of superoxide dismutase (SOD) and catalase (p < 0.001). AST decreases the adverse effects of MTX by upregulating the expression of Nrf2/HO-1 genes (p < 0.01) and decreasing the tissue level of MDA (p < 0.01). Also, AST significantly reduced the amount of creatinine, urea, and uric acid in the serum and improved the activity of SOD and catalase in the kidney tissue (p < 0.05). Thus, AST may protect the kidney against oxidative stress caused by MTX.
Collapse
Affiliation(s)
- Faezeh Lorestani
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hossein Aarabi
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Gholami M, Nemati A, Zarasvand AA, Zendehdel A, Jalili C, Rashidi I, Mansouri K, Taheri F, Assadollahi V, Gholami E. Selenium mitigates methotrexate-induced testicular injury: Insights from male NMRI mice model. Birth Defects Res 2024; 116:e2315. [PMID: 38348645 DOI: 10.1002/bdr2.2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND AIM Chemotherapy, particularly with methotrexate (MTX), often elicits testicular toxicity, leading to impaired spermatogenesis and hormone imbalances. This study aimed to investigate the potential protective effects of selenium (Se) against MTX-induced testicular injury. MATERIALS AND METHODS Male mice were divided into control, MTX, Se, and MTX + Se groups. Histopathological examination involved the preparation of testicular tissue sections using the Johnsen's tubular biopsy score (JTBS) for spermatogenesis evaluation. Biochemical tests included the assessment of testosterone, malondialdehyde (MDA), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to analyze the expression of caspase 3 (casp3), tumor protein 53 (p53), B-cell lymphoma 2 (Bcl2), and Bcl2-associated X protein (Bax) genes. Statistical analysis was performed using ANOVA and Tukey's tests (p < .05). RESULTS Histopathological analysis revealed significant testicular damage in the MTX group, with decreased spermatogenesis and Leydig cell count, while Se administration mitigated these effects, preserving the structural integrity of the reproductive epithelium. Biochemical analysis demonstrated that MTX led to elevated malondialdehyde (MDA) levels and reduced testosterone, LH, and FSH levels, suggesting oxidative stress and Leydig cell dysfunction. Gene expression analysis indicated that MTX upregulated proapoptotic genes (casp3, p53, and bax) while downregulating the antiapoptotic Bcl2 gene. In contrast, Se treatment reversed these trends, highlighting its potential antiapoptotic properties. CONCLUSION Our findings underscore the potential of Se as a therapeutic agent to mitigate the reproductive toxicity associated with MTX-induced testicular injury. Se exerts protective effects by regulating oxidative stress, preserving hormone balance, and modulating apoptotic pathways. These results suggest that Se supplementation could be a promising strategy to alleviate chemotherapy-induced testicular damage and preserve male fertility.
Collapse
Affiliation(s)
- Mohammadreza Gholami
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afsaneh Nemati
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Alasvand Zarasvand
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Abolfazl Zendehdel
- Department of Internal Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Cyrus Jalili
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Iraj Rashidi
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Forough Taheri
- Department of Physiology, School of medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Gholami
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Azadian R, Mohammadalipour A, Memarzadeh MR, Hashemnia M, Aarabi MH. Examining hepatoprotective effects of astaxanthin against methotrexate-induced hepatotoxicity in rats through modulation of Nrf2/HO-1 pathway genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:371-380. [PMID: 37450013 DOI: 10.1007/s00210-023-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Methotrexate (MTX), as a folic acid antagonist, is an effective drug in treating a wide range of malignancies and autoimmune diseases. However, the clinical use of MTX has been limited due to its side effects, the most common of which is hepatotoxicity. In this study, rats were randomly divided into six groups: three treatment groups received methotrexate and different doses of astaxanthin (AX) for 14 days. At the end of the study, blood samples were collected to determine serum levels of ALT, AST, ALP, and LDH. Also, liver tissues were isolated to evaluate antioxidant enzymes and markers of oxidative stress, histopathological damage, and expression of NF-E2-related transcription factor (Nrf2) and Heme oxygenase-1 (HO-1) genes. The results showed that administration of MTX significantly increased the levels of ALT, AST, ALP, and LDH in the blood, markers of oxidative stress, and histopathological damage in liver tissue and significantly reduced the levels of antioxidant enzymes and the expression of Nrf2 and HO-1 genes. On the other hand, treatment with AX decreased blood levels of ALT, AST, ALP, and LDH and oxidative stress markers and remarkably raises the activity of antioxidant enzymes and expression of Nrf2 and HO-1 genes in liver tissue. In addition, histopathological lesions were improved with AX administration. The findings of this study indicated that AX may be useful for the prevention of MTX-induced hepatotoxicity by improving oxidative and inflammatory changes.
Collapse
Affiliation(s)
- Razieh Azadian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Zhao LL, Jayeoye TJ, Ashaolu TJ, Olatunji OJ. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats. Tissue Cell 2023; 85:102254. [PMID: 37866152 DOI: 10.1016/j.tice.2023.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
This study investigated the protective activities of pinostrobin (PIN) against methotrexate (MTX)-induced ovarian toxicity. Female rats were administered with PIN (50 mg/kg) for 4 weeks, while MTX was administered from weeks 2-4 of PIN treatment. Serum hormonal profiles, ovarian oxidative stress, inflammatory and apoptotic biomarkers as well as ovarian histomorphometry were evaluated. MTX administration elicited profound deficit in serum progesterone and estrogen (E2) levels, while luteinizing hormone (LH) and follicle stimulating hormone (FSH) were significantly increased. Additionally, MTX administration was associated with significant increases in ovarian malondialdehyde, nitric oxide, NF-кB, TNF-α, IL-6, IL-1β, iNOS and caspase-3 activity, as well as notable reduction in the activities of glutathione peroxidase, catalase and superoxide dismutase as well as the level of glutathione. Whereas, treatment with PIN significantly decreased serum levels of FSH and LH, as well as ovarian levels of NO, MDA, caspase 3, NF-κB, IL-1β, IL-6, TNF-α and iNOS. PIN also significantly upregulated GSH, GPx, CAT and SOD in the ovarian tissues as well as increased serum E2 and progesterone levels compared to the MTX group. Furthermore, PIN significantly restored altered ovarian histoarchitecture in the treated group. These findings suggests that PIN exerts protective effects against MTX-triggered ovarian damages.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
7
|
Ciapała K, Rojewska E, Pawlik K, Ciechanowska A, Mika J. Analgesic Effects of Fisetin, Peimine, Astaxanthin, Artemisinin, Bardoxolone Methyl and 740 Y-P and Their Influence on Opioid Analgesia in a Mouse Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24109000. [PMID: 37240346 DOI: 10.3390/ijms24109000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Treatment of neuropathic pain remains a challenge for modern medicine due to the insufficiently understood molecular mechanisms of its development and maintenance. One of the most important cascades that modulate the nociceptive response is the family of mitogen-activated protein (MAP) kinases and phosphatidylinositol-3-kinase (PI3K), as well as nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this study was to determine the effect of nonselective modulators of MAP kinases-fisetin (ERK1/2 and NFκB inhibitor, PI3K activator), peimine (MAPK inhibitor), astaxanthin (MAPK inhibitor, Nrf2 activator) and artemisinin (MAPK inhibitor, NFκB activator), as well as bardoxolone methyl (selective activator of Nrf2) and 740 Y-P (selective activator of PI3K)-in mice with peripheral neuropathy and to compare their antinociceptive potency and examine their effect on analgesia induced by opioids. The study was performed using albino Swiss male mice that were exposed to chronic constriction injury of the sciatic nerve (CCI model). Tactile and thermal hypersensitivity was measured using von Frey and cold plate tests, respectively. Single doses of substances were administered intrathecally on day 7 after CCI. Among the tested substances, fisetin, peimine, and astaxanthin effectively diminished tactile and thermal hypersensitivity in mice after CCI, while artemisinin did not exhibit analgesic potency in this model of neuropathic pain. Additionally, both of the activators tested, bardoxolone methyl and 740 Y-P, also showed analgesic effects after intrathecal administration in mice exposed to CCI. In the case of astaxanthin and bardoxolone methyl, an increase in analgesia after combined administration with morphine, buprenorphine, and/or oxycodone was observed. Fisetin and peimine induced a similar effect on tactile hypersensitivity, where analgesia was enhanced after administration of morphine or oxycodone. In the case of 740 Y-P, the effects of combined administration with each opioid were observed only in the case of thermal hypersensitivity. The results of our research clearly indicate that substances that inhibit all three MAPKs provide pain relief and improve opioid effectiveness, especially if they additionally block NF-κB, such as peimine, inhibit NF-κB and activate PI3K, such as fisetin, or activate Nrf2, such as astaxanthin. In light of our research, Nrf2 activation appears to be particularly beneficial. The abovementioned substances bring promising results, and further research on them will broaden our knowledge regarding the mechanisms of neuropathy and perhaps contribute to the development of more effective therapy in the future.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| |
Collapse
|
8
|
The Role of Dietary Nutrients in Male Infertility: A Review. Life (Basel) 2023; 13:life13020519. [PMID: 36836876 PMCID: PMC9960932 DOI: 10.3390/life13020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Male infertility is the main health issue with economic, psychological, and medical attributions. Moreover, it is characterized by an inability to produce a sufficient amount of sperm for the fertilization of an oocyte. Dietary nutrients (DN) have a great effect on male reproductive potential. Observations have indicated that adding DN may protect or treat male infertility. The scope of this criticism is to scrutinize the DN, such as omega-3 fatty acids, vitamins, minerals and other phytochemicals, in enhancing the semen attributes, sperm bioenergetics and sperm functionality in male infertility. It seems that diets rich in omega-3 fatty acids affect sperm quality and maintain the sperm membrane and mitochondria stability. An administration of phytochemicals caused an escalation in sperm mitochondrial function and a decrease in oxidative damage. Furthermore, sundry dietary natural phytochemicals differentially affect (negatively or positively) sperm motility, semen quality, and mitochondrial function, dependent on their levels. Vitamins and trace elements are also nutritional modulators in reducing oxidative stress, thereby enhancing sperm quality, which is accurately connected with sperm mitochondrial function. Also, we described the different types of DN as mitochondrial enhancer for sperm functionality and health. We believe that understanding the DN supports sperm mitochondria and epigenetic modulators that may be responsible for sperm quality and health, and will lead to more embattled and efficient therapeutics for male infertility.
Collapse
|
9
|
Abstract
The aim of the present study was to evaluate the protective effect of gallic acid (GA) against cisplatin (CDDP)-induced ovarian toxicity, for the first time. The ovarian damage was generated with CDDP (5 mg/kg) intraperitoneally (i.p.) administration in rats. GA (2.5 and 5 mg/kg) were administered i.p. for 3 consecutive days. The study was carried out in 5 main groups containing 6 rats in each group: control, GA (5 mg/kg), CDDP, CDDP + GA (2.5 mg/kg) and CDDP + GA (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), catalase (CAT), 8-hydroxy-2'-deoxyguanosine (8-OHdG), caspase-3 and tumor necrosis factor-alpha (TNF-α) were determined. Hematoxylin and eosin staining method was employed for the histopathological examination. In the CDDP group, it is determined that statistically significant decreasing in the levels of TAS and CAT, and increasing in the levels of MDA, TOS, OSI, 8-OHdG, caspase-3 and TNF-α (p < 0.05) compared with control group. GA administrations statistically significantly restored this damage (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration and leukocyte infiltration were significantly higher in the CDDP group than in the control group, GA administrations statistically significantly restored these damages (p < 0.05). In conclusion, this study showed that GA prevented CDDP-induced ovarian damage with its antioxidant, anti-apoptotic and anti-inflammatory activities. More comprehensive studies are needed to see the underlying mechanisms.
Collapse
|
10
|
Motawee ME, Damanhory AA, Sakr H, Khalifa MM, Atia T, Elfiky MM, Maher M, Sakr HI. An electron microscopic and biochemical study of the potential protective effect of ginger against Cadmium-induced testicular pathology in rats. Front Physiol 2022; 13:996020. [PMID: 36262262 PMCID: PMC9574188 DOI: 10.3389/fphys.2022.996020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Cadmium (Cd) is a toxic heavy metal used in many industries. Since the second half of the 20th century, legislation on Cd use was put to limit the exponential rise in its environmental levels. This study aimed to investigate Cd's functional and ultrastructural changes on rats' reproductive systems and the role of Zingiber officinale (Ginger) in protecting against Cd-induced toxicity. Methods: Thirty adult male albino rats were randomly assigned into three equal groups (n = 10); control, Cd-exposed/untreated, and Cd-exposed/Gin-treated. Rat testes were weighed, and testicular tissue sections were examined under the electron microscope. Semen analysis, morphological examination of spermatozoa, and serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone were measured. In addition, testicular tissue homogenates were analyzed for malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) levels. Results: Cd-induced significant reduction in the mean testicular weight and GSH levels and plasma testosterone, LH and FSH levels with a concomitant increase in testicular MDA and NO levels. There was also a deterioration in semen analysis parameters and spermatozoa morphology, with testicular structural damage in the form of architecture distortion and necrosis of seminiferous tubules and testicular interstitial cells. Daily administration of ginger for 4 weeks protected against CD-induced toxicity, preserving tissue architecture, improved plasma levels of testosterone, LH and FSH and testicular levels of GSH, and reduced testicular levels of MDA, NO. Conclusion: Ginger has a protective effect on Cd-induced deterioration of testicular tissue's structural and functional integrity by improving testicular tissue antioxidant capacity and steroid production, which ameliorates sex hormone levels in the blood.
Collapse
Affiliation(s)
- Moustafa E. Motawee
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed A. Damanhory
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hany Sakr
- Department of Pathology and Laboratory Medicine, VAMC, Northeast Ohio Health Care System, Louis Stokes, Cleveland, OH, United States
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tarek Atia
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed M. Elfiky
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Muhammad Maher
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Astaxanthin ameliorates serum level and spinal expression of macrophage migration inhibitory factor following spinal cord injury. Behav Pharmacol 2022; 33:505-512. [PMID: 36148838 DOI: 10.1097/fbp.0000000000000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Astaxanthin (AST) is a lipid-soluble carotenoid with antioxidant and anti-inflammatory properties. Previous reports demonstrated the promising effects of AST on spinal cord injury (SCI)-induced inflammation and sensory-motor dysfunction. Macrophage migration inhibitory factor (MIF), as a cytokine, plays a critical role in the inflammatory phase of SCI. The aim of this study was to evaluate the effects of AST on post-SCI levels of MIF in serum and spinal cord. The possible correlation between MIF and mechanical pain threshold was also assessed. Adult male rats were subjected to a severe compression spinal injury and 30 min later were treated with AST (Intrathecal, 2 nmol) or vehicle. Neuropathic pain was assessed by von Frey filaments before the surgery, and then on days 7, 14, 21, and 28 post-SCI. Western blot and ELISA were used to measure the serum level and spinal expression of MIF following SCI in the same time points. AST treatment significantly attenuated the SCI-induced dysregulations in the serum levels and tissue expression of MIF. A negative correlation was observed between mechanical pain threshold and serum MIF level (r = -0.5463, P < 0.001), as well as mechanical pain threshold and spinal level of MIF (r = -0.9562; P < 0.001). AST ameliorates SCI-induced sensory dysfunction, probably through inhibiting MIF-regulated inflammatory pathways.
Collapse
|
12
|
Varışlı B, Caglayan C, Kandemir FM, Gür C, Bayav İ, Genç A. The impact of Nrf2/HO-1, caspase-3/Bax/Bcl2 and ATF6/IRE1/PERK/GRP78 signaling pathways in the ameliorative effects of morin against methotrexate-induced testicular toxicity in rats. Mol Biol Rep 2022; 49:9641-9649. [PMID: 36057755 DOI: 10.1007/s11033-022-07873-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Methotrexate (MT) is a broadly used chemotherapeutic drug however its clinical use is confronted with several forms of toxicities containing testicular damage. The current study assessed the ameliorative effects of morin on MT-induced testicular damage with the investigation of its mechanism and the potential involvement of oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in such protection. METHODS The animals were divided into 5 distinct groups (7 rats in each group). Group 1 was control group, group 2 received MT-only (20 mg/kg bw), group 3 received orally morin-only (100 mg/kg bw), group 4 received MT (20 mg/kg bw) + morin (50 mg/kg bw) and group 5 received MT (20 mg/kg bw) + morin (100 mg/kg). In this study, morin was administered orally for 10 days, while MT was administered intraperitoneally on the 5th day. RESULTS MT intoxication was linked with augmented MDA while decreased GSH levels, the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase and mRNA levels of HO-1 and Nrf2 in the testis tissues. MT injection caused inflammation in the testicular tissue via up-regulation of MAPK14, NFκB, TNF-α and IL-1β. MT application also caused apoptosis and endoplasmic reticulum stress in the testis tissue via increasing mRNA transcript levels of Bax, caspase-3, PERK, IRE1, ATF-6, GRP78 and down-regulation of Bcl-2. CONCLUSION Treatment with morin at a dose of 50 and 100 mg/kg considerably mitigated oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in the testicular tissue indicating that testicular damage related to MT toxicity could be modulated by morin administration.
Collapse
Affiliation(s)
- Behçet Varışlı
- Vocational School of Health Sevices, Final International University, Kazafani, Cyprus
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İbrahim Bayav
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000, Bingol, Turkey
| | - Aydın Genç
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey
| |
Collapse
|
13
|
Ghantabpour T, Nashtaei MS, Nekoonam S, Rezaei H, Amidi F. The Effect of Astaxanthin on Motility, Viability, Reactive Oxygen Species, Apoptosis, and Lipid Peroxidation of Human Spermatozoa During the Freezing-Thawing Process. Biopreserv Biobank 2022; 20:367-373. [PMID: 35984938 DOI: 10.1089/bio.2021.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of spermatozoa is a general procedure to preserve viable sperm for an indefinite period. Despite the efficiency of sperm cryopreservation, excessive reactive oxygen species (ROS) production during cryopreservation can induce structural and functional changes in spermatozoa. Also, cryopreservation has been shown to decrease the spermatozoa's antioxidant activity inducing them to be more sensitive to damage caused by ROS. Experimental evidence suggests that astaxanthin (AXT) has essential activities such as antioxidant, antibacterial, and antithrombotic properties. Therefore, this study aimed to evaluate the effect of AXT on the sperm quality of healthy men during freezing-thawing. In the first phase, 10 semen samples with different concentrations of AXT (0.0, 0.5, 1, and 2 μM) were cryopreserved to achieve an optimal dose of AXT. Then, motility, viability, and phosphatidylserine (PS) externalization were evaluated. In the second phase, 25 samples were collected and divided into 3 groups: fresh group, control group (untreated frozen-thawed samples), and AXT group (treated frozen-thawed with AXT). Then, samples were cryopreserved in freezing media supplemented with or without the optimal concentration of AXT (1 μM). After thawing, the levels of sperm parameters, including motility (using a computer-assisted sperm analyzer), viability (eosin-nigrosin), early apoptotic change (annexin V/propidium iodide), ROS (flow cytometry), and lipid peroxidation (LPO) (using enzyme-linked immunosorbent assay), were evaluated. Our results showed that the addition of 1 μM AXT to sperm freezing media improved all parameters of sperm motility and viability (p ≤ 0.05). Furthermore, it could reduce the levels of ROS parameters (intracellular hydrogen peroxide and superoxide) compared with the control group (p ≤ 0.05). Also, AXT significantly decreased the level of PS externalization (p ≤ 0.05) and LPO (p ≤ 0.05) after the freezing-thawing process. In conclusion, our findings demonstrated that human semen treatment with 1 μM AXT before the freezing-thawing process has protective effects against oxidative stress and could diminish the destructive effects of this process on sperm quality.
Collapse
Affiliation(s)
- Taha Ghantabpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rezaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Örs ED, Alkan ŞB, Öksüz A. Possible Effect of Astaxanthin on Obesity-related Increased COVID-19
Infection Morbidity and Mortality. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211011105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract:
Obesity is defined by the World Health Organisation (WHO) as a body mass index
equal to 30 kg/m2 or greater. It is an important and escalating global public health problem.
Obesity is known to cause low-grade chronic inflammation, increasing the burden of noncommunicable
and possibly communicable diseases. There is considerable evidence that obesity is
associated with an increased risk of contracting coronavirus disease 2019 (COVID-19) infection
as well as significantly higher COVID-19 morbidity and mortality. It appears plausible
that controlling the chronic systemic low-grade inflammation associated with obesity may have
a positive impact on the symptoms and the prognosis of COVID-19 disease in obese patients.
Astaxanthin (ASTX) is a naturally occurring carotenoid with anti-inflammatory, antioxidant,
and immunomodulatory activities. As a nutraceutical agent, it is used as a preventative and a
co-treatment in a number of systemic neurological, cardiovascular, and metabolic diseases.
This review article will discuss the pathogenesis of COVID-19 infection and the effect of
ASTX on obesity and obesity-related inflammation. The potential positive impact of ASTX anti-
inflammatory properties in obese COVID-19 patients will be discussed.
Collapse
Affiliation(s)
- Elif Didem Örs
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Şenay Burçin Alkan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Öksüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
15
|
Ahmed S, Khan H, Fakhri S, Aschner M, Cheang WS. Therapeutic potential of marine peptides in cervical and ovarian cancers. Mol Cell Biochem 2022; 477:605-619. [PMID: 34855045 DOI: 10.1007/s11010-021-04306-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Cervical and ovarian cancers contribute significantly to female morbidity and mortality worldwide. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, offers poor outcomes. There are many side effects to traditional chemotherapeutic agents and treatment-resistant types, and often the immune response is depressed. As a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The potential anti-cancer peptides are less toxic to normal cells and can attenuate multiple drug resistance by providing an efficacious treatment approach. The physiological effects of marine peptides are described in this review focusing on various pathways, such as apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability. The review also highlights the potential role of marine peptides as safe and efficacious therapeutic agent for the treatment of cervical and ovarian cancers.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, 6734667149, Kermanshah, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, China
| |
Collapse
|
16
|
Aslankoc R, Ozmen O, Yalcın A. Astaxanthin ameliorates damage to the cerebral cortex, hippocampus and cerebellar cortex caused by methotrexate. Biotech Histochem 2021; 97:382-393. [PMID: 34850645 DOI: 10.1080/10520295.2021.2004616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the ameliorating effects of astaxanthin (AXA) on methotrexate (MTX) induced damage to the cerebral cortex, hippocampus, cerebellar cortex and blood. We used 24 female Wistar albino rats divided into three groups of eight as follows: sham/control group, single dose of saline intraperitoneally (i.p.) and 7 days orally; MTX group, single dose of 20 mg/kg MTX (i.p.); MTX + AXA group, single dose of 20 mg/kg MTX i.p.+ 100 mg/kg AXA orally for 7 days. For all groups we measured total oxidant status (TOS) and total antioxidant status (TAS) in the cerebral cortex, hippocampus and blood. Histological sections of cerebral cortex, hippocampus and cerebellar cortex were inspected microscopically. Caspase-3 (cas-3), granulocyte colony-stimulating factor (GCSF), growth related oncogene (GRO), inducible nitric oxide synthase (iNOS) and myelin basic protein (MBP) were estimated immunohistochemically in the cerebral cortex, hippocampus and cerebellar cortex. In the MTX group, TAS was decreased significantly in the cerebral cortex, hippocampus and blood, while TOS was significantly increased. AXA significantly ameliorated oxidative stress parameters in the cerebral cortex and hippocampus. Histopathological examination revealed degeneration, edema and hyperemia in the cerebral cortex, hippocampus and cerebellar cortex in the MTX group. AXA treatment ameliorated histopathological changes. MTX decreased MBP expression in cerebral cortex. Although MBP expression was decreased in the cerebral cortex, hippocampus and cerebellar cortex stimulated with MTX, the expressions of cas-3, GCSF, GRO and iNOS were significantly increased. AXA ameliorated the expression of cas-3, GCSF, GRO, iNOS and MBP. AXA exhibits anti-inflammatory, antioxidant and anti-apoptotic effects on MTX induced toxicity in the cerebral cortex, hippocampus and cerebellar cortex by increasing MBP expression, regulating inflammatory cytokine release and reducing oxidative stress.
Collapse
Affiliation(s)
- Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Arzu Yalcın
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
17
|
Azadnasab R, Kalantar H, Khorsandi L, Kalantari H, Khodayar MJ. Epicatechin ameliorative effects on methotrexate-induced hepatotoxicity in mice. Hum Exp Toxicol 2021; 40:S603-S610. [PMID: 34802285 DOI: 10.1177/09603271211047924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Due to the fact that methotrexate is widely used both as an immunosuppressive drug and as a chemotherapy agent, many studies are needed to reduce the side effects of this drug on non-target organs. PURPOSE This study was designed to investigate the effects of epicatechin (Epi) on MTX (methotrexate)-induced hepatotoxicity in mice. RESEARCH DESIGN After 1 week for adaptation, we randomly divided 42 male Naval Medical Research Institute mice into six groups: (I) control; (II) Epi (100 mg/kg, po); (III) MTX (20 mg/kg, i.p.) on the fifth day; and (IV, V, and VI) Epi (25, 50, and 100 mg/kg, po) + MTX (20 mg/kg, i.p.) on the fifth day. At day 10, the mice were sacrificed and serum factors, oxidative stress markers, and inflammatory cytokines were measured. RESULTS MTX increased activity level of serum enzymes (alanine aminotransferase and aspartate aminotransferase), lipid peroxidation marker (malondialdehyde), and inflammatory factors including interleukin-1 beta, tumor necrosis factor-alpha, and nitric oxide. Furthermore, MTX decreased glutathione level and activity level of catalase, superoxide dismutase, and glutathione peroxidase. Epi was able to reduce the destructive effects of oxidative/antioxidant system imbalance and inflammatory reactions and also histopathological damage in MTX intoxicated mice. Epi pretreatment reduced liver dysfunction by improving the antioxidant defense system, anti-inflammatory effects, and alleviation of histopathological damage in MTX hepatotoxicity. CONCLUSIONS Accordingly, Epi can be used as a therapeutic agent in hepatotoxicity associated with MTX chemotherapy.
Collapse
Affiliation(s)
- Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Gao S, Heng N, Liu F, Guo Y, Chen Y, Wang L, Ni H, Sheng X, Wang X, Xing K, Xiao L, Qi X. Natural astaxanthin enhanced antioxidant capacity and improved semen quality through the MAPK/Nrf2 pathway in aging layer breeder roosters. J Anim Sci Biotechnol 2021; 12:112. [PMID: 34732261 PMCID: PMC8567604 DOI: 10.1186/s40104-021-00633-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Background Natural astaxanthin (ASTA) has strong antioxidant properties and has been widely used as a health product to improve human health. However, the effects of ASTA on the reproductive performance of aging roosters have been poorly studied. We aimed to investigate the effects of dietary ASTA on semen quality and antioxidant capacity in aging roosters and to explore the potential mechanism of semen quality change via anti-oxidation defense system. Methods In the present study, 96 53-week-old Jinghong No. 1 layer breeder roosters were fed a corn-soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. Results Semen quality in the ASTA groups remarkably improved than that in the control group, and antioxidant activities, the abilities to scavenge hydroxyl radicals and superoxide anions, increased gradually with ASTA addition (P < 0.05). In addition, the mRNA levels of antioxidant enzymes as well as the mRNA and protein levels of the mitogen-activated protein kinase (MAPK) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were markedly increased in the 50–100 mg/kg ASTA group (P < 0.05). Conclusions Collectively, these results demonstrate that dietary ASTA may improve semen quality by increasing antioxidant enzyme activities and the ability to scavenge hydroxyl radicals, which may be related to upregulation of the MAPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Shan Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Nuo Heng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fang Liu
- School of Economics and Management, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yu Chen
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Liang Wang
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
19
|
Astaxanthin Relieves Busulfan-Induced Oxidative Apoptosis in Cultured Human Spermatogonial Stem Cells by Activating the Nrf-2/HO-1 pathway. Reprod Sci 2021; 29:374-394. [PMID: 34129218 DOI: 10.1007/s43032-021-00651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Many child cancer patients endure anticancer therapy containing alkylating agents before sexual maturity. Busulfan (BU), as an alkylating agent, is a chemotherapy drug, causing DNA damage and cytotoxicity in germ cells. In the present study, we aimed to investigate the protective effect of astaxanthin (AST), as a potent antioxidant and powerful reactive oxygen species (ROS) scavenger, on BU-induced toxicity in human spermatogonial stem cells. For this purpose, testes were obtained from four brain-dead donors. After tissue enzymatic digestions, testicular cells were cultured for 3 weeks for spermatogonial stem cell (SSC) isolation and purification. K562 cell line was cultured to survey the effect of AST on cancer treatment. The cultured SSCs and K562 cell line were finally treated with AST (10μM), BU (0.1nM), and AST+BU. The expression of NRF-2, HO-1, SOD2, SOD3, TP53, and apoptotic genes, including CASP9, CASP3, BCL2, and BAX, were assayed using real-time PCR. Moreover, ROS level in different groups and malondialdehyde level and total antioxidant capacity in cell contraction of SSCs were measured using ELISA. Data showed that AST significantly upregulated the expression of NRF-2 gene (P<0.001) and protein (P<0.005) and also significantly decreased the production of BU-induced ROS (P<0.001). AST activated the NRF-2/HO-1 pathway that could remarkably restrain BU-induced apoptosis in SSCs. Interestingly, AST upregulated the expression level of apoptosis genes in the K562 cell line. The results of this study indicated that AST reduces the side effects of BU on SSCs without interference with its chemotherapy effect on cancerous cells through modulation of the NRF-2/HO-1 and mitochondria-mediated apoptosis pathways.
Collapse
|
20
|
Jensen NB, Justesen SD, Larsen A, Ernst E, Pedersen LH. A systematic overview of the spermatotoxic and genotoxic effects of methotrexate, ganciclovir and mycophenolate mofetil. Acta Obstet Gynecol Scand 2021; 100:1557-1580. [PMID: 33755191 DOI: 10.1111/aogs.14151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Immunosuppressant drugs are increasingly being used in the reproductive years. Theoretically, such medications could affect fetal health either through changes in the sperm DNA or through fetal exposure caused by a presence in the seminal fluid. This systematic overview summarizes existing literature on the spermatotoxic and genotoxic potentials of methotrexate (MTX), a drug widely used to treat rheumatic and dermatologic diseases, and mycophenolate mofetil (MMF), which alone or supplemented with ganciclovir (GCV) may be crucial for the survival of organ transplants. MATERIAL AND METHODS The systematic overview was performed in accordance with the PRISMA guidelines: A systematic literature search of the MEDLINE and Embase databases was done using a combination of relevant terms to search for studies on spermatotoxic or genotoxic changes related to treatment with MTX, GCV or MMF. The search was restricted to English language literature, and to in vivo animal studies (mammalian species) and clinical human studies. RESULTS A total of 102 studies were identified, hereof 25 human and 77 animal studies. For MTX, human studies of immunosuppressive dosages show transient effect on sperm quality parameters, which return to reference values within 3 months. No human studies have investigated the sperm DNA damaging effect of MTX, but in other organs the genotoxic effects of immunosuppressive doses of MTX are fluctuating. In animals, immunosuppressive and cytotoxic doses of MTX adversely affect sperm quality parameters and show widespread genotoxic damages in various organs. Cytotoxic doses transiently change the DNA material in all cell stages of spermatogenesis in rodents. For GCV and MMF, data are limited and the results are indeterminate, for which reason spermatotoxic and genotoxic potentials cannot be excluded. CONCLUSIONS Data from human and animal studies indicate transient spermatotoxic and genotoxic potentials of immunosuppressive and cytotoxic doses of MTX. There are a limited number of studies investigating GCV and MMF.
Collapse
Affiliation(s)
| | | | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erik Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Laboratory for Reproduction, Institute of Anatomy, Aarhus University, Aarhus, Denmark
| | - Lars H Pedersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
22
|
Sheikholeslami MA, Ghafghazi S, Pouriran R, Mortazavi SE, Parvardeh S. Attenuating effect of paroxetine on memory impairment following cerebral ischemia-reperfusion injury in rat: The involvement of BDNF and antioxidant capacity. Eur J Pharmacol 2021; 893:173821. [PMID: 33347827 DOI: 10.1016/j.ejphar.2020.173821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Memory impairments are frequently reported in patients suffering from brain ischemic diseases. Oxidative/nitrosative stress, synaptic plasticity, and brain-derived neurotrophic factor (BDNF) are involved in the physiopathology of brain ischemia-induced memory disorders. In the present study, the effect of paroxetine as an efficacious antidepressant medication with antioxidant properties was evaluated on passive avoidance memory deficit following cerebral ischemia in rats. Transient occlusion of common carotid arteries was applied to induce ischemia-reperfusion injury in male Wistar rats. Paroxetine (5, 10, 20 mg/kg) was administered intraperitoneally once daily before (for 3 days) or after (for 7 days) the induction of ischemia. A week after ischemia-reperfusion injury, passive avoidance memory, long-term potentiation (LTP), BDNF levels, total antioxidant capacity, the activity of antioxidant enzymes (including catalase, glutathione peroxidase, and superoxide dismutase), the concentration of malondialdehyde (MDA), and nitric oxide (NO) were investigated in the hippocampus. In the passive avoidance test, paroxetine significantly increased the step-through latency and decreased the time spent in the dark compartment. This affirmative function of paroxetine on the passive avoidance memory was accompanied by the improvement of hippocampal LTP and an obvious augmentation in the BDNF contents. Besides, paroxetine caused a significant rise in the total antioxidant capacity and antioxidant enzyme activity; while decreased the hippocampal levels of NO and MDA. It was ultimately attained that paroxetine attenuates cerebral ischemia-induced passive avoidance memory dysfunction in rats by the enhancement of hippocampal synaptic plasticity and BDNF content together with the suppression of oxidative/nitrosative stress.
Collapse
Affiliation(s)
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Erfan Mortazavi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Sherif IO, Al-Mutabagani LA, Sarhan OM. Ginkgo biloba Extract Attenuates Methotrexate-Induced Testicular Injury in Rats: Cross-talk Between Oxidative Stress, Inflammation, Apoptosis, and miRNA-29a Expression. Integr Cancer Ther 2020; 19:1534735420969814. [PMID: 33118377 PMCID: PMC7605049 DOI: 10.1177/1534735420969814] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ginkgo biloba leaf extract (GIN) is a popular Chinese herbal medicine. It has a nephroprotective effect against the nephrotoxicity induced by the chemotherapeutic agent methotrexate (MTX). This work was designed to explore the testicular protective role of GIN on MTX-induced testicular injury in a rat model. The experimental protocol lasted for 10 days for the 4 studied groups. First group: received saline (normal control, NC group). The second group was administered GIN (100 mg/kg/day) orally for 10 days (GIN C). Third group: injected with MTX (20 mg/kg ip) only on the fifth day (MTX group). Fourth group: administered GIN for 10 days with MTX injection on the fifth day (GIN+MTX group). MTX induced testicular injury as evident by a marked rise in the malondialdehyde (MDA) content, interleukin-6 (IL-6) and IL-1β protein levels, nuclear factor kappa-B (NF-κB) protein expression, bcl-2 associated × protein (Bax) mRNA expression, p53 mRNA and protein expressions, and miRNA29-a expression along with a marked decline in the serum level of testosterone and superoxide dismutase (SOD) content in testicular tissue in relation to the NC group. Moreover, histopathological testicular damage with a notable decrease in the Johnsen score together with a significant elevation in the testicular injury score was observed in the MTX group in comparison to the NC group. The administration of GIN ameliorated the biochemical changes as well as the testicular histopathological findings and scores. GIN could protect against MTX-induced gonadotoxicity by its antioxidant, anti-inflammatory, antiapoptotic activities plus the regulation of the miRNA-29a testicular expression.
Collapse
Affiliation(s)
- Iman O. Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Iman O. Sherif, PhD, Assistant Consultant of Biochemistry, Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt. Emails: ;
| | - Laila A. Al-Mutabagani
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Osama M. Sarhan
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020; 25:molecules25214926. [PMID: 33114450 PMCID: PMC7663041 DOI: 10.3390/molecules25214926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
- Correspondence: (A.P.); (M.H.F.)
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Correspondence: (A.P.); (M.H.F.)
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
25
|
Yuan L, Liang P, Qu Y, An T, Wang J, Deng X, Bai L, Shen P, Bai D. Protective effect of astaxanthin against SnS 2 nanoflowers induced testes toxicity by suppressing RIPK1-RIPK3-MLKL signaling in mice. Food Chem Toxicol 2020; 145:111736. [PMID: 32918989 DOI: 10.1016/j.fct.2020.111736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
The reproductive toxicity of SnS2 nanoflowers (SnS2 NFs) has been studied in our previous experiment, but the underlying mechanism is still not clear. Astaxanthin (ASX) is a red carotenoid pigment with antioxidant, anticancer and anti-inflammatory properties, showing neuroprotective properties via its antioxidant capacity. To examine the ASX effect on sub-chronic testis injury induced by SnS2 NFs, we randomly and equally divided 40 Kunming male mice into four groups (control, ASX control, NF and NF + ASX groups). Then, ASX dissolved in olive oil was administered intragastrically for 30 consecutive days. Results showed that ASX treatment improved the sperm parameters in mice. Meanwhile, the ASX treatment significantly attenuated testis histopathological injury and ultrastructure alterations induced by SnS2 NFs. It also alleviated testicular oxidative stress, inflammation, apoptosis and necroptosis in mice. Furthermore, ASX markedly upregulated the expression of Bcl-2 and downregulated the expressions of Fas, FasL, RIPK1, FADD, Bax, Cytochrome C, Caspase-9, Cleaved Caspase-8, Cleaved Caspase-3, RIPK3, MLKL and FLIP in the testis tissues compared with the NF group. Therefore, ASX had a markedly protective effect against SnS2 NFs in mice, and the potential mechanism is associated with its ability to inhibit the oxidative stress, inflammatory response, testicular apoptosis and necroptosis, as well as downregulating in the expression of the RIPK1-RIPK3-MLKL signaling and mitochondrial related apoptosis genes.
Collapse
Affiliation(s)
- Lu Yuan
- College of Public Health, Bohai Avenue 21, Tangshan, 063210, Hebei, PR China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, 350002, Fujian, PR China
| | - Yunhua Qu
- College of Qian'an, Bohai Avenue 21, Tangshan, 063210, Hebei, PR China
| | - Tianyang An
- College of Ji Tang, Bohai Avenue 21, Tangshan, 063210, Hebei, PR China
| | - Jianhui Wang
- College of Basic Medicine, Bohai Avenue 21, Tangshan, 063210, Hebei, PR China
| | - Xuenan Deng
- Department of Social Science, Tangshan Normal University, Tangshan, 063020, Hebei, PR China
| | - Liyuan Bai
- Tangshan Environmental Monitoring Center of Heibei Province, Jianshe Road 54, Tangshan, 063000, Hebei, PR China
| | - Peijun Shen
- Center of Environmental Monitoring of Tangshan, Jianshe Road 54, Tangshan, 063000, Hebei, PR China
| | - Disi Bai
- School of Psychology and mental health of North China University of Science and Technology, Bohai Avenue 21, Tangshan, 063210, Hebei, PR China.
| |
Collapse
|
26
|
Fakhri S, Nouri Z, Moradi SZ, Farzaei MH. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytother Res 2020; 34:2790-2792. [PMID: 32754955 PMCID: PMC7436866 DOI: 10.1002/ptr.6797] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
27
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
28
|
Alves ÉR, Ferreira CGM, Silva MVD, Vieira Filho LD, Silva Junior VAD, Melo IMFD, Neto CJCL, Santos LCDS, Teixeira ÁAC, Wanderley Teixeira V. Protective action of melatonin on diabetic rat testis at cellular, hormonal and immunohistochemical levels. Acta Histochem 2020; 122:151559. [PMID: 32622427 DOI: 10.1016/j.acthis.2020.151559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to analyze the effects of melatonin treatment on diabetic rat testes. Fifty albino rats were divided into the following groups: CG: control group; GD: placebo-induced and placebo-treated mice; GDI: insulin-induced and post-confirmation diabetes-induced rats; GDM: diabetes-induced and melatonin-treated post-confirmation mice and GDMS: diabetes-induced and melatonin-treated mice simultaneously. Melatonin was administered at a dose of 10 mg/kg in drinking water every day for 20 days at night. Diabetes was induced by streptozotocin (60 mg/kg) and confirmed after the fifth day of induction. Insulin was administered at 5 IU (international units)/day at different times of the day for 20 days. The testes were submitted to histopathological, morphometric, immunohistochemical and oxidative stress analysis. Melatonin moderately decreased glycemic levels, protected weight loss and morphometric changes in the testicles, increased antioxidant enzyme levels and stabilized plasma testosterone and androgen receptor levels and decreased inflammatory markers in the testicles. Showing its potential to mitigate diabetes effects.
Collapse
Affiliation(s)
- Érique Ricardo Alves
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Recife CEP 52171-900, Brazil.
| | | | - Maria Vanessa da Silva
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Recife CEP 52171-900, Brazil
| | - Leucio Duarte Vieira Filho
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Center for Biological Sciences, Recife Brazil
| | | | | | | | - Laís Caroline da Silva Santos
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Recife CEP 52171-900, Brazil
| | - Álvaro Aguiar Coelho Teixeira
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Recife CEP 52171-900, Brazil
| | - Valéria Wanderley Teixeira
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Recife CEP 52171-900, Brazil
| |
Collapse
|
29
|
Heidari Khoei H, Fakhri S, Parvardeh S, Shams Mofarahe Z, Ghasemnejad-Berenji H, Nazarian H, Baninameh Z. Testicular toxicity and reproductive performance of streptozotocin-induced diabetic male rats: the ameliorating role of silymarin as an antioxidant. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1444641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Heidar Heidari Khoei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Ghasemnejad-Berenji
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Reproductive Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Baninameh
- Sina Hospital Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Khuzestan, Iran
| |
Collapse
|