1
|
Mwampashi LL, Magubika AJ, Ringo JF, Theonest DJ, Tryphone GM, Chilagane LA, Nassary EK. Exploring agro-ecological significance, knowledge gaps, and research priorities in arbuscular mycorrhizal fungi. Front Microbiol 2024; 15:1491861. [PMID: 39552643 PMCID: PMC11565054 DOI: 10.3389/fmicb.2024.1491861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
This systematic review examines the global agricultural relevance and practical environmental implications of arbuscular mycorrhizal fungi (AMF) within the phylum Glomeromycota. Following PRISMA guidelines, ensuring a comprehensive and unbiased literature review, a literature search was conducted, focusing on the functional roles of AMF in enhancing crop productivity, nutrient uptake, and soil health. Key findings reveal that AMF contribute significantly to sustainable agriculture by reducing the need for chemical fertilizers and increasing plant resilience to environmental stressors like drought, salinity, or pest resistance. The review highlights the importance of AMF in forming symbiotic relationships with plants, which enhance nutrient absorption and improve soil structure, showcasing long-term benefits such as reduced erosion or improved water retention. However, the current literature lacks in-depth exploration of the taxonomy and evolutionary aspects of AMF, as well as the specific functional roles they play in different agricultural contexts, e.g., understanding evolution could enhance strain selection for specific crops. This review identifies several urgent research gaps, including a need for a more refined understanding of AMF community dynamics under varying land management practices. For example, there are gaps in and a critical evaluation of advanced molecular techniques. Such techniques are essential for studying these interactions. Addressing these gaps will enhance the integration of AMF into sustainable agricultural systems and improve ecosystem management practices across different geographical regions. Future research should prioritize developing precise molecular imaging techniques and optimizing AMF applications for different crops and soil types to maximize their ecological and agricultural benefits. This could be practical through interdisciplinary collaboration (e.g., involving molecular biologists, agronomists, etc.). In conclusion, this review advances the practical application of AMF in agriculture and its contribution to biodiversity conservation in agroecosystems. Integrating these findings into policy frameworks could encourage sustainable farming practices, promote the adoption of AMF inoculants, and foster incentives for environmentally friendly land management strategies. Systematic review registration https://www.bmj.com/content/372/bmj.n71.
Collapse
Affiliation(s)
- Lenganji Lackson Mwampashi
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Aneth Japhet Magubika
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Job Frank Ringo
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Dickson J. Theonest
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - George Muhamba Tryphone
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Luseko Amos Chilagane
- Department of Crop Science and Horticulture, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Eliakira Kisetu Nassary
- Department of Soil and Geological Sciences, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
2
|
Yi Y, Yin S. Seasonal Variations of Sediment Fungal Community of a Shallow Lake in North China. Microorganisms 2024; 12:2127. [PMID: 39597517 PMCID: PMC11596378 DOI: 10.3390/microorganisms12112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Fungi play important roles in the process of material cycling and energy transfers in aquatic ecosystems. Yet, little is known about the fungal community in lake sediment. In this study, sediment samples from five habitat types in Baiyangdian Lake (BYD Lake) were collected across three seasons. High-throughput sequencing techniques were used to determine the compositions of fungal communities. Fungi are highly diverse in the sediment of BYD Lake, although some important fungi have not been accurately identified. The fungal diversity was highest in winter and lowest in summer, while there was no significant difference in species richness among sampling sites. The compositions of fungal community differed among seasons and habitats. Physicochemical properties of sediments were measured and the influence of the environmental factors on fungal communities were analyzed. Temperature, P, N, and heavy metals explained 48.98% of the variations of fungal communities across three seasons. Human activities have affected the species and biomass of fungi to some extent. Temperature is the most influential factor and negatively correlated to fungal diversity. Nutrients in different forms have different effects on shaping the fungal community. The effect of heavy metals is relatively low.
Collapse
Affiliation(s)
- Yujun Yi
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory of Water and Sediment Science, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Senlu Yin
- State Key Laboratory of Water Environmental Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Balacco JR, Vaidya BP, Hagmann DF, Goodey NM, Krumins JA. Mycorrhizal Infection Can Ameliorate Abiotic Factors in Urban Soils. MICROBIAL ECOLOGY 2023; 85:100-107. [PMID: 34997311 DOI: 10.1007/s00248-021-01945-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/13/2021] [Indexed: 05/20/2023]
Abstract
Once abandoned, urban and post-industrial lands can undergo a re-greening, the natural regeneration and succession that leads to surprisingly healthy plant communities, but this process is dependent upon microbial activity and the health of the parent soil. This study aimed to evaluate the effects of arbuscular mycorrhizal fungi (AMF) in facilitating plant production in post-industrial soils. In so doing, we helped to resolve the mechanism through which AMF ameliorate environmental stress in terrestrial plants. An experiment was established in which rye grass (Lolium perenne) was grown in two heavy metal-contaminated soils from an urban brownfield in New Jersey, USA, and one non-contaminated control soil. One set of the treatments received an AMF inoculum (four species in a commercial mix: Glomus intraradices, G. mosseae, G. etunicatum and G. aggregatum) and the other did not. Upon harvest, dried plant biomass, root/shoot ratio, AMF colonization, and extracellular soil phosphatase activity, a proxy for soil microbial functioning, were all measured. Plant biomass increased across all treatments inoculated with AMF, with a significantly higher average shoot and root mass compared to non-inoculated treatments. AMF colonization of the roots in contaminated soil was significantly higher than colonization in control soil, and the root/shoot ratio of plants in contaminated soils was also higher when colonized by AMF. Mycorrhizal infection may help plants to overcome the production limits of post-industrial soils as is seen here with increased infection and growth. The application of this mechanistic understanding to remediation and restoration strategies will improve soil health and plant production in urban environments.
Collapse
Affiliation(s)
| | - Bhagyashree P Vaidya
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, USA
| | - Diane F Hagmann
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, USA
| | - Nina M Goodey
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA
| | | |
Collapse
|
4
|
Faizan M, Cheng SH, Tonny SH, Robab MI. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:186-195. [PMID: 36244191 DOI: 10.1016/j.plaphy.2022.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones (SLs) have been implicated in various developmental processes of the plant, including the response against several abiotic stresses. It is well known as a class of endogenous phytohormones that regulates shoot branching, secondary growth and root morphology. This hormone facilitates plants in responding to nitrogen and phosphorus starvation by shaping the above and below ground structural design. SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Heavy metals (HMs) in soil are considered a serious environmental problem that causes various harmful effects on plants. SLs along with other plant hormones imply the role in plant architecture is far from being fully understood. Strategy to remove/remediation of HMs from the soil with the help of SLs has not been defined yet. Therefore, the present review aims to comprehensively provide an overview of SLs role in fine-tuning plant architectures, relation with other plant hormones under abiotic stress, and remediation of HMs contaminated soil using SLs.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India.
| | - Shi Hui Cheng
- School of Biosciences, University of Nottingham, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agriculture University, Mymensingh, 2202, Bangladesh
| | - Merajul Islam Robab
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| |
Collapse
|
5
|
Impacts of Biogas Slurry Fertilization on Arbuscular Mycorrhizal Fungal Communities in the Rhizospheric Soil of Poplar Plantations. J Fungi (Basel) 2022; 8:jof8121253. [PMID: 36547585 PMCID: PMC9782214 DOI: 10.3390/jof8121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The majority of terrestrial plants are symbiotic with arbuscular mycorrhizal fungi (AMF). Plants supply carbohydrates to microbes, whereas AMF provide plants with water and other necessary nutrients-most typically, phosphorus. Understanding the response of the AMF community structure to biogas slurry (BS) fertilization is of great significance for sustainable forest management. This study aimed to look into the effects of BS fertilization at different concentrations on AMF community structures in rhizospheric soil in poplar plantations. We found that different fertilization concentrations dramatically affected the diversity of AMF in the rhizospheric soil of the poplar plantations, and the treatment with a high BS concentration showed the highest Shannon diversity of AMF and OTU richness (Chao1). Further analyses revealed that Glomerales, as the predominant order, accounted for 36.2-42.7% of the AMF communities, and the relative abundance of Glomerales exhibited negligible changes with different BS fertilization concentrations, whereas the order Paraglomerales increased significantly in both the low- and high-concentration treatments in comparison with the control. Furthermore, the addition of BS drastically enhanced the relative abundance of the dominant genera, Glomus and Paraglomus. The application of BS could also distinguish the AMF community composition in the rhizospheric soil well. An RDA analysis indicated that the dominant genus Glomus was significantly positively correlated with nitrate reductase activity, while Paraglomus showed a significant positive correlation with available P. Overall, the findings suggest that adding BS fertilizer to poplar plantations can elevate the diversity of AMF communities in rhizospheric soil and the relative abundance of some critical genera that affect plant nutrient uptake.
Collapse
|
6
|
Yeganeh E, Vatankhah E, Toghranegar Z, Amanifar S. Arbuscular Mycorrhiza Alters Metal Uptake and the Physio-biochemical Responses of Glycyrrhiza glabra in a Lead Contaminated Soil. GESUNDE PFLANZEN 2022; 75:1-17. [PMID: 38625265 PMCID: PMC9584271 DOI: 10.1007/s10343-022-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/19/2022] [Indexed: 04/17/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi can affect the host's ability to cope with several environmental stresses, such as heavy metal stress. Therefore, an experiment was conducted to assess the effect of the Funneliformis mosseae inoculation on growth and physio-biochemical parameters and lead (Pb) accumulation in liquorice (Glycyrrhiza glabra L.) under Pb stress. A factorial experiment was performed with the combination of two factors, fungi (inoculated and non-inoculated (NM)) and soil Pb levels (0, 150, 300, and 450 mg kg-1 soil) with four replicates. In the presence of Pb, symbiosis with F. mosseae exert positive effect on growth parameters, which was more significant in shoots than roots. Mycorrhization improved fresh and dry weights and length in shoot by 147, 112.5 and 83%, respectively, compared to NM plants at Pb150 level. Moreover, F. mosseae significantly increased tolerance index and the concentrations of soluble sugars and flavonoids in shoots and proline, phosphorus, potassium, calcium, zinc and manganese in shoots and roots but decreased their malondialdehyde concentrations under Pb stress. The Pb concentrations, transfer and bioaccumulation factors of mycorrhizal plants were less than non-mycorrhizal ones. A positive correlation was also observed between glomalin secretion and colonization rate in Pb treated soils. These results indicate the importance of mycorrhizal colonization in alleviating the Pb-induced stress in liquorice, mainly through improving the nutrition, modifying reactive oxygen species detoxifying metabolites and reducing the translocation of Pb to shoots. Observations revealed that mycorrhization of liquorice would be an efficient strategy to use in the phytoremediation practices of Pb-contaminated soils.
Collapse
Affiliation(s)
- Elham Yeganeh
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Elahe Vatankhah
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zohreh Toghranegar
- Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Setareh Amanifar
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| |
Collapse
|
7
|
Alvi AF, Sehar Z, Fatma M, Masood A, Khan NA. Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192604. [PMID: 36235470 PMCID: PMC9571818 DOI: 10.3390/plants11192604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
Improving plant resilience to changing environmental conditions is the primary focus of today's scientific research globally. It is essential to find various strategies for the better survival of plants with higher resistance potential to climate change. Strigolactones (SLs) are multifunctional β-carotene derivative molecules that determine a range of plant growth and development aspects, such as root architecture, shoot branching, chlorophyll synthesis, and senescence. SLs facilitate strong defense responses against drought, salinity, heavy metal, nutrient starvation, and heat stress. The SLs trigger other hormonal-responsive pathways and determine plant resilience against stressful environments. This review focuses on the mechanisms regulated by SLs and interaction with other plant hormones to regulate plant developmental processes and SLs' influence on the mitigation of plant damage under abiotic stresses. A better understanding of the signaling and perception of SLs may lead to the path for the sustainability of plants in the changing environmental scenario. The SLs may be considered as an opening door toward sustainable agriculture.
Collapse
|
8
|
Rehman NU, Li X, Zeng P, Guo S, Jan S, Liu Y, Huang Y, Xie Q. Harmony but Not Uniformity: Role of Strigolactone in Plants. Biomolecules 2021; 11:1616. [PMID: 34827614 PMCID: PMC8615677 DOI: 10.3390/biom11111616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional roles in plants and rhizosphere interactions, which stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. SLs have been broadly implicated in regulating root growth, shoot architecture, leaf senescence, nodulation, and legume-symbionts interaction, as well as a response to various external stimuli, such as abiotic and biotic stresses. These functional properties of SLs enable the genetic engineering of crop plants to improve crop yield and productivity. In this review, the conservation and divergence of SL pathways and its biological processes in multiple plant species have been extensively discussed with a particular emphasis on its interactions with other different phytohormones. These interactions may shed further light on the regulatory networks underlying plant growth, development, and stress responses, ultimately providing certain strategies for promoting crop yield and productivity with the challenges of global climate and environmental changes.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saad Jan
- Agriculture Department, Entomology Section Bacha Khan University, Charsadda 24420, Pakistan;
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (X.L.); (P.Z.); (S.G.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
9
|
Harper CJ, Walker C, Schwendemann AB, Kerp H, Krings M. Archaeosporites rhyniensis gen. et sp. nov. (Glomeromycota, Archaeosporaceae) from the Lower Devonian Rhynie chert: a fungal lineage morphologically unchanged for more than 400 million years. ANNALS OF BOTANY 2020; 126:915-928. [PMID: 32577725 PMCID: PMC7539360 DOI: 10.1093/aob/mcaa113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Structurally preserved arbuscular mycorrhizas from the Lower Devonian Rhynie chert represent core fossil evidence of the evolutionary history of mycorrhizal systems. Moreover, Rhynie chert fossils of glomeromycotan propagules suggest that this lineage of arbuscular fungi was morphologically diverse by the Early Devonian; however, only a small fraction of this diversity has been formally described and critically evaluated. METHODS Thin sections, previously prepared by grinding wafers of chert from the Rhynie beds, were studied by transmitted light microscopy. Fossils corresponding to the description of Archaeospora spp. occurred in 29 slides, and were measured, photographed and compared with modern-day species in that genus. KEY RESULTS Sessile propagules <85 µm in diameter, some still attached to a sporiferous saccule, were found in early land plant axes and the chert matrix; they developed, in a similar manner to extant Archaeospora, laterally or centrally within the saccule neck. Microscopic examination and comparison with extant fungi showed that, morphologically, the fossils share the characters used to circumscribe the genus Archaeospora (Glomeromycota; Archaeosporales; Archaeosporaceae). CONCLUSIONS The fossils can be assigned with confidence to the extant family Archaeosporaceae, but because molecular analysis is necessary to place organisms in these taxa to present-day genera and species, they are placed in a newly proposed fossil taxon, Archaeosporites rhyniensis.
Collapse
Affiliation(s)
- Carla J Harper
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | | | - Hans Kerp
- Forschungsstelle für Paläobotanik am Geologisch-Paläontologischen Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Krings
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
10
|
Carey CJ, Glassman SI, Bruns TD, Aronson EL, Hart SC. Soil microbial communities associated with giant sequoia: How does the world's largest tree affect some of the world's smallest organisms? Ecol Evol 2020; 10:6593-6609. [PMID: 32724535 PMCID: PMC7381575 DOI: 10.1002/ece3.6392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/29/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
Giant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relict populations on the western slopes of the California Sierra Nevada. In these settings, it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extend more broadly to nonmycorrhizal components of the soil microbial community. To address this question, we used next-generation amplicon sequencing to characterize bacterial/archaeal and fungal microbiomes in bulk soil (0-5 cm) beneath giant sequoia and co-occurring sugar pine (Pinus lambertiana) individuals. We did this across two groves with distinct parent material in Yosemite National Park, USA. We found tree-associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a core community double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community and that some but not all host tree differences are grove-dependent.
Collapse
Affiliation(s)
| | - Sydney I. Glassman
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Thomas D. Bruns
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Emma L. Aronson
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCAUSA
| | - Stephen C. Hart
- Department of Life and Environmental Sciences and the Sierra Nevada Research InstituteUniversity of CaliforniaMercedCAUSA
| |
Collapse
|
11
|
Casarrubias-Castillo K, Montero-Vargas JM, Dabdoub-González N, Winkler R, Martinez-Gallardo NA, Zañudo-Hernández J, Avilés-Arnaut H, Délano-Frier JP. Distinct gene expression and secondary metabolite profiles in suppressor of prosystemin-mediated responses2 (spr2) tomato mutants having impaired mycorrhizal colonization. PeerJ 2020; 8:e8888. [PMID: 32337100 PMCID: PMC7167247 DOI: 10.7717/peerj.8888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/11/2020] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization, sampled at 32-50 days post-inoculation (dpi), was significantly reduced in suppressor of prosystemin-mediated responses2 (spr2) mutant tomato plants impaired in the ω-3 FATTY ACID DESATURASE7 (FAD7) gene that limits the generation of linolenic acid and, consequently, the wound-responsive jasmonic acid (JA) burst. Contrary to wild-type (WT) plants, JA levels in root and leaves of spr2 mutants remained unchanged in response to AMF colonization, further supporting its regulatory role in the AM symbiosis. Decreased AMF colonization in spr2 plants was also linked to alterations associated with a disrupted FAD7 function, such as enhanced salicylic acid (SA) levels and SA-related defense gene expression and a reduction in fatty acid content in both mycorrhizal spr2 roots and leaves. Transcriptomic data revealed that lower mycorrhizal colonization efficiency in spr2 mutants coincided with the modified expression of key genes controlling gibberellin and ethylene signaling, brassinosteroid, ethylene, apocarotenoid and phenylpropanoid synthesis, and the wound response. Targeted metabolomic analysis, performed at 45 dpi, revealed augmented contents of L-threonic acid and DL-malic acid in colonized spr2 roots which suggested unfavorable conditions for AMF colonization. Additionally, time- and genotype-dependent changes in root steroid glycoalkaloid levels, including tomatine, suggested that these metabolites might positively regulate the AM symbiosis in tomato. Untargeted metabolomic analysis demonstrated that the tomato root metabolomes were distinctly affected by genotype, mycorrhizal colonization and colonization time. In conclusion, reduced AMF colonization efficiency in spr2 mutants is probably caused by multiple and interconnected JA-dependent and independent gene expression and metabolomic alterations.
Collapse
Affiliation(s)
- Kena Casarrubias-Castillo
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Josaphat M. Montero-Vargas
- Departamento de Investigación en Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Nicole Dabdoub-González
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - Robert Winkler
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Norma A. Martinez-Gallardo
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Julia Zañudo-Hernández
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Hamlet Avilés-Arnaut
- Instituto de Biotecnología de la Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nicolas de los Garza, Nuevo Leon, Mexico
| | - John P. Délano-Frier
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
12
|
Shi S, Tian L, Ma L, Tian C. Community Structure of Rhizomicrobiomes in Four Medicinal Herbs and Its Implication on Growth Management. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
A new genus, Desertispora, and a new species, Diversispora sabulosa, in the family Diversisporaceae (order Diversisporales, subphylum Glomeromycotina). Mycol Prog 2018. [DOI: 10.1007/s11557-017-1369-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Causier B, Li Z, De Smet R, Lloyd JPB, Van de Peer Y, Davies B. Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Sci Rep 2017; 7:16692. [PMID: 29192227 PMCID: PMC5709506 DOI: 10.1038/s41598-017-16942-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
15
|
Stajich JE. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0055-2016. [PMID: 28820125 PMCID: PMC6078396 DOI: 10.1128/microbiolspec.funk-0055-2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
16
|
Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM. Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0036-2016. [PMID: 28820115 PMCID: PMC11687519 DOI: 10.1128/microbiolspec.funk-0036-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
The fungal lineage is one of the three large eukaryotic lineages that dominate terrestrial ecosystems. They share a common ancestor with animals in the eukaryotic supergroup Opisthokonta and have a deeper common ancestry with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among all living organisms. This article provides an overview of some of the most important fungal traits, how they evolve, and what major genes and gene families contribute to their development. The traits highlighted here represent just a sample of the characteristics that have evolved in fungi, including polarized multicellular growth, fruiting body development, dimorphism, secondary metabolism, wood decay, and mycorrhizae. However, a great number of other important traits also underlie the evolution of the taxonomically and phenotypically hyperdiverse fungal kingdom, which could fill up a volume on its own. After reviewing the evolution of these six well-studied traits in fungi, we discuss how the recurrent evolution of phenotypic similarity, that is, convergent evolution in the broad sense, has shaped their phylogenetic distribution in extant species.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Enikő Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary
| | - Jason Slot
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
17
|
Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity and Evolution. BIOGEOGRAPHY OF MYCORRHIZAL SYMBIOSIS 2017. [DOI: 10.1007/978-3-319-56363-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Krishnamoorthy R, Premalatha N, Karthik M, Anandham R, Senthilkumar M, Gopal NO, Selvakumar G, Sa T. Molecular Markers for the Identification and Diversity Analysis of Arbuscular Mycorrhizal Fungi (AMF). Fungal Biol 2017. [DOI: 10.1007/978-3-319-34106-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. THE ISME JOURNAL 2016; 10:1514-26. [PMID: 26613340 PMCID: PMC5029179 DOI: 10.1038/ismej.2015.204] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023]
Abstract
Most land plants form mutualistic associations with arbuscular mycorrhizal fungi of the Glomeromycota, but recent studies have found that ancient plant lineages form mutualisms with Mucoromycotina fungi. Simultaneous associations with both fungal lineages have now been found in some plants, necessitating studies to understand the functional and evolutionary significance of these tripartite associations for the first time. We investigate the physiology and cytology of dual fungal symbioses in the early-diverging liverworts Allisonia and Neohodgsonia at modern and Palaeozoic-like elevated atmospheric CO2 concentrations under which they are thought to have evolved. We found enhanced carbon cost to liverworts with simultaneous Mucoromycotina and Glomeromycota associations, greater nutrient gain compared with those symbiotic with only one fungal group in previous experiments and contrasting responses to atmospheric CO2 among liverwort-fungal symbioses. In liverwort-Mucoromycotina symbioses, there is increased P-for-C and N-for-C exchange efficiency at 440 p.p.m. compared with 1500 p.p.m. CO2. In liverwort-Glomeromycota symbioses, P-for-C exchange is lower at ambient CO2 compared with elevated CO2. No characteristic cytologies of dual symbiosis were identified. We provide evidence of a distinct physiological niche for plant symbioses with Mucoromycotina fungi, giving novel insight into why dual symbioses with Mucoromycotina and Glomeromycota fungi persist to the present day.
Collapse
Affiliation(s)
- Katie J Field
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - William R Rimington
- Department of Life Sciences, Imperial College London, London, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Martin I Bidartondo
- Department of Life Sciences, Imperial College London, London, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, UK
| | - Kate E Allinson
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - Duncan D Cameron
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | | | - Jonathan R Leake
- Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
20
|
Kapulnik Y, Koltai H. Fine-tuning by strigolactones of root response to low phosphate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:203-12. [PMID: 26667884 DOI: 10.1111/jipb.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 05/10/2023]
Abstract
Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
21
|
Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 2015; 112:10967-72. [PMID: 26283343 PMCID: PMC4568213 DOI: 10.1073/pnas.1508382112] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide.
Collapse
Affiliation(s)
- Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Suzanne M Prober
- Commonwealth Scientific and Industrial Research Organisation Land and Water Flagship, Wembley, WA 6913, Australia
| | - Albert Barberán
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
| | - Elizabeth T Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108
| | - Jennifer L Firn
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - W Stanley Harpole
- Department of Physiological Diversity, Helmholtz Center for Environmental Research UFZ, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, D-04103 Leipzig, Germany; Institute of Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108
| | - Kirsten S Hofmockel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011
| | - Johannes M H Knops
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546
| | - Kimberly La Pierre
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Anita C Risch
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108
| | - Martin Schütz
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Christopher Steenbock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309;
| |
Collapse
|
22
|
Kapulnik Y, Koltai H. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. PLANT PHYSIOLOGY 2014; 166:560-9. [PMID: 25037210 PMCID: PMC4213088 DOI: 10.1104/pp.114.244939] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 05/02/2023]
Abstract
Strigolactones, recently discovered as plant hormones, regulate the development of different plant parts. In the root, they regulate root architecture and affect root hair length and density. Their biosynthesis and exudation increase under low phosphate levels, and they are associated with root responses to these conditions. Their signaling pathway in the plant includes protein interactions and ubiquitin-dependent repressor degradation. In the root, they lead to changes in actin architecture and dynamics as well as localization of the PIN-FORMED auxin transporter in the plasma membrane. Strigolactones are also involved with communication in the rhizosphere. They are necessary for germination of parasitic plant seeds, they enhance hyphal branching of arbuscular mycorrhizal fungi of the Glomus and Gigaspora spp., and they promote rhizobial symbiosis. This review focuses on the role played by strigolactones in root development, their response to nutrient deficiency, and their involvement with plant interactions in the rhizosphere.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
23
|
Strigolactones in Root Exudates as a Signal in Symbiotic and Parasitic Interactions. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Schwendemann AB, Decombeix AL, Taylor TN, Taylor EL, Krings M. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer. Proc Natl Acad Sci U S A 2011; 108:13630-4. [PMID: 21808011 PMCID: PMC3158208 DOI: 10.1073/pnas.1110677108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins.
Collapse
Affiliation(s)
- Andrew B. Schwendemann
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534; and
| | - Anne-Laure Decombeix
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534; and
| | - Thomas N. Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534; and
| | - Edith L. Taylor
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534; and
| | - Michael Krings
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534; and
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, 80333 Munich, Germany
| |
Collapse
|
25
|
|
26
|
Abdel-Azeem AM. The history, fungal biodiversity, conservation, and future perspectives for mycology in Egypt. IMA Fungus 2010; 1:123-42. [PMID: 22679571 PMCID: PMC3348774 DOI: 10.5598/imafungus.2010.01.02.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/30/2010] [Indexed: 11/27/2022] Open
Abstract
Records of Egyptian fungi, including lichenized fungi, are scattered through a wide array of journals, books, and dissertations, but preliminary annotated checklists and compilations are not all readily available. This review documents the known available sources and compiles data for more than 197 years of Egyptian mycology. Species richness is analysed numerically with respect to the systematic position and ecology. Values of relative species richness of different systematic and ecological groups in Egypt compared to values of the same groups worldwide, show that our knowledge of Egyptian fungi is fragmentary, especially for certain systematic and ecological groups such as Agaricales, Glomeromycota, and lichenized, nematode-trapping, entomopathogenic, marine, aquatic and coprophilous fungi, and also yeasts. Certain groups have never been studied in Egypt, such as Trichomycetes and black yeasts. By screening available sources of information, it was possible to delineate 2281 taxa belonging to 755 genera of fungi, including 57 myxomycete species as known from Egypt. Only 105 taxa new to science have been described from Egypt, one belonging to Chytridiomycota, 47 to Ascomycota, 55 to anamorphic fungi and one to Basidiomycota.
Collapse
Affiliation(s)
- Ahmed M. Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt
| |
Collapse
|
27
|
Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Biol Sci 2009; 276:4237-45. [PMID: 19740877 PMCID: PMC2821337 DOI: 10.1098/rspb.2009.1015] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/17/2009] [Indexed: 11/12/2022] Open
Abstract
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.
Collapse
Affiliation(s)
- Jeff R Powell
- Freie Universität Berlin, Institut für Biologie, Okologie der Pflanzen, Altensteinstrasse 6, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Winther JL, Friedman WE. Phylogenetic affinity of arbuscular mycorrhizal symbionts in Psilotum nudum. JOURNAL OF PLANT RESEARCH 2009; 122:485-496. [PMID: 19513803 DOI: 10.1007/s10265-009-0234-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/11/2009] [Indexed: 05/27/2023]
Abstract
Many lineages of land plants (from lycopsids to angiosperms) have non-photosynthetic life cycle phases that involve obligate mycoheterotrophic arbuscular mycorrhizal (AM) associations where the plant host gains organic carbon through glomalean symbionts. Our goal was to isolate and phylogenetically identify the AM fungi associated with both the autotrophic and underground mycoheterotrophic life cycle phases of Psilotum nudum. Phylogenetic analyses recovered 11 fungal phylotypes in four diverse clades of Glomus A that form AM associations with P. nudum mycoheterotrophic gametophytes and autotrophic sporophytes, and angiosperm roots found in the same greenhouse pots. The correspondence of identities of AM symbionts in P. nudum sporophytes, gametophytes and neighboring angiosperms provides compelling evidence that photosynthetic heterospecific and conspecific plants can serve as the ultimate sources of fixed carbon for mycoheterotrophic gametophytes of P. nudum, and that the transfer of carbon occurs via shared fungal networks. Moreover, broader phylogenetic analyses suggest greenhouse Psilotum populations, like field-surveyed populations of mycoheterotrophic plants, form AM associations with restricted clades of Glomus A. The phylogenetic affinities and distribution of Glomus A symbionts indicate that P. nudum greenhouse populations have the potential to be exploited as an experimental system to further study the physiology, ecology and evolution of mycoheterotrophic AM associations.
Collapse
Affiliation(s)
- Jennifer L Winther
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
29
|
Msiska Z, Morton JB. Isolation and sequence analysis of a beta-tubulin gene from arbuscular mycorrhizal fungi. MYCORRHIZA 2009; 19:501-513. [PMID: 19444489 DOI: 10.1007/s00572-009-0248-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 04/15/2009] [Indexed: 05/27/2023]
Abstract
A full-length beta-tubulin gene has been cloned and sequenced from Gigaspora gigantea and Glomus clarum, two arbuscular mycorrhizal fungi (AMF) species in the phylum Glomeromyota. The gene in both species is organized into five exons and four introns. Both genes are 94.9% similar and encode a 447 amino acid protein. In comparison with other fungal groups, the amino acid sequence is most similar to that of fungi in the Chytridiomycota. The codon usage of the gene in both AMF species is broad and biased in favor of an A or a T in the third position. The four introns varied in length from 87 to 168 bp for G. gigantea and from 90 to 136 bp for G. clarum. Of all fungi in which full-length sequences have been published, only AMF do not have an intron before codon 174. The introns positioned at codons 174 and 257 in AMF match the position of different introns in beta-tubulin genes of some Zygomycete, Basidiomycete, and Ascomycete fungi. The 5' and 3' splice site consensus sequences are similar to those found in introns of most fungi. Sequence analysis from single-strand conformation polymorphism analysis confirmed the presence of two beta-tubulin gene copies in G. clarum, but only one copy was evident in G. gigantea based on Southern hybridization analysis.
Collapse
Affiliation(s)
- Zola Msiska
- West Virginia University, 1090 Agricultural Science Building, Morgantown, WV, 26506, USA.
| | - Joseph B Morton
- West Virginia University, 1090 Agricultural Science Building, Morgantown, WV, 26506, USA
| |
Collapse
|
30
|
Msiska Z, Morton JB. Phylogenetic analysis of the Glomeromycota by partial beta-tubulin gene sequences. MYCORRHIZA 2009; 19:247-254. [PMID: 19104848 DOI: 10.1007/s00572-008-0216-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/03/2008] [Indexed: 05/27/2023]
Abstract
The 3' end of the beta-tubulin gene was amplified from 50 isolates of 45 species in Glomeromycota. The analyses included a representative selection of all families except Pacisporaceae and Geosiphonaceae. Phylogenetic analyses excluded three intron regions at the same relative positions in all species due to sequence and length polymorphisms. The beta-tubulin gene phylogeny was similar to the 18S rRNA gene phylogeny at the family and species level, but it was not concordant at the order level. Species in Gigasporaceae and Glomeraceae grouped together but without statistical support. Paralogous sequences in Glomus species likely contributed to phylogenetic ambiguity. Trees generated using different fungal phyla as out-groups yielded a concordant topology. Family relationships within the Glomeromycota did not change regardless if the third codon position was included or excluded from the analysis. Multiple clones from three isolates of Scutellospora heterogama yielded divergent sequences. However, phylogenetic patterns suggested that only a single copy of the beta-tubulin gene was present, with variation attributed to intraspecific sequence divergence.
Collapse
Affiliation(s)
- Zola Msiska
- West Virginia University, 1090 Agricultural Science Building, Morgantown, WV, 26506, USA.
| | - Joseph B Morton
- West Virginia University, 1090 Agricultural Science Building, Morgantown, WV, 26506, USA
| |
Collapse
|
31
|
Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R. Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Prog 2008. [DOI: 10.1007/s11557-008-0573-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Fehrer J, Slavíková-Bayerová Š, Orange A. Large genetic divergence of new, morphologically similar species of sterile lichens from Europe (Lepraria, Stereocaulaceae, Ascomycota): concordance of DNA sequence data with secondary metabolites. Cladistics 2008; 24:443-458. [DOI: 10.1111/j.1096-0031.2008.00216.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R. A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Prog 2007. [DOI: 10.1007/s11557-007-0524-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Matheny PB, Gossmann JA, Zalar P, Kumar TA, Hibbett DS. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-128] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wallemiomycetes includes three species of molds from the genus Wallemia . These fungi are adapted to environments of high osmotic stress, contaminate various foods, cause respiratory disease, and have an unusual mode of asexual reproduction. Wallemia was recently proposed as a new class based on 18S ribosomal RNA gene sequences to accommodate the isolated position of the clade in the Basidiomycota. We analyzed the phylogenetic position of the Wallemiomycetes using 3451 nucleotide characters of the 18S, 25S, and 5.8S ribosomal RNA genes and 1282 amino acid positions of rpb1, rpb2, and tef1 nuclear protein-coding genes across 91 taxa. Different gene regions and methods of phylogenetic inference produce mildly conflicting placements of the Wallemiomycetes. Parsimony analyses of nrDNA data suggest that the Wallemiomycetes is an early diverging lineage of Basidiomycota, occupying a basal position near the Entorrhizomycetidae. Ultrastructural data, some Bayesian analyses, and amino acid sequences suggest the Wallemiomycetes may be the sister group of the Agaricomycotina or Ustilaginomycotina. The combined gene tree supports the Wallemiomycetes as a lineage basal to a core clade of Pucciniomycotina, Ustilaginomycotina, and Agaricomycotina with robust measures of branch support. This study reinforces the isolated position of Wallemia in the Basidiomycota using molecular data from six nuclear genes. In total, five major lineages of Basidiomycota are recognized: the Agaricomycotina, Ustilaginomycotina, Pucciniomycotina, Entorrhizomycetidae, and the Wallemiomycetes.
Collapse
Affiliation(s)
- P. Brandon Matheny
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - Jasmin A. Gossmann
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - Polona Zalar
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - T.K. Arun Kumar
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - David S. Hibbett
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| |
Collapse
|