1
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
2
|
Temporiti MEE, Nicola L, Girometta CE, Roversi A, Daccò C, Tosi S. The Analysis of the Mycobiota in Plastic Polluted Soil Reveals a Reduction in Metabolic Ability. J Fungi (Basel) 2022; 8:jof8121247. [PMID: 36547580 PMCID: PMC9785340 DOI: 10.3390/jof8121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Plastic pollution is a growing environmental issue that results in its accumulation and persistence in soil for many decades, with possible effects on soil quality and ecosystem services. Microorganisms, and especially fungi, are a keystone of soil biodiversity and soil metabolic capacity. The aim of this research was to study soil fungal biodiversity and soil microbial metabolic profiles in three different sites in northern Italy, where macro- and microplastic concentration in soil was measured. The metabolic analyses of soil microorganisms were performed by Biolog EcoPlates, while the ITS1 fragment of the 18S ribosomal cDNA was used as a target for the metabarcoding of fungal communities. The results showed an intense and significant decrease in soil microbial metabolic ability in the site with the highest concentration of microplastics. Moreover, the soil fungal community composition was significantly different in the most pristine site when compared with the other two sites. The metabarcoding of soil samples revealed a general dominance of Mortierellomycota followed by Ascomycota in all sampled soils. Moreover, a dominance of fungi involved in the degradation of plant residues was observed in all three sites. In conclusion, this study lays the foundation for further research into the effect of plastics on soil microbial communities and their activities.
Collapse
|
3
|
Ablimit R, Li W, Zhang J, Gao H, Zhao Y, Cheng M, Meng X, An L, Chen Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115859. [PMID: 35985268 DOI: 10.1016/j.jenvman.2022.115859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil health and the microbiological mechanism of green manure in improving soil fertility and crop production in the Hexi Oasis area remain unknown. The effects of maize-green manure intercropping on the soil microbial community structure and diversity and the mechanism of soil improvement were investigated in a 10-year field experiment. The study revealed that microbial phylotypes were grouped into four major ecological clusters. Module #2 is a soil core ecological cluster enriched with many plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. The application of green manure led to significantly increased soil pH, nutrient contents, and enzyme activities, and significantly reduced the relative abundance of potential plant pathogens compared with monocropping, which should ensure high and stable maize yield under long-term continuous cropping. It also increased the economic benefits by 56.39% compared with monocropping, owing to the additional products produced by the green manure. These improvements were associated with changes in the microbial community structure and activity, consistent with the structural equation model results. Therefore, soil microorganisms are the key drivers of the potential benefits of maize-green manure on agricultural sustainability.
Collapse
Affiliation(s)
- Ruxangul Ablimit
- School of Life Sciences, Lanzhou, 730000, China; The Key Laboratory of Cell Activity and Adversity Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Weikun Li
- School of Life Sciences, Lanzhou, 730000, China; The Key Laboratory of Cell Activity and Adversity Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiudong Zhang
- Institute of Soil, Fertilizer, and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Haining Gao
- Key Laboratory of the Hexi Corridor Resources Utilization of Gansu, Zhangye, 734000, China
| | - Yiming Zhao
- School of Life Sciences, Lanzhou, 730000, China
| | | | - Xueqin Meng
- School of Life Sciences, Lanzhou, 730000, China
| | - Lizhe An
- School of Life Sciences, Lanzhou, 730000, China.
| | - Yong Chen
- School of Life Sciences, Lanzhou, 730000, China; The Key Laboratory of Cell Activity and Adversity Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Li Q, Bao Z, Tang K, Feng H, Tu W, Li L, Han Y, Cao M, Zhao C. First two mitochondrial genomes for the order Filobasidiales reveal novel gene rearrangements and intron dynamics of Tremellomycetes. IMA Fungus 2022; 13:7. [PMID: 35501936 PMCID: PMC9059411 DOI: 10.1186/s43008-022-00094-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
In the present study, two mitogenomes from the Filobasidium genus were assembled and compared with other Tremellomycetes mitogenomes. The mitogenomes of F. wieringae and F. globisporum both comprised circular DNA molecules, with sizes of 27,861 bp and 71,783 bp, respectively. Comparative mitogenomic analysis revealed that the genetic contents, tRNAs, and codon usages of the two Filobasidium species differed greatly. The sizes of the two Filobasidium mitogenomes varied greatly with the introns being the main factor contributing to mitogenome expansion in F. globisporum. Positive selection was observed in several protein-coding genes (PCGs) in the Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina species, including cob, cox2, nad2, and rps3 genes. Frequent intron loss/gain events were detected to have occurred during the evolution of the Tremellomycetes mitogenomes, and the mitogenomes of 17 species from Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina have undergone large-scale gene rearrangements. Phylogenetic analyses based on Bayesian inference and the maximum likelihood methods using a combined mitochondrial gene set generated identical and well-supported phylogenetic trees, wherein Filobasidium species had close relationships with Trichosporonales species. This study, which is the first report on mitogenomes from the order Filobasidiales, provides a basis for understanding the genomics, evolution, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ke Tang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Huiyu Feng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunlei Han
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Mei Cao
- Core Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China.
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Revealing the Cryptic Diversity of Wood-Inhabiting Auricularia (Auriculariales, Basidiomycota) in Europe. FORESTS 2022. [DOI: 10.3390/f13040532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Some unusual specimens of the wood-inhabiting fungus Auricularia auricula-judae have been studied using morphological and molecular methods. As expected from external features, we describe a new species Auricularia cerrina sp. nov. Sequencing of the ITS region confirms differences from other species of Auricularia, and preliminary phylogenetic analysis is presented. Auricularia cerrina is characterized by blackish fruitbodies in fresh conditions with the combined presence of the medulla layer and small spores compared with Auricularia auricula-judae. The new species is based on specimens from the Czech Republic (central Europe) of Quercus cerris. Colour photographs in situ of fruitbodies and some microscopic photos are provided.
Collapse
|
6
|
Looney B, Miyauchi S, Morin E, Drula E, Courty PE, Kohler A, Kuo A, LaButti K, Pangilinan J, Lipzen A, Riley R, Andreopoulos W, He G, Johnson J, Nolan M, Tritt A, Barry KW, Grigoriev IV, Nagy LG, Hibbett D, Henrissat B, Matheny PB, Labbé J, Martin FM. Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi. THE NEW PHYTOLOGIST 2022; 233:2294-2309. [PMID: 34861049 DOI: 10.1111/nph.17892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE 'nests', or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.
Collapse
Affiliation(s)
- Brian Looney
- Department of Biology, Clark University, Worcester, MA, 01610, USA
| | - Shingo Miyauchi
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Emmanuelle Morin
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), INRAE, Marseille, 13009, France
| | - Pierre Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université de Bourgogne Franche- Comté, Dijon, 25000, France
| | - Annegret Kohler
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Alan Kuo
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Robert Riley
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - William Andreopoulos
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Guifen He
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Matt Nolan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Andrew Tritt
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kerrie W Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1053, Hungary
| | - David Hibbett
- Department of Biology, Clark University, Worcester, MA, 01610, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 37830, USA
| | - Francis M Martin
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
7
|
Diversity and Phylogeny of Novel Cord-Forming Fungi from Borneo. Microorganisms 2022; 10:microorganisms10020239. [PMID: 35208694 PMCID: PMC8874581 DOI: 10.3390/microorganisms10020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cord-forming (CF) fungi are found worldwide; however, tropical CF fungi are poorly documented. They play an essential role in forest ecosystems by interconnecting nutrient resources and aiding in the decomposition of plant matter and woody litter. CF fungi samples were collected from two forest conservation sites in the Sabah region of Malaysian Borneo. Sequencing and phylogenetic analysis of the ribosomal rRNA gene array 18S to 28S region from cords collected placed all of the collected specimens in Agaricomycetes (Basidiomycetes), specifically within the orders Trechisporales, Phallales, Hymenochaetales, Polyporales, and Agaricales. Comparison of the cord-derived sequences against GenBank and UNITE sequence databases, as well as phylogenetic analyses, revealed they were all novel sequences types. Many of these novel lineages were found to be closely related to other basidiomycetes commonly found in tropical forests, suggesting a large undiscovered tropical fungal diversity in Borneo that has been detected independently of sampling fruiting bodies. We show how these sequence types relate to the morphologies of the cords from which they were sampled. We also highlight how rapid, small-scale sampling can be a useful tool as an easy and relatively unbiased way of collecting data on cord-forming fungi in difficult-to-access, complex forest environments, independently of locating and sampling sporophores.
Collapse
|
8
|
song C. Evidence for the Presence of Hyphae and Fruiting Body Calcium Oxalate Crystallites in Schizophyllum commune. Int J Med Mushrooms 2022; 24:83-91. [DOI: 10.1615/intjmedmushrooms.2022045062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Angelova GV, Brazkova MS, Krastanov AI. Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review. ACTA ACUST UNITED AC 2021; 76:431-442. [PMID: 34252997 DOI: 10.1515/znc-2021-0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
The agricultural waste with lignocellulose origin is considered to be one of the major environmental pollutants which, because of their high nutritional value, represent an extremely rich resource with significant potential for the production of value added bio-products. This review discusses the applications of higher fungi to upcycle abundant agricultural by-products into more sustainable materials and to promote the transition to a circular economy. It focuses on the main factors influencing the properties and application of mycelium composites - the feedstock, the basidiomycete species and their interaction with the feedstock. During controlled solid state cultivation on various lignocellulose substrates, the basidiomycetes of class Agaricomycetes colonize their surfaces and form a three-dimensional mycelium net. Fungal mycelium secretes enzymes that break down lignocellulose over time and are partially replaced by mycelium. The mycelium adheres to the residual undegraded substrates resulting in the formation of a high-mechanical-strength bio-material called a mycelium based bio-composite. The mycelium based bio-composites are completely natural, biodegradable and can be composted after their cycle of use is completed. The physicochemical, mechanical, and thermodynamic characteristics of mycelium based bio-composites are competitive with those of synthetic polymers and allow them to be successfully used in the construction, architecture, and other industries.
Collapse
Affiliation(s)
- Galena V Angelova
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd, Plovdiv, Bulgaria
| | - Mariya S Brazkova
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd, Plovdiv, Bulgaria
| | - Albert I Krastanov
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd, Plovdiv, Bulgaria
| |
Collapse
|
10
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
11
|
Diversity, Abundance, and Distribution of Wood-Decay Fungi in Major Parks of Hong Kong. FORESTS 2020. [DOI: 10.3390/f11101030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wood-decay fungi are one of the major threats to the old and valuable trees in Hong Kong and constitute a main conservation and management challenge because they inhabit dead wood as well as living trees. The diversity, abundance, and distribution of wood-decay fungi associated with standing trees and stumps in four different parks of Hong Kong, including Hong Kong Park, Hong Kong Zoological and Botanical Garden, Kowloon Park, and Hong Kong Observatory Grounds, were investigated. Around 4430 trees were examined, and 52 fungal samples were obtained from 44 trees. Twenty-eight species were identified from the samples and grouped into twelve families and eight orders. Phellinus noxius, Ganoderma gibbosum, and Auricularia polytricha were the most abundant species and occurred in three of the four parks. Most of the species were detected on old trees, indicating that older trees were more susceptible to wood-decay fungi than younger ones. More wood-decay fungal species were observed on Ficus microcarpa trees than on other tree species. These findings expanded the knowledge of wood-decay fungi in urban environments in Hong Kong and provided useful information for the conservation of old trees and the protection of human life and property from the danger of falling trees.
Collapse
|
12
|
Waters SM, Purdue SK, Armstrong R, Detrés Y. Metagenomic investigation of African dust events in the Caribbean. FEMS Microbiol Lett 2020; 367:5809963. [PMID: 32189002 DOI: 10.1093/femsle/fnaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
African dust from the Sahara and Sahel regions of Northern Africa is blown intercontinental distances and is the highest portion of atmospheric dust generated each year. During the Northern Hemisphere summer months (boreal summer), these dust events travel into the Caribbean and southern United States. While viability assays, microscopy and bacterial amplicon analyses have shown that dust-associated microbes may be diverse, the specific microbial taxa that are transported intercontinental distances with these dust events remain poorly characterized. To provide new insights into these issues, five metagenomes of Saharan dust events occurring in the Caribbean, collected in the summer months of 2002 and 2008, were analyzed. The data revealed that similar microbial composition existed between three out of the five of the distinct dust events and that fungi were a prominent feature of the metagenomes compared to other environmental samples. These results have implications for better understanding of microbial transport through the atmosphere and may implicate that the dust-associated microbial load transiting the Atlantic with Saharan dust is similar from year to year.
Collapse
Affiliation(s)
- Samantha Marie Waters
- Universities Space Research Association, Space Biosciences Division, Ames Research Center, Moffett Field, CA 94035, USA
| | - S K Purdue
- Atmospheric Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - R Armstrong
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| | - Y Detrés
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| |
Collapse
|
13
|
Prasanna AN, Gerber D, Kijpornyongpan T, Aime MC, Doyle VP, Nagy LG. Model Choice, Missing Data, and Taxon Sampling Impact Phylogenomic Inference of Deep Basidiomycota Relationships. Syst Biol 2020; 69:17-37. [PMID: 31062852 DOI: 10.1093/sysbio/syz029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 11/12/2022] Open
Abstract
Resolving deep divergences in the tree of life is challenging even for analyses of genome-scale phylogenetic data sets. Relationships between Basidiomycota subphyla, the rusts and allies (Pucciniomycotina), smuts and allies (Ustilaginomycotina), and mushroom-forming fungi and allies (Agaricomycotina) were found particularly recalcitrant both to traditional multigene and genome-scale phylogenetics. Here, we address basal Basidiomycota relationships using concatenated and gene tree-based analyses of various phylogenomic data sets to examine the contribution of several potential sources of bias. We evaluate the contribution of biological causes (hard polytomy, incomplete lineage sorting) versus unmodeled evolutionary processes and factors that exacerbate their effects (e.g., fast-evolving sites and long-branch taxa) to inferences of basal Basidiomycota relationships. Bayesian Markov Chain Monte Carlo and likelihood mapping analyses reject the hard polytomy with confidence. In concatenated analyses, fast-evolving sites and oversimplified models of amino acid substitution favored the grouping of smuts with mushroom-forming fungi, often leading to maximal bootstrap support in both concatenation and coalescent analyses. On the contrary, the most conserved data subsets grouped rusts and allies with mushroom-forming fungi, although this relationship proved labile, sensitive to model choice, to different data subsets and to missing data. Excluding putative long-branch taxa, genes with high proportions of missing data and/or with strong signal failed to reveal a consistent trend toward one or the other topology, suggesting that additional sources of conflict are at play. While concatenated analyses yielded strong but conflicting support, individual gene trees mostly provided poor support for any resolution of rusts, smuts, and mushroom-forming fungi, suggesting that the true Basidiomycota tree might be in a part of tree space that is difficult to access using both concatenation and gene tree-based approaches. Inference-based assessments of absolute model fit strongly reject best-fit models for the vast majority of genes, indicating a poor fit of even the most commonly used models. While this is consistent with previous assessments of site-homogenous models of amino acid evolution, this does not appear to be the sole source of confounding signal. Our analyses suggest that topologies uniting smuts with mushroom-forming fungi can arise as a result of inappropriate modeling of amino acid sites that might be prone to systematic bias. We speculate that improved models of sequence evolution could shed more light on basal splits in the Basidiomycota, which, for now, remain unresolved despite the use of whole genome data.
Collapse
Affiliation(s)
- Arun N Prasanna
- Synthetic and Systems Biology Unit, Institute of Biochemistry, BRC-HAS, Szeged 6726, Hungary
| | - Daniel Gerber
- Synthetic and Systems Biology Unit, Institute of Biochemistry, BRC-HAS, Szeged 6726, Hungary.,Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest 1097, Hungary
| | | | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Laszlo G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, BRC-HAS, Szeged 6726, Hungary
| |
Collapse
|
14
|
Mao H, Wang H. Resolution of deep divergence of club fungi (phylum Basidiomycota). Synth Syst Biotechnol 2019; 4:225-231. [PMID: 31890927 PMCID: PMC6926304 DOI: 10.1016/j.synbio.2019.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 11/05/2022] Open
Abstract
A long-standing question about the early evolution of club fungi (phylum Basidiomycota) is the relationship between the three major groups, Pucciniomycotina, Ustilaginomycotina and Agaricomycotina. It is unresolved whether Agaricomycotina are more closely related to Ustilaginomycotina or to Pucciniomycotina. Here we reconstructed the branching order of the three subphyla through two sources of phylogenetic signals, i.e. standard phylogenomic analysis and alignment-free phylogenetic approach. Overall, beyond congruency within the frame of standard phylogenomic analysis, our results consistently and robustly supported the early divergence of Ustilaginomycotina and a closer relationship between Agaricomycotina and Pucciniomycotina.
Collapse
Affiliation(s)
- Hongliang Mao
- T-Life Research Center, Department of Physics, Fudan University, Shanghai, 200433, PR China
| | - Hao Wang
- T-Life Research Center, Department of Physics, Fudan University, Shanghai, 200433, PR China
| |
Collapse
|
15
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
16
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
17
|
Yi X, Yi K, Fang K, Gao H, Dai W, Cao L. Microbial Community Structures and Important Associations Between Soil Nutrients and the Responses of Specific Taxa to Rice-Frog Cultivation. Front Microbiol 2019; 10:1752. [PMID: 31440215 PMCID: PMC6693445 DOI: 10.3389/fmicb.2019.01752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023] Open
Abstract
Rice-frog cultivation is a traditional farming system in China and has been reintroduced as an agricultural practice in China in recent years. The microbial community in paddy rhizospheric soils has attracted much attention because many microorganisms participate in functional processes in soils. In this study, Illumina MiSeq sequencing-based techniques were used to investigate soil microbial communities and functional gene patterns across samples obtained by conventional rice cultivation (CR) and rice-frog cultivation (RF). The results showed that RF significantly affected the microbial community composition and richness, which indicated that the rhizospheric microorganisms responded to the introduction of tiger frogs into the paddy fields. Operational taxonomic units (OTUs) from Sandaracinaceae, Anaerolineaceae, Candidatus Nitrososphaera, Candidatus Nitrosotalea, Candidatus Nitrosoarchaeum and some unclassified OTUs from Euryarchaeota and Agaricomycetes were significantly enriched by RF. The abiotic parameters soil organic carbon (SOC), nitrate nitrogen (NO3 --N), and available phosphorus (AP) changed under RF treatment and played essential roles in establishing the soil bacterial, archaeal, and fungal compositions. Correlations between environmental factors and microbial communities were described using network analysis. SOC was strongly correlated with Anaerolineaceae, Methanosaeta, and Scutellinia. NO3 --N showed strong positive correlations with Opitutus, Geobacter, and Methanosaeta. NH4 ++-N was strongly positively associated with Sideroxydans, and TN was strongly positively correlated with Candidatus Nitrotoga. Compared to conventional CR, RF greatly enriched specific microbial taxa. These taxa may be involved in the decomposition of complex organic matter and the transformation of soil nutrients, thus promoting plant growth by improving nutrient cycling. The unique patterns of microbial taxonomic and functional composition in soil profiles suggested functional redundancy in these paddy soils. RF could significantly affect the bacterial, archaeal, and fungal communities though changing SOC and AP levels.
Collapse
Affiliation(s)
- Xiaomei Yi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Yi
- China National Cereals, Oils and Foodstuffs Corporation, Beijing, China
| | - Kaikai Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Dai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linkui Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Li Y, Wu X, Wang W, Wang M, Zhao C, Chen T, Liu G, Zhang W, Li S, Zhou H, Wu M, Yang R, Zhang G. Microbial taxonomical composition in spruce phyllosphere, but not community functional structure, varies by geographical location. PeerJ 2019; 7:e7376. [PMID: 31355059 PMCID: PMC6644631 DOI: 10.7717/peerj.7376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies indicate that the plant phenotypic traits eventually shape its microbiota due to the community assembly based on the functional types. If so, the distance-related variations of microbial communities are mostly only in taxonomical composition due to the different seeds pool, and there is no difference in microbial community functional structure if the location associated factors would not cause phenotypical variations in plants. We test this hypothesis by investigating the phyllospheric microbial community from five species of spruce (Picea spp.) trees that planted similarly but at three different locations. Results indicated that the geographical location affected microbial taxonomical compositions and had no effect on the community functional structure. In fact, this actually leads to a spurious difference in the microbial community. Our findings suggest that, within similar host plants, the phyllosphere microbial communities with differing taxonomical compositions might be functionally similar.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Shiweng Li
- Lanzhou Jiaotong University, School of Environmental and Municipal Engineering, Lanzhou, China
| | - Huaizhe Zhou
- National University of Defense Technology, College of Computer, Changsha, China
| | - Minghui Wu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruiqi Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, China
| |
Collapse
|
19
|
Rathore H, Prasad S, Kapri M, Tiwari A, Sharma S. Medicinal importance of mushroom mycelium: Mechanisms and applications. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
20
|
Diversity of wood-inhabiting Agaricomycotina on wood of different size classes in riparian forests of Uruguay. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2019.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Lüli Y, Cai Q, Chen ZH, Sun H, Zhu XT, Li X, Yang ZL, Luo H. Genome of lethal Lepiota venenata and insights into the evolution of toxin-biosynthetic genes. BMC Genomics 2019; 20:198. [PMID: 30849934 PMCID: PMC6408872 DOI: 10.1186/s12864-019-5575-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Genomes of lethal Amanita and Galerina mushrooms have gradually become available in the past ten years; in contrast the other known amanitin-producing genus, Lepiota, is still vacant in this aspect. A fatal mushroom poisoning case in China has led to acquisition of fresh L. venenata fruiting bodies, based on which a draft genome was obtained through PacBio and Illumina sequencing platforms. Toxin-biosynthetic MSDIN family and Porlyl oligopeptidase B (POPB) genes were mined from the genome and used for phylogenetic and statistical studies to gain insights into the evolution of the biosynthetic pathway. RESULTS The analysis of the genome data illustrated that only one MSDIN, named LvAMA1, exits in the genome, along with a POPB gene. No POPA homolog was identified by direct homology searching, however, one additional POP gene, named LvPOPC, was cloned and the gene structure determined. Similar to ApAMA1 in A. phalloides and GmAMA1 in G. marginata, LvAMA1 directly encodes α-amanitin. The two toxin genes were mapped to the draft genome, and the structures analyzed. Furthermore, phylogenetic and statistical analyses were conducted to study the evolution history of the POPB genes. Compared to our previous report, the phylogenetic trees unambiguously showed that a monophyletic POPB lineage clearly conflicted with the species phylogeny. In contrast, phylogeny of POPA genes resembled the species phylogeny. Topology and divergence tests showed that the POPB lineage was robust and these genes exhibited significantly shorter genetic distances than those of the house-keeping rbp2, a characteristic feature of genes with horizontal gene transfer (HGT) background. Consistently, same scenario applied to the only MSDIN, LvAMA1, in the genome. CONCLUSIONS To the best of our knowledge, this is the first reported genome of Lepiota. The analyses of the toxin genes indicate that the cyclic peptides are synthesized through a ribosomal mechanism. The toxin genes, LvAMA1 and LvPOPB, are not in the vicinity of each other. Phylogenetic and evolutionary studies suggest that HGT is the underlining cause for the occurrence of POPB and MSDIN in Amanita, Galerina and Lepiota, which are allocated in three distantly-related families.
Collapse
Affiliation(s)
- Yunjiao Lüli
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qing Cai
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Zuo H. Chen
- College of Life Science, Hunan Normal University, Changsha, 410081 China
| | - Hu Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Xue-Tai Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730030 China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650091 Yunnan China
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Hong Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
22
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Liu Q, Huang W. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2019; 121:249-260. [DOI: 10.1016/j.ijbiomac.2018.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
23
|
Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA, Swofford DL, Hibbett D, Hilu K, James TY, Quandt D, Magallón S. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun 2018; 9:5451. [PMID: 30575731 PMCID: PMC6303338 DOI: 10.1038/s41467-018-07849-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Interactions between fungi and plants, including parasitism, mutualism, and saprotrophy, have been invoked as key to their respective macroevolutionary success. Here we evaluate the origins of plant-fungal symbioses and saprotrophy using a time-calibrated phylogenetic framework that reveals linked and drastic shifts in diversification rates of each kingdom. Fungal colonization of land was associated with at least two origins of terrestrial green algae and preceded embryophytes (as evidenced by losses of fungal flagellum, ca. 720 Ma), likely facilitating terrestriality through endomycorrhizal and possibly endophytic symbioses. The largest radiation of fungi (Leotiomyceta), the origin of arbuscular mycorrhizae, and the diversification of extant embryophytes occurred ca. 480 Ma. This was followed by the origin of extant lichens. Saprotrophic mushrooms diversified in the Late Paleozoic as forests of seed plants started to dominate the landscape. The subsequent diversification and explosive radiation of Agaricomycetes, and eventually of ectomycorrhizal mushrooms, were associated with the evolution of Pinaceae in the Mesozoic, and establishment of angiosperm-dominated biomes in the Cretaceous. Plants and fungi interact widely and in diverse ways, from mutualism to parasitism and decomposition. Here, Lutzoni et al. analyse the timing of plant and fungal evolutionary radiations and identify four major periods in which plant-fungal interactions likely drove lineage diversification.
Collapse
Affiliation(s)
| | - Michael D Nowak
- Natural History Museum, University of Oslo, NO-0318, Oslo, Norway
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Valérie Reeb
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Michael Krug
- Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - David L Swofford
- Department of Biology, Duke University, Durham, NC, 27708, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - David Hibbett
- Department of Biology, Clark University, Worcester, MA, 01610, USA
| | - Khidir Hilu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dietmar Quandt
- Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
24
|
Wu YY, Shang JJ, Li Y, Zhou CL, Hou D, Li JL, Tan Q, Bao DP, Yang RH. The complete mitochondrial genome of the Basidiomycete edible fungus Hypsizygus marmoreus. Mitochondrial DNA B Resour 2018; 3:1241-1243. [PMID: 33474477 PMCID: PMC7800908 DOI: 10.1080/23802359.2018.1532343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 11/28/2022] Open
Abstract
The complete mitochondrial genome of the edible fungus Hypsizygus marmoreus was published in this paper. It was determined using Pacbio and Illumina sequencing. The complete mitochondrial DNA (mtDNA) is 106,417 bp in length with a GC content of 31.74%, which was the fourth large mitogenome in Agaricales. The circular mitogenome encoded 67 protein-coding genes and one ribosomal RNAs (rns). Among these genes, 13 conserved protein-coding genes were determined in the genome, including 6 subunits of NAD dehydrogenase (nad1-4, 4L and 6), three cytochrome oxidases (cox1-3), one apocytochrome b (cob) and three ATP synthases (atp6, apt 8 and apt 9). The phylogenic analysis confirmed that H. marmoreus (Lyophyllaceae) clustered together with Tricholoma matsutake (Tricholomataceae).
Collapse
Affiliation(s)
- Ying-Ying Wu
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun-Jun Shang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chen-Li Zhou
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Di Hou
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jia-Li Li
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
25
|
Luo H, Cai Q, Lüli Y, Li X, Sinha R, Hallen-Adams HE, Yang ZL. The MSDIN family in amanitin-producing mushrooms and evolution of the prolyl oligopeptidase genes. IMA Fungus 2018; 9:225-242. [PMID: 30622880 PMCID: PMC6317590 DOI: 10.5598/imafungus.2018.09.02.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
The biosynthetic pathway for amanitins and related cyclic peptides in deadly Amanita (Amanitaceae) mushrooms represents the first known ribosomal cyclic peptide pathway in the Fungi. Amanitins are found outside of the genus in distantly related agarics Galerina (Strophariaceae) and Lepiota (Agaricaceae). A long-standing question in the field persists: why is this pathway present in these phylogenetically disjunct agarics? Two deadly mushrooms, A. pallidorosea and A. subjunquillea, were deep sequenced, and sequences of biosynthetic genes encoding MSDINs (cyclic peptide precursor) and prolyl oligopeptidases (POPA and POPB) were obtained. The two Amanita species yielded 29 and 18 MSDINs, respectively. In addition, two MSDIN sequences were cloned from L. brunneoincarnata basidiomes. The toxin MSDIN genes encoding amatoxins or phallotoxins from the three genera were compared, and a phylogenetic tree constructed. Prolyl oligopeptidase B (POPB), a key enzyme in the biosynthetic pathway, was used in phylogenetic reconstruction to infer the evolutionary history of the genes. Phylogenies of POPB and POPA based on both coding and amino acid sequences showed very different results: while POPA genes clearly reflected the phylogeny of the host species, POPB did not; strikingly, it formed a well-supported monophyletic clade, despite that the species belong to different genera in disjunct families. POPA, a known house-keeping gene, was shown to be restricted in a branch containing only Amanita species and the phylogeny resembled that of those Amanita species. Phylogenetic analyses of MSDIN and POPB genes showed tight coordination and disjunct distribution. A POPB gene tree was compared with a corresponding species tree, and distances and substitution rates were compared. The result suggested POPB genes have significant smaller distances and rates than the house-keeping rpb2, discounting massive gene loss. Under this assumption, the incongruency between the gene tree and species tree was shown with strong support. Additionally, k-mer analyses consistently cluster Galerina and Amanita POPB genes, while Lepiota POPB is distinct. Our result suggests that horizontal gene transfer (HGT), at least between Amanita and Galerina, was involved in the acquisition of POPB genes, which may shed light on the evolution of the α-amanitin biosynthetic pathway.
Collapse
Affiliation(s)
- Hong Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Qing Cai
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Yunjiao Lüli
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650091, Yunnan, China
| | | | - Heather E Hallen-Adams
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Zhu L Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
26
|
The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms 2018; 6:microorganisms6020046. [PMID: 29883408 PMCID: PMC6027281 DOI: 10.3390/microorganisms6020046] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
The fungal genus Wallemia of the order Wallemiales (Wallemiomycotina, Basidiomycota) comprises the most xerotolerant, xerophilic and also halophilic species worldwide. Wallemia spp. are found in various osmotically challenged environments, such as dry, salted, or highly sugared foods, dry feed, hypersaline waters of solar salterns, salt crystals, indoor and outdoor air, and agriculture aerosols. Recently, eight species were recognized for the genus Wallemia, among which four are commonly associated with foods: W. sebi, W. mellicola, W. muriae and W. ichthyophaga. To date, only strains of W. sebi, W. mellicola and W. muriae have been reported to be related to human health problems, as either allergological conditions (e.g., farmer’s lung disease) or rare subcutaneous/cutaneous infections. Therefore, this allergological and infective potential, together with the toxins that the majority of Wallemia spp. produce even under saline conditions, defines these fungi as filamentous food-borne pathogenic fungi.
Collapse
|
27
|
Nguyen TTT, Kim J, Jeon SJ, Lee CW, Magan N, Lee HB. Mycotoxin production of Alternaria strains isolated from Korean barley grains determined by LC-MS/MS. Int J Food Microbiol 2018; 268:44-52. [PMID: 29328967 DOI: 10.1016/j.ijfoodmicro.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 11/27/2022]
Abstract
Twenty-four Alternaria strains were isolated from barley grain samples. These strains were screened for the production of mycotoxins on rice medium using thin layer chromatography. All 24 strains produced at least one of the five mycotoxins (ALT, AOH, ATX-I, AME, and TeA). Three representative strains, namely EML-BLDF1-4, EML-BLDF1-14, and EML-BLDF1-18, were further analyzed using a new LC-MS/MS-based mycotoxin quantification method. This method was used to detect and quantify Alternaria mycotoxins. We used positive ion electrospray mass spectrometry with multiple reaction mode (MRM) for the simultaneous quantification of various Alternaria mycotoxins produced by these strains. Five Alternaria toxins (ALT, ATX-I, AOH, AME, and TeA) were detected and quantified. Sample preparation included methanol extraction, concentration, and injection into LC-MS/MS. Limit of detection ranged from 0.13 to 4μg/mL and limit of quantification ranged from 0.25 to 8μg/mL.
Collapse
Affiliation(s)
- Thuong T T Nguyen
- Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Jueun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Sun Jeong Jeon
- Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, South Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Naresh Magan
- Applied Mycology Group, Cranfield University, Cranfield, Bedford MK43 0AL, UK
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
28
|
Kolařík M, Vohník M. When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 2017; 122:1-18. [PMID: 29248111 DOI: 10.1016/j.funbio.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022]
Abstract
The nuclear ribosomal DNA (nuc-rDNA) is widely used for the identification and phylogenetic reconstruction of Agaricomycetes. However, nuc-rDNA-based phylogenies may sometimes be in conflict with phylogenetic relationships derived from protein coding genes. In this study, the taxonomic position of the basidiomycetous mycobiont that forms the recently discovered sheathed ericoid mycorrhiza was investigated, because its nuc-rDNA is highly dissimilar to any other available fungal sequences in terms of nucleotide composition and length, and its nuc-rDNA-based phylogeny is inconclusive and significantly disagrees with protein coding sequences and morphological data. In the present work, this mycobiont was identified as Kurtia argillacea (= Hyphoderma argillaceum) residing in the order Hymenochaetales (Basidiomycota). Bioinformatic screening of the Kurtia ribosomal DNA sequence indicates that it represents a gene with a non-standard substitution rate or nucleotide composition heterogeneity rather than a deep paralogue or a pseudogene. Such a phenomenon probably also occurs in other lineages of the Fungi and should be taken into consideration when nuc-rDNA (especially that with unusual nucleotide composition) is used as a sole marker for phylogenetic reconstructions. Kurtia argillacea so far represents the only confirmed non-sebacinoid ericoid mycorrhizal fungus in the Basidiomycota and its intriguing placement among mostly saprobic and parasitic Hymenochaetales begs further investigation of its eco-physiology.
Collapse
Affiliation(s)
- Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany CAS, CZ-252 43 Průhonice, Czech Republic; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| |
Collapse
|
29
|
|
30
|
Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M. The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0053-2016. [PMID: 28917057 PMCID: PMC11687545 DOI: 10.1128/microbiolspec.funk-0053-2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi is one of the more diverse clades of eukaryotes in terrestrial ecosystems, where they provide numerous ecological services ranging from decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and animals. The evolutionary relationships of the kingdom have represented some of the more recalcitrant problems in systematics and phylogenetics. The advent of molecular phylogenetics, and more recently phylogenomics, has greatly advanced our understanding of the patterns and processes associated with fungal evolution, however. In this article, we review the major phyla, subphyla, and classes of the kingdom Fungi and provide brief summaries of ecologies, morphologies, and exemplar taxa. We also provide examples of how molecular phylogenetics and evolutionary genomics have advanced our understanding of fungal evolution within each of the phyla and some of the major classes. In the current classification we recognize 8 phyla, 12 subphyla, and 46 classes within the kingdom. The ancestor of fungi is inferred to be zoosporic, and zoosporic fungi comprise three lineages that are paraphyletic to the remainder of fungi. Fungi historically classified as zygomycetes do not form a monophyletic group and are paraphyletic to Ascomycota and Basidiomycota. Ascomycota and Basidiomycota are each monophyletic and collectively form the subkingdom Dikarya.
Collapse
Affiliation(s)
- Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521
| | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
31
|
Mujic AB, Kuo A, Tritt A, Lipzen A, Chen C, Johnson J, Sharma A, Barry K, Grigoriev IV, Spatafora JW. Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus. G3 (BETHESDA, MD.) 2017; 7:1775-1789. [PMID: 28450370 PMCID: PMC5473757 DOI: 10.1534/g3.117.039396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 12/04/2022]
Abstract
Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.
Collapse
Affiliation(s)
- Alija Bajro Mujic
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Alan Kuo
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Andrew Tritt
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Anna Lipzen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Cindy Chen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Jenifer Johnson
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Aditi Sharma
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Kerrie Barry
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Igor V Grigoriev
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
32
|
Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai YC, He SH, Cui BK, Zhou JL, Wu F, He MQ, Moncalvo JM, Hyde KD. A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0381-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. Fungal Sex: The Basidiomycota. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0046-2016. [PMID: 28597825 PMCID: PMC5467461 DOI: 10.1128/microbiolspec.funk-0046-2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Collapse
Affiliation(s)
- Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
34
|
Nguyen H, Rineau F, Vangronsveld J, Cuypers A, Colpaert JV, Ruytinx J. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa
and SlMTb
genes in the ectomycorrhizal fungus Suillus luteus. Environ Microbiol 2017; 19:2577-2587. [DOI: 10.1111/1462-2920.13729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Hoai Nguyen
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - François Rineau
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Jan V. Colpaert
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| | - Joske Ruytinx
- Centre for Environmental Sciences, Environmental Biology; Hasselt University; Agoralaan Building D Diepenbeek 3590 Belgium
| |
Collapse
|
35
|
Lewis ZA. Polycomb Group Systems in Fungi: New Models for Understanding Polycomb Repressive Complex 2. Trends Genet 2017; 33:220-231. [DOI: 10.1016/j.tig.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/03/2023]
|
36
|
Fungal diversity in soils across a gradient of preserved Brazilian Cerrado. J Microbiol 2017; 55:273-279. [DOI: 10.1007/s12275-017-6350-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/22/2016] [Accepted: 12/23/2016] [Indexed: 01/15/2023]
|
37
|
Hughes KW, Mather DA, Petersen RH. A new genus to accommodateGymnopus acervatus(Agaricales). Mycologia 2017; 102:1463-78. [DOI: 10.3852/09-318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Ronald H. Petersen
- Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996-1100
| |
Collapse
|
38
|
Hu Y, Stenlid J, Elfstrand M, Olson Å. Evolution of RNA interference proteins dicer and argonaute in Basidiomycota. Mycologia 2017; 105:1489-98. [DOI: 10.3852/13-171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Åke Olson
- Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Science, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| |
Collapse
|
39
|
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G. The good, the bad and the tasty: The many roles of mushrooms. Stud Mycol 2016; 85:125-157. [PMID: 28082758 PMCID: PMC5220184 DOI: 10.1016/j.simyco.2016.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the "Forgotten Kingdom", fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or 'roles', for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category. Although this is in no way an exhaustive discussion of the importance of basidiomycetes, this review aims to give a broad overview of the importance of these organisms, exploring the various ways they can be exploited to the benefit of human society.
Collapse
Affiliation(s)
- K.M.J. de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - K.L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - F. Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - A.M. Banks
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A.M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - G.D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
40
|
Gómez‐Hernández M, Williams‐Linera G, Lodge DJ, Guevara R, Ruiz‐Sanchez E, Gándara E. Phylogenetic diversity of macromycetes and woody plants along an elevational gradient in Eastern Mexico. Biotropica 2016. [DOI: 10.1111/btp.12332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marko Gómez‐Hernández
- Instituto de Ecología, A.C. Carretera antigua a Coatepec No. 351 Xalapa Veracruz 91070 México
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Hornos No. 1003 Santa Cruz Xoxocotlán Oaxaca 71230 México
| | | | - Deborah J. Lodge
- Forest Products Laboratory USDA‐Forest Service Luquillo Puerto Rico 00773‐1377 U.S.A
| | - Roger Guevara
- Instituto de Ecología, A.C. Carretera antigua a Coatepec No. 351 Xalapa Veracruz 91070 México
| | - Eduardo Ruiz‐Sanchez
- Instituto de Ecología, A.C. Centro Regional del Bajío Av. Lázaro Cárdenas 253 Pátzcuaro Michoacán 61600 México
| | - Etelvina Gándara
- Department of Plant and Microbial Biology The University and Jepson Herbaria University of California Berkeley California 94270 U.S.A
| |
Collapse
|
41
|
Shirouzu T, Uno K, Hosaka K, Hosoya T. Early-diverging wood-decaying fungi detected using three complementary sampling methods. Mol Phylogenet Evol 2016; 98:11-20. [PMID: 26850687 DOI: 10.1016/j.ympev.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/17/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Wood-decaying fungi are essential components of degradation systems in forest ecosystems. However, their species diversity and ecological features are largely unknown. Three methods are commonly used to investigate fungal diversity: fruiting body collection, culturing, and environmental DNA analysis. Because no single method fully characterises fungal diversity, complementary approaches using two or more methods are required. However, few studies have compared the different methods and determined the best way to characterise fungal diversity. To this end, we investigated wood-decomposing Dacrymycetes (Agaricomycotina, Basidiomycota) using a complementary approach combining fruiting body collection, culturing, and environmental DNA analysis, thereby offering an effective approach for investigating the diversity of saprotrophic mushrooms. Fruiting body collection, culturing, and environmental DNA analysis detected 11, 10, and 16 operational taxonomic units (OTUs; 25 OTUs in total) and identified three, seven, and seven novel lineages, respectively. The three methods were complementary to each other to detect greater Dacrymycetes diversity. The culturing and environmental DNA analysis identified three early-diverging lineages that were not identified in the fruiting body collection suggesting that diverse lineages lacking observable fruiting bodies remain undiscovered. Such lineages may be important to understand Dacrymycetes evolution. To detect early branches of Dacrymycetes more efficiently, we recommend a combined approach consisting of a primary environmental DNA survey to detect novel lineages and a secondary culture survey to isolate their living mycelia. This approach would be helpful for identifying otherwise-undetectable lineages, and could thus uncover missing links that are important for understanding the evolution of mushroom-forming fungi.
Collapse
Affiliation(s)
- Takashi Shirouzu
- Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan.
| | - Kunihiko Uno
- Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan.
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan.
| | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan.
| |
Collapse
|
42
|
Nguyen HD, Chabot D, Hirooka Y, Roberson RW, Seifert KA. Basidioascus undulatus: genome, origins, and sexuality. IMA Fungus 2015; 6:215-31. [PMID: 26203425 PMCID: PMC4500085 DOI: 10.5598/imafungus.2015.06.01.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/13/2015] [Indexed: 11/24/2022] Open
Abstract
Basidioascus undulatus is a soil basidiomycete belonging to the order Geminibasidiales. The taxonomic status of the order was unclear as originally it was only tentatively classified in the class Wallemiomycetes. The fungi in Geminibasidiales have an ambiguously defined sexual cycle. In this study, we sequenced the genome of B. undulatus to gain insights into its sexuality and evolutionary origins. The assembled genome draft was approximately 32 Mb in size, had a median nucleotide coverage of 24X, and contained 6123 predicted genes. Previous morphological descriptions of B. undulatus relied on interpretation of putative sexual structures. In this study, nuclear staining and confocal microscopy showed meiosis occurring in basidia and genome analysis confirmed the existence of genes involved in meiosis and mating. Using 35 protein-coding genes extracted from genomic information, phylogenomic and molecular dating analyses confirmed that B. undulatus indeed belongs to a lineage distantly related to Wallemia while retaining a basal position in Agaricomycotina. These results, combined with differences in septal pore morphology, led us to move the order Geminibasidiales out of the Wallemiomycetes and into the new class Geminibasidiomycetes cl. nov. Finally, the concept of Agaricomycotina is emended to include both Wallemiomycetes and Geminibasidiomycetes.
Collapse
Affiliation(s)
- Hai D.T. Nguyen
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Denise Chabot
- Microscopy Centre, Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Yuuri Hirooka
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Robert W. Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-1601, USA
| | - Keith A. Seifert
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
43
|
Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, Grigoriev IV. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A 2014; 111:9923-8. [PMID: 24958869 PMCID: PMC4103376 DOI: 10.1073/pnas.1400592111] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.
Collapse
Affiliation(s)
- Robert Riley
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Asaf A Salamov
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Daren W Brown
- US Department of Agriculture (USDA), Peoria, IL 61604
| | - Laszlo G Nagy
- Department of Biology, Clark University, Worcester, MA 01610
| | | | | | - Anthony Levasseur
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1163, Aix-Marseille Université, 13288 Marseille, France
| | - Vincent Lombard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Aix-Marseille Université, 13288 Marseille, France
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136, Institut National de la Recherche Agronomique-Université de Lorraine, Interactions Arbres/Micro-organismes, 54280 Champenoux, France
| | - Robert Otillar
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Erika A Lindquist
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Hui Sun
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Kurt M LaButti
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598
| | - Jeremy Schmutz
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598;HudsonAlpha Institute of Biotechnology, Huntsville, AL 35806
| | - Dina Jabbour
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | - Hong Luo
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | - Scott E Baker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Antonio G Pisabarro
- Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain; and
| | - Jonathan D Walton
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824
| | | | - Bernard Henrissat
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7257, Aix-Marseille Université, 13288 Marseille, France
| | - Francis Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136, Institut National de la Recherche Agronomique-Université de Lorraine, Interactions Arbres/Micro-organismes, 54280 Champenoux, France
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, WI 53726
| | - David S Hibbett
- Department of Biology, Clark University, Worcester, MA 01610;
| | - Igor V Grigoriev
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598;
| |
Collapse
|
44
|
Gube M, Dörfelt H. Gasteromycetation in Agaricaceae s. l. (Basidiomycota): Morphological and ecological implementations. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/fedr.201000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Morgenstern I, Robertson DL, Hibbett DS. Characterization of three mnp genes of Fomitiporia mediterranea and report of additional class II peroxidases in the order hymenochaetales. Appl Environ Microbiol 2010; 76:6431-40. [PMID: 20675443 PMCID: PMC2950472 DOI: 10.1128/aem.00547-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/23/2010] [Indexed: 11/20/2022] Open
Abstract
We report the sequence-based characterization and expression patterns of three manganese peroxidase genes from the white rot fungus and grape vine pathogen Fomitiporia mediterranea (Agaricomycotina, Hymenochaetales), termed Fmmnp1, Fmmnp2, and Fmmnp3. The predicted open reading frames (ORFs) are 1,516-, 1,351-, and 1,345-bp long and are interrupted by seven, four, and four introns, respectively. The deduced amino acid sequences encode manganese peroxidases (EC 1.11.1.13) containing 371, 369, and 371 residues, respectively, and are similar to the manganese peroxidases of the model white rot organism Phanerochaete chrysosporium. The expression of the genes is most likely differentially regulated, as revealed by real-time PCR analysis. Phylogenetic analysis reveals that other members of the order Hymenochaetales harbor mnp genes encoding proteins that are related only distantly to those of F. mediterranea. Furthermore, multiple partial lip- and mnp-like sequences obtained for Pycnoporus cinnabarinus (Agaricomycotina, Polyporales) suggest that lignin degradation by white rot taxa relies heavily on ligninolytic peroxidases and is not efficiently achieved by laccases only.
Collapse
Affiliation(s)
- Ingo Morgenstern
- Clark University, Department of Biology, Worcester, Massachusetts 01610, USA.
| | | | | |
Collapse
|
46
|
Edwards IP, Zak DR. Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol Ecol 2010; 19:1469-82. [PMID: 20456232 DOI: 10.1111/j.1365-294x.2010.04566.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Agaricomycotina are a phylogenetically diverse group of fungi that includes both saprotrophic and mycorrhizal species, and that form species--rich communities in forest ecosystems. Most species are infrequently observed, and this hampers assessment of the role that environmental heterogeneity plays in determining local community composition and in driving beta-diversity. We used a combination of phenetic (TRFLP) and phylogenetic approaches [Unifrac and Net Relatedness Index (NRI)] to examine the compositional and phylogenetic similarity of Agaricomycotina communities in forest floor and surface soil of three widely distributed temperate upland forest ecosystems (one, xeric oak--dominated and two, mesic sugar maple dominated). Generally, forest floor and soil communities had similar phylogenetic diversity, but there was little overlap of species or evolutionary lineages between these two horizons. Forest floor communities were dominated by saprotrophic species, and were compositionally and phylogenetically similar in all three ecosystems. Mycorrhizal species represented 30% to 90% of soil community diversity, and these communities differed compositionally and phylogenetically between ecosystems. Estimates of NRI revealed significant phylogenetic clustering in both the forest floor and soil communities of only the xeric oak-dominated forest ecosystem, and may indicate that this ecosystem acts as a habitat filter. Our results suggest that environmental heterogeneity strongly influences the phylogenetic beta-diversity of soil inhabiting Agaricomycotina communities, but has only a small influence on forest floor beta-diversity. Moreover, our results suggest that the strength of community assembly processes, such as habitat filtering, may differ between temperate forest ecosystems.
Collapse
Affiliation(s)
- Ivan P Edwards
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
47
|
Ghobad-Nejhad M, Dai YC. Diplomitoporus rimosus is found in Asia and belongs to the Hymenochaetales. Mycologia 2010; 102:1510-7. [PMID: 20943544 DOI: 10.3852/10-025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Diplomitoporus rimosus is a white rot polypore widely distributed in western N America, collected once in Africa, and is reported here from Iran. Molecular phylogenetic analyses of partial nuclear ribosomal LSU and ITS revealed that, unlike the generic type D. flavescens nested within the polyporoid clade, D. rimosus is positioned in the hymenochaetoid clade. A new genus is introduced to accommodate the species. Cyanotrama gen. nov. is recognized by its resupinate habit, narrow and strongly cyanophilous skeletal hyphae, barrel-shaped to short clavate basidia, variable presence of hyphal pegs and growth on conifers, especially Juniperus. Comparisons are made with representatives of polypores having similar morphological characteristics especially with cyanophilous skeletals. The biogeography of Cyanotrama rimosa with regard to its association with Juniperus woodlands is discussed briefly.
Collapse
Affiliation(s)
- Masoomeh Ghobad-Nejhad
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014, University of Helsinki, Finland.
| | | |
Collapse
|
48
|
Peay KG, Kennedy PG, Davies SJ, Tan S, Bruns TD. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. THE NEW PHYTOLOGIST 2010; 185:529-42. [PMID: 19878464 DOI: 10.1111/j.1469-8137.2009.03075.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
*Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.
Collapse
Affiliation(s)
- Kabir G Peay
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
49
|
Kottke I, Suárez JP, Herrera P, Cruz D, Bauer R, Haug I, Garnica S. Atractiellomycetes belonging to the 'rust' lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc Biol Sci 2009; 277:1289-98. [PMID: 20007181 DOI: 10.1098/rspb.2009.1884] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Distinctive groups of fungi are involved in the diverse mycorrhizal associations of land plants. All previously known mycorrhiza-forming Basidiomycota associated with trees, ericads, liverworts or orchids are hosted in Agaricomycetes, Agaricomycotina. Here we demonstrate for the first time that Atractiellomycetes, members of the 'rust' lineage (Pucciniomycotina), are mycobionts of orchids. The mycobionts of 103 terrestrial and epiphytic orchid individuals, sampled in the tropical mountain rainforest of Southern Ecuador, were identified by sequencing the whole ITS1-5.8S-ITS2 region and part of 28S rDNA. Mycorrhizae of 13 orchid individuals were investigated by transmission electron microscopy. Simple septal pores and symplechosomes in the hyphal coils of mycorrhizae from four orchid individuals indicated members of Atractiellomycetes. Molecular phylogeny of sequences from mycobionts of 32 orchid individuals out of 103 samples confirmed Atractiellomycetes and the placement in Pucciniomycotina, previously known to comprise only parasitic and saprophytic fungi. Thus, our finding reveals these fungi, frequently associated to neotropical orchids, as the most basal living basidiomycetes involved in mycorrhizal associations of land plants.
Collapse
Affiliation(s)
- Ingrid Kottke
- Institute of Evolution and Ecology, Organismic Botany, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M. DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 2009; 85:1869-79. [PMID: 19756587 DOI: 10.1007/s00253-009-2173-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022]
Abstract
The jelly fungus Auricularia auricula-judae produced an enzyme with manganese-independent peroxidase activity during growth on beech wood (approximately 300 U l(-1)). The same enzymatic activity was detected and produced at larger scale in agitated cultures comprising of liquid, plant-based media (e.g. tomato juice suspensions) at levels up to 8,000 U l(-1). Two pure peroxidase forms (A. auricula-judae peroxidase (AjP I and AjP II) could be obtained from respective culture liquids by three chromatographic steps. Spectroscopic and electrophoretic analyses of the purified proteins revealed their heme and peroxidase nature. The N-terminal amino acid sequence of AjP matched well with sequences of fungal enzymes known as "dye-decolorizing peroxidases". Homology was found to the N-termini of peroxidases from Marasmius scorodonius (up to 86%), Thanatephorus cucumeris (60%), and Termitomyces albuminosus (60%). Both enzyme forms catalyzed not only the conversion of typical peroxidase substrates such as 2,6-dimethoxyphenol and 2,2'-azino-bis(3-ethylthiazoline-6-sulfonate) but also the decolorization of the high-redox potential dyes Reactive Blue 5 and Reactive Black 5, whereas manganese(II) ions (Mn(2+)) were not oxidized. Most remarkable, however, is the finding that both AjPs oxidized nonphenolic lignin model compounds (veratryl alcohol; adlerol, a nonphenolic beta-O-4 lignin model dimer) at low pH (maximum activity at pH 1.4), which indicates a certain ligninolytic activity of dye-decolorizing peroxidases.
Collapse
Affiliation(s)
- Christiane Liers
- Unit of Environmental Biotechnology, International Graduate School of Zittau, Markt 23, 02763 Zittau, Germany.
| | | | | | | | | |
Collapse
|