1
|
Li X, Zhang X, Sun YF, Li ZH, Zhu AH, Wu YD. Morphological and molecular identification for two new wood-inhabiting species of Botryobasidium (Basidiomycota) from China. MycoKeys 2025; 116:73-89. [PMID: 40248653 PMCID: PMC12004073 DOI: 10.3897/mycokeys.116.143594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
The wood-inhabiting fungi refer to large basidiomycetes that grow on various woody materials and are distributed in various forest ecosystems, some of which have important economic value. In the present study, two new resupinate, adnate, wood-inhabiting fungal taxa, Botryobasidiumlatihyphum and B.zhejiangensis, are introduced based on morphological and molecular characteristics. A molecular phylogenetic study based on sequence data from the internal transcribed spacers (ITS) and the large subunit (nLSU) regions supported the two new species in the genus Botryobasidium. Maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BIBI) were employed to perform phylogenetic analyses of these datasets. The new species B.latihyphum is characterized by its cream hymenial surface when fresh, olivaceous buff when dry, a monomitic hyphal system with clamp connections, the presence of clavate to tubular cystidia, basidia with six sterigmata, and broadly oval basidiospores measuring 7.9-10.2 × 3.2-4.3 μm. Botryobasidiumzhejiangensis sp. nov. is characterized by its white to buff-yellow hymenial surface when fresh, cream when dry, a monomitic hyphal system with clamp connections, lacking cystidia, basidia with six sterigmata, and broadly navicular basidiospores measuring 7.9-9.2 × 2.6-3.4 μm. The phylogenetic result inferred from ITS + nLSU sequence data revealed that B.latihyphum is closely related to B.vagum, B.laeve, B.subincanum, and B.incanum, while B.zhejiangensis is closely related to B.leptocystidiatum, B.subcoronatum, B.xizangense, and B.intertextum.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
- Key Laboratory of Forest and Grassland Fire Risk Prevention, Ministry of Emergency Management, China Fire and Rescue Institute, Beijing 102202, ChinaMinistry of Emergency Management, China Fire and Rescue InstituteBeijingChina
| | - Xin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Yi-Fei Sun
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Zhen-Hao Li
- Zhejiang Key Laboratory of Biological Breeding and Exploitation of Edible and Medicinal Mushrooms, Jinhua 321200, Zhejiang, ChinaZhejiang Key Laboratory of Biological Breeding and Exploitation of Edible and Medicinal MushroomsJinhuaChina
- Zhejiang Shouxiangu Pharmaceutical Co., Ltd, Jinhua 321000, Zhejiang, ChinaZhejiang Shouxiangu Pharmaceutical Co., LtdJinhuaChina
| | - An-Hong Zhu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, ChinaCoconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchangChina
| | - Ying-Da Wu
- Key Laboratory of Forest and Grassland Fire Risk Prevention, Ministry of Emergency Management, China Fire and Rescue Institute, Beijing 102202, ChinaMinistry of Emergency Management, China Fire and Rescue InstituteBeijingChina
| |
Collapse
|
2
|
Zhang J, Gu Z, Zhou C, Zhou H. Molecular phylogeny and morphology reveal four new species in Hymenochaetales and one new species in Cantharellales from Southwestern China. MycoKeys 2025; 115:87-135. [PMID: 40114979 PMCID: PMC11923796 DOI: 10.3897/mycokeys.115.142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Wood-decaying fungi represent a vital group of higher fungi that drive the cycling of matter and energy in forest ecosystems, and they have been the focus of thorough investigation. In this study, five new species, viz. Botryobasidiumdaweishanense, Inonotussubglobisporum, Kneiffiellabubalina, Xylodongranulanoides, and X.granulans from China, are described and illustrated based on the morphological characteristics and molecular phylogenetic analyses, in which the sequences of ITS+nLSU genes were used for the phylogenetic analyses by maximum likelihood and Bayesian inference methods. The phylogeny revealed that the Botryobasidiumdaweishanense groups with three taxa, viz., B.intertextum, B.leptocystidiatum, and B.subcoronatum. Inonotussubglobisporum is closely related to I.radiatus. Kneiffiellabubalina clustered sister to K.subalutacea. Xylodongranulanoides and X.granulans have a close relationship with X.bambusinus, X.fissuratus, X.subclavatus, X.montanus, and X.wenshanensis. Additionally, Xylodongranulanoides and X.granulans clustered together. Botryobasidiumdaweishanense is characterized by an araneose hymenial surface, fusiform, and cyanophilous basidiospores (6.1-7.3 × 3.3-3.9 μm). Inonotussubglobisporum is characterized by perennial basidiomata with lateral stipes, polygon pores measuring 4-6 per mm, and subglobose, cyanophilous basidiospores (3.6-4.3 × 2.8-3.5 μm). Kneiffiellabubalina is characterized by cream basidiomata and cylindrical to slightly allantoid basidiospores (8.0-8.9 × 1.8-2.3 μm). Xylodongranulanoides is characterized by grandinioid hymenial surfaces, various cystidia, and broadly ellipsoid, thick-walled basidiospores (4.7-5.3 × 3.6-4.1 μm). Xylodongranulans is characterized by grandinioid hymenial surfaces, capitate and clavate cystidia, and broadly ellipsoid basidiospores (3.8-4.2 × 2.9-3.3 μm). Phylogenetic analysis based on internal transcribed spacer (ITS) and nuclear large subunit RNA (nLSU) shows that the four species are members of Hymenochaetales, and one belongs to Cantharellales. All five new species are compared with morphologically and phylogenetically closely related species. The present study contributes to understanding the species diversity, taxonomy, and phylogeny of macrofungi in Southwestern China.
Collapse
Affiliation(s)
- Jianling Zhang
- College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Zirui Gu
- College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Chunqin Zhou
- Yunnan Wumeng Mountains National Nature Reserve, Zhaotong 657000, China
| | - Hongmin Zhou
- College of Forestry, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Kumar A, Devi R, Dhalaria R, Tapwal A, Verma R, Rashid S, Elossaily GM, Khan KA, Chen K, Verma T. Nutritional, Nutraceutical, and Medicinal Potential of Cantharellus cibarius Fr.: A Comprehensive Review. Food Sci Nutr 2025; 13:e4641. [PMID: 39803245 PMCID: PMC11717058 DOI: 10.1002/fsn3.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025] Open
Abstract
Mushrooms are considered as nutraceutical foods that can effectively prevent diseases such as cancer and other serious life-threatening conditions include neurodegeneration, hypertension, diabetes, and hypercholesterolemia. The Cantharellus cibarius, also known as the "Golden chanterelle" or "Golden girolle," is a significant wild edible ectomycorrhizal mushroom. It is renowned for its delicious, apricot-like aroma and is highly valued in various culinary traditions worldwide. It is well known for its nutritional, nutraceutical, and therapeutic properties. The high nutritional value of C. cibarius is attributed to its abundant carbohydrates, proteins, β-glucans, dietary fiber, and low-fat content. It also contains medicinal polysaccharides (β-glucans), proteins (lectins and selenoproteins), important fatty acids (linoleic and omega-6), vitamins, and minerals (N, P, K, Ca, Zn, Ag, Se, etc.). The sporocarp of C. cibarius contains a diverse array of bioactive metabolites, including flavonoids, phenolics, sterols, fatty acids, organic acids, indole groups, carbohydrates, vitamins (tocopherols), amino acids, enzymes, bioelements, carotenoids, and 5'-nucleotides. C. cibarius has a wide array of biological properties, such as antioxidant, anticancer, anti-inflammatory, antifungal, antibacterial, anthelmintic, insecticidal, antihypoxia, antihyperglycemic, wound-healing, cytotoxic, and iron-chelating activity. Thus, the present review gives an overview of C. cibarius, covering its chemical composition, ecological significance, postharvest preservation strategies, and potential applications in dietary supplements, nutraceuticals, and pharmaceuticals. It also dives into the etymology, taxonomy, and global distribution of the renowned "Golden Chanterelle." Furthermore, there is a need to valorize waste materials created during production and processing, as well as to acquire a thorough understanding of the mechanisms of action of bioactive compounds in mushrooms.
Collapse
Affiliation(s)
| | - Reema Devi
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | - Rajni Dhalaria
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | | | - Rachna Verma
- Department of BiotechnologyASBASJS Memorial CollegePunjabIndia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of MedicineAlMaarefa UniversityRiyadhSaudi Arabia
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), and Unit of Bee Research and Honey ProductionKing Khalid UniversityAbhaSaudi Arabia
| | - Kow‐Tong Chen
- Department of Occupational MedicineTainan Municipal Hospital (Managed by ShowChwan Medical Care Corporation)TainanTaiwan
- Department of Public Health, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Tarun Verma
- Department of Dairy Science and Food Technology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
4
|
Zhou LJ, Li XL, Yuan HS. Three new wood-inhabiting fungi of Botryobasidium (Cantharellales, Basidiomycota) from subtropical forests of Southwestern China. MycoKeys 2024; 109:337-354. [PMID: 39478835 PMCID: PMC11522739 DOI: 10.3897/mycokeys.109.133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
The basidiomycete genus Botryobasidium is a resupinate saprotrophic with a global distribution range from coniferous to broad-leaved forest ecosystems. Though numerous species have been reported from Eurasia and North America, few have been described from China. In the current work, phylogenetic analyses of Botryobasidium in China were conducted based on the dataset of the internal transcribed spacer (ITS) regions and the large subunit (LSU) of nuclear ribosomal RNA gene. Maximum likelihood and Bayesian analyses were used to reconstruct the phylogenetic tree, and three new species, namely Botryobasidiumacanthosporum, B.leptocystidiatum and B.subovalibasidium, were described from subtropical forests of Yunnan Province, Southwestern China. Botryobasidiumacanthosporum is characterized by having yellowish white to dark yellow basidiome, clavate to tubular cystidia, and subglobose to globose basidiospores with obtuse spines. Botryobasidiumleptocystidiatum is characterized by having fluffy to arachnoid, greyish white to ivory basidiome, generative hyphae with clamped, tubular cystidia, and subnavicular to navicular basidiospores. While, B.subovalibasidium is characterized by having yellowish to ivory basidiome, subovoid basidia, navicular to suburniform basidiospores, and thick-walled chlamydospores. These three new species are described and illustrated, and the discriminating characters between the new species and their closely related species are discussed. A key to known species of Botryobasidium in China is provided.
Collapse
Affiliation(s)
- Lin-Jiang Zhou
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, ChinaInstitute of Applied Ecology, Chinese Academy of SciencesShenyangChina
- University of the Chinese Academy of Sciences, Beijing 100049, ChinaUniversity of the Chinese Academy of SciencesBeijingChina
| | - Xue-Long Li
- Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang 110161, Liaoning, ChinaInstitute of Edible Fungi, Liaoning Academy of Agricultural SciencesLiaoningChina
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, ChinaInstitute of Applied Ecology, Chinese Academy of SciencesShenyangChina
| |
Collapse
|
5
|
Gao Y, Tong X, Zhou H, Wang HQ, Li C, Hou CL. Three new species of the genus Clavulina (Hydnaceae, Cantharellales) from North China based on morphological and phylogenetic analysis. MycoKeys 2024; 108:75-94. [PMID: 39220355 PMCID: PMC11362664 DOI: 10.3897/mycokeys.108.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Clavulina possesses important ecological and economic value and has attracted extensive attention from mycologists. Macrofungal diversity is high in China, but Clavulina species have not been thoroughly studied. In this study, based on morphological evidence and phylogenetic analyses of the nucleotide sequences of three loci (nrITS, nrLSU, and rpb2), three new species of Clavulina from North China were identified. Morphologically, Clavulinachengdeensis is characterized by its white to dirty white basidiomata with somewhat pale orange tips and somewhat wrinkled hymenium. Clavulinagriseoviolacea is characterized by its gray to dark grayish violet basidiomata, with a sometimes-white stipe base, monopodial or irregularly polychotomous toward branch apices. Clavulinapallida is characterized by its white to pale cream white basidiomata with somewhat orange tips. Phylogenetically, the three new species form three independent branches with high support values in the phylogenetic tree.
Collapse
Affiliation(s)
- Yue Gao
- College of Life Science, Capital Normal University, Haidian, 100048, Beijing, ChinaCapital Normal UniversityBeijingChina
| | - Xin Tong
- Department of Life Sciences, National Natural History Museum of China, Tianqiaonandajie 126, Dongcheng, 100050, Beijing, ChinaDepartment of Life Sciences, National Natural History Museum of ChinaBeijingChina
| | - Hao Zhou
- College of Life Science, Capital Normal University, Haidian, 100048, Beijing, ChinaCapital Normal UniversityBeijingChina
| | - Hai-Qi Wang
- College of Life Science, Capital Normal University, Haidian, 100048, Beijing, ChinaCapital Normal UniversityBeijingChina
| | - Cheng Li
- College of Life Science, Capital Normal University, Haidian, 100048, Beijing, ChinaCapital Normal UniversityBeijingChina
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Haidian, 100048, Beijing, ChinaCapital Normal UniversityBeijingChina
| |
Collapse
|
6
|
Hartvig I, Kosawang C, Rasmussen H, Kjær ED, Nielsen LR. Co-occurring orchid species associated with different low-abundance mycorrhizal fungi from the soil in a high-diversity conservation area in Denmark. Ecol Evol 2024; 14:e10863. [PMID: 38304271 PMCID: PMC10828919 DOI: 10.1002/ece3.10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Plant-fungal interactions are ubiquitous across ecosystems and contribute significantly to plant ecology and evolution. All orchids form obligate symbiotic relationships with specific fungi for germination and early growth, and the distribution of terrestrial orchid species has been linked to occurrence and abundance of specific orchid mycorrhizal fungi (OMF) in the soil. The availability of OMF can therefore be a habitat requirement that is relevant to consider when establishing management and conservation strategies for threatened orchid species, but knowledge on the spatial distribution of OMF in soil is limited. We here studied the mycorrhizal associations of three terrestrial orchid species (Anacamptis pyramidalis, Orchis purpurea and Platanthera chlorantha) found in a local orchid diversity hotspot in eastern Denmark, and investigated the abundance of the identified mycorrhizal fungi in the surrounding soil. We applied ITS metabarcoding to samples of orchid roots, rhizosphere soil and bulk soil collected at three localities, supplemented with standard barcoding of root samples with OMF specific primers, and detected 22 Operational Taxonomic Units (OTUs) putatively identified as OMF. The three orchid species displayed different patterns of OMF associations, supporting the theory that association with specific fungi constitutes part of an orchid's ecological niche allowing co-occurrence of many species in orchid-rich habitats. The identified mycorrhizal partners in the basidiomycete families Tulasnellaceae and Ceratobasidiaceae (Cantharallales) were detected in low abundance in rhizosphere soil, and appeared almost absent from bulk soil at the localities. This finding highlights our limited knowledge of the ecology and trophic mode of OMF outside orchid tissues, as well as challenges in the detection of specific OMF with standard methods. Potential implications for management and conservation strategies are discussed.
Collapse
Affiliation(s)
- Ida Hartvig
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
- Center for Evolutionary Hologenomics, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
- Smithsonian Environmental Research CenterSmithsonian InstituteEdgewaterMarylandUSA
| | - Chatchai Kosawang
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Hanne Rasmussen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Erik Dahl Kjær
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Lene Rostgaard Nielsen
- Forest and Landscape Ecology, Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Zhang M, Wang C, Bai H, Deng W. A Contribution to the Phylogeny and Taxonomy of Hydnum (Cantharellales, Basidiomycota) from China. J Fungi (Basel) 2024; 10:98. [PMID: 38392770 PMCID: PMC10889965 DOI: 10.3390/jof10020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Hydnum is a well-characterized genus in the family Hydnaceae of Cantharellales and is characterized by spinose hymenophores. In this study, an ITS phylogenetic overview and a multilocus (ITS-nrLSU-tef1) phylogenetic tree of Hydnum were carried out. On the basis of morphological characteristics and phylogenetic results, seven species from China were confirmed, described, illustrated, and compared with similar species, including three new species, i.e., H. longipes, H. microcarpum, and H. sinorepandum, and four known species, i.e., H. cremeoalbum, H. melitosarxm, H. orientalbidum, and H. pinicola were recorded for the first time in China. A key to the species of Hydnum in China was provided.
Collapse
Affiliation(s)
- Ming Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chaoqun Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hongfen Bai
- Chuxiong Yi Autonomous Prefecture Forestry and Grassland Science Research Institute, Chuxiong 675000, China
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
8
|
Márquez-Sanz R, Gorjón SP, Salcedo I, Olariaga I. Hydnum pallidum Raddi, the Correct Name for H. albidum Peck in the Sense of European Authors and the Recently Described H. reginae Kibby, Liimat. & Niskanen. J Fungi (Basel) 2023; 9:1141. [PMID: 38132742 PMCID: PMC10744077 DOI: 10.3390/jof9121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The systematics of the genus Hydnum have undergone important advances, and many new species have been described with the aid of molecular data. A revision of old names that refer to Hydnum s. str., considering the knowledge now available, might reveal prioritary names of recently described species. This study focuses on the study of names that refer to white Hydnum in Europe, among which earlier synonyms of Hydnum reginae (=Hydnum albidum s. auct. pl. eur.) are potentially found, a species characterized by producing white basidiomata and smaller spores than any other European species. Our revision revealed the existence of three earlier names based on European material, namely H. pallidum Raddi, H. album Fr. and H. heimii Maas Geest. The earliest of those, Hydnum pallidum, is epitypified using material from Tuscany (Italy), from where it was originally described, and hence, it becomes the correct name for H. albidum s. auct. pl. eur. A full description and photographs of H. pallidum are provided, and further comments on other names that refer to white Hydnum based on European material are made.
Collapse
Affiliation(s)
- Rodrigo Márquez-Sanz
- Biology and Geology, Physics and Inorganic Chemistry Department, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Spain;
| | - Sergio Pérez Gorjón
- Department of Botany and Plant Physiology, Faculty of Biology, Plant DNA-Biobank, University of Salamanca. C/Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain;
| | - Isabel Salcedo
- Department of Plant Biology and Ecology (Botany), University of the Basque Country (UPV/EHU), Apdo 644, 48080 Bilbao, Spain;
| | - Ibai Olariaga
- Biology and Geology, Physics and Inorganic Chemistry Department, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Spain;
- Aranzadi Society of Sciences, Mycology Section, Zorroagagaina 11, 20014 Donostia-San Sebastián, Spain
| |
Collapse
|
9
|
Cai LQ, Zhao CL. Molecular phylogeny and morphology reveal a new wood-rotting fungal species, Sistotrema yunnanense sp. nov. from the Yunnan-Guizhou Plateau. MYCOSCIENCE 2023; 64:101-108. [PMID: 37397608 PMCID: PMC10308066 DOI: 10.47371/mycosci.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
Wood-rotting fungi are important components of woody plant ecosystems and play an active role in the decomposition and turnover of nutrients from wood, and are among the major groups of Basidiomycota. In this study, a new species of wood-rotting fungus, Sistotrema yunnanense, was proposed based on morphological characteristics and molecular evidence. It is characterized by resupinate basidiomata, a monomitic hyphal system having generative hyphae with clamp connections, suburniform to urniform basidia, and short-cylindrical to oblong ellipsoid basidiospores (4.5-6.5 × 3-4 µm). Phylogenetic analyses performed using the large subunit nuc rDNA indicated that S. yunnanense was nested within the genus Sistotrema s.l. of the family Hydnaceae, within the order Cantharellales.
Collapse
Affiliation(s)
- Li-Qiong Cai
- Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province, Southwest Forestry University
| | - Chang-Lin Zhao
- Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province, Southwest Forestry University
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Science
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University
| |
Collapse
|
10
|
Swenie RA, Matheny PB. New reports, new species, and high diversity of Cantharellus in the southern Appalachians. Mycologia 2023; 115:44-68. [PMID: 36469755 DOI: 10.1080/00275514.2022.2141558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chanterelles (genus Cantharellus) are among the most popular wild edible mushrooms worldwide. Efforts to understand chanterelle diversity have yielded numerous new species in recent years, particularly in eastern North America. We constructed a multilocus phylogeny including all described temperate species of Cantharellus and newly collected specimens from the eastern United States with an emphasis on southern Appalachia. We describe a new species, Cantharellus vicinus, an oak-associated chanterelle known only from lower-elevation areas in east Tennessee, based on phylogenetic and morphological data. Cantharellus vicinus is characterized by a compact stature, bright yellow hymenophore that turns salmon when mature, white stipe, and pale yellow pileus with a whitish bloom. The southeastern Cantharellus minor f. intensissimus is elevated to species level based on morphological and molecular evidence. The taxon is epitypified due to the sterile state of the holotype and ambiguity concerning application of the name. Evaluation of genetic diversity and gene conflict within Cantharellus camphoratus shows that it is a widespread species with populations in Atlantic Canada, the southeastern United States, and Japan. Similarly, C. cibarius and C. tenuithrix form complexes and may be more geographically widespread than previously thought. Additionally, we report the first known instances of Cantharellus betularum, C. corallinus, and C. altipes from the southern Appalachian Mountains.
Collapse
Affiliation(s)
- Rachel A Swenie
- Department of Ecology and Evolutionary Biology, University of Tennessee, Hesler 332, Knoxville, Tennessee 37996
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, Hesler 332, Knoxville, Tennessee 37996
| |
Collapse
|
11
|
Salas-Lizana R, Villegas Ríos M, Alvarez-Manjarrez J, Pérez-Pazos E, Farid A, Franck A, Smith ME, Garibay-Orijel R. Neotropical Clavulina: Two new species from Mexico and a re-evaluation of Clavulina floridana. Mycologia 2023; 115:135-152. [PMID: 36649208 DOI: 10.1080/00275514.2022.2148191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clavulina comprises ca. 90 described species distributed worldwide in both tropical and temperate regions. However, only one species (C. floridana) has been described so far from tropical North America. We used morphological and molecular data from three DNA loci (nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 [ITS], a portion of nuc 28S rDNA [28S], and a fragment of DNA-directed RNA polymerase II second largest subunit [RPB2]) from basidiomata and ectomycorrhizas collected in tropical ecosystems from three biogeographic provinces of Mexico and one tropical province in the USA to investigate the phylogenetic and taxonomic diversity of Clavulina in the region. Nine new species-level clades were discovered, two of which are proposed as new species (C. arboreiparva and C. tuxtlasana). Specimens of C. floridana recently collected in Florida were included in our analyses, for which a modern description is provided. In addition, C. floridana is a new record for Mexico. The diversity of Clavulina in tropical North America is comparable to that found in lowland tropical South America. However, some of the species found in tropical deciduous forests produce small, rare, and inconspicuous basidiomata, which easily go unnoticed, and therefore are poorly represented in collections. Many species remain undescribed in tropical regions of North America.
Collapse
Affiliation(s)
- Rodolfo Salas-Lizana
- Laboratorios de Micología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Margarita Villegas Ríos
- Laboratorios de Micología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Julieta Alvarez-Manjarrez
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Eduardo Pérez-Pazos
- Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, St. Paul, Minnesota 55108.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Arian Farid
- Herbarium, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620
| | - Alan Franck
- Florida Museum of Natural History, University of Florida Herbarium, Gainesville, Florida 32611-7800
| | - Mathew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| |
Collapse
|
12
|
Huo W, Zhang L, Liu Y, He X, Qi P, Dai L, Qiao T, Lu P, Li J. Microstoma Ningshanica, a new species of Microstoma based on molecular, light and scanning electron microscopy analyses from Shaanxi Province, China. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- Wenyan Huo
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Liguang Zhang
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Yu Liu
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Xuelian He
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Peng Qi
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Lu Dai
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Ting Qiao
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Peng Lu
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| | - Junzhi Li
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
- Qinling Field Scientific Observation and Research Station for Macrofungal Resources, Shaanxi Provincial Institute of Microbiology, Xi’an, People’s Republic of China
| |
Collapse
|
13
|
Yamada A. Cultivation studies of edible ectomycorrhizal mushrooms: successful establishment of ectomycorrhizal associations in vitro and efficient production of fruiting bodies. MYCOSCIENCE 2022; 63:235-246. [PMID: 37089523 PMCID: PMC10043572 DOI: 10.47371/mycosci.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Most edible ectomycorrhizal mushrooms are harvested in forests or controlled tree plantations; examples include truffles, chanterelles, porcinis, saffron milk caps, and matsutake. This study explored recent advances in in vitro ectomycorrhizal cultivation of chanterelles and matsutakes for successful ectomycorrhizal seedling establishment and the subsequent manipulation of these seedlings for efficient fruiting body production. Chanterelle cultivation studies have been limited due to the difficulty of establishing pure cultures. However, once pure cultures were established in the Japanese yellow chanterelle (Cantharellus anzutake), its ectomycorrhizal manipulation produced fruiting bodies under controlled laboratory conditions. As C. anzutake strains have fruited repeatedly under ectomycorrhizal symbiosis with pine and oak seedlings, mating tests for the cross breeding are ongoing issues. As one of the established strains C-23 has full-genome sequence, its application for various type of ectomycorrhizal studies is also expected. By contrast, Tricholoma matsutake fruiting bodies have not yet been produced under controlled conditions, despite successful establishment of ectomycorrhizal seedlings. At present, the shiro structure of ≈1L in volume can be provided in two y incubation with pine hosts under controlled environmental conditions. Therefore, further studies that provides larger shiro on the host root system are desired for the outplantation trial and fruiting.
Collapse
|
14
|
Herrera H, Sanhueza T, da Silva Valadares RB, Matus F, Pereira G, Atala C, Mora MDLL, Arriagada C. Diversity of Root-Associated Fungi of the Terrestrial Orchids Gavilea lutea and Chloraea collicensis in a Temperate Forest Soil of South-Central Chile. J Fungi (Basel) 2022; 8:jof8080794. [PMID: 36012784 PMCID: PMC9409917 DOI: 10.3390/jof8080794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The diversity of orchid mycorrhizal fungi (OMF) and other beneficial root-associated fungi in temperate forests has scarcely been examined. This study aimed to analyze the diversity of mycorrhizal and rhizosphere-associated fungal communities in the terrestrial orchids Gavilea lutea and Chloraea collicensis growing in high-orchid-population-density areas in the piedmont of the Andes Cordillera with native forest (Nothofagus-Araucaria) and Coastal Cordillera with an exotic plantation (Pinus-Eucalyptus) in south-central Chile. We focused on rhizosphere-inhabiting and peloton-associated OMF in a native forest (Andes Cordillera) and a mixed forest (Coastal Cordillera). The native terrestrial orchids G. lutea and C. collicensis were localized, mycorrhizal root segments were taken to isolate peloton-associated OMF, and rhizosphere soil was taken to perform the metabarcoding approach. The results revealed that Basidiomycota and Ascomycota were the main rhizosphere-inhabiting fungal phyla, showing significant differences in the composition of fungal communities in both sites. Sebacina was the most-abundant OMF genera in the rhizosphere of G. lutea growing in the native forest soil. In contrast, Thanatephorus was the most abundant mycorrhizal taxa growing in the rhizosphere of orchids from the Coastal Cordillera. Besides, other OMF genera such as Inocybe, Tomentella, and Mycena were detected. The diversity of OMF in pelotons differed, being mainly related to Ceratobasidium sp. and Tulasnella sp. These results provide evidence of differences in OMF from pelotons and the rhizosphere soil in G. lutea growing in the Andes Cordillera and a selection of microbial communities in the rhizosphere of C. collicensis in the Coastal Cordillera. This raises questions about the efficiency of propagation strategies based only on mycorrhizal fungi obtained by culture-dependent methods, especially in orchids that depend on non-culturable taxa for seed germination and plantlet development.
Collapse
Affiliation(s)
- Héctor Herrera
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Correspondence: (H.H.); (C.A.)
| | - Tedy Sanhueza
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Programa de Magister en Manejo de Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Francisco Salazar 01145, Temuco 4780000, Chile
| | | | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco 4780000, Chile;
- Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco 4780000, Chile
| | - Guillermo Pereira
- Departamento de Ciencias y Tecnología Vegetal, Laboratorio Biotecnología de Hongos, Universidad de Concepción, Los Angeles 4440000, Chile;
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso 2340000, Chile;
| | - María de la Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Cesar Arriagada
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4780000, Chile;
- Correspondence: (H.H.); (C.A.)
| |
Collapse
|
15
|
Sugawara R, Shirasuka N, Yamamoto T, Nagamune K, Oguchi K, Maekawa N, Sotome K, Nakagiri A, Ushijima S, Endo N. Two new species of <i>Sistotrema</i> s.l. (<i>Cantharellales</i>) from Japan with descriptions of their ectomycorrhizae. MYCOSCIENCE 2022; 63:102-117. [PMID: 37089627 PMCID: PMC10042317 DOI: 10.47371/mycosci.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 01/14/2023]
Abstract
We describe two new species of resupinate Sistotrema sensu lato (Cantharellales) collected in Japan: S. flavorhizomorphae and S. chloroporum. Both species have urniform basidia with more than four sterigmata and monomitic hyphal system, oil-rich hyphae in subiculum, which is typical for this genus. Sistotrema chloroporum is characterized by poroid hymenophore partly yellowish-green, basidia 4-6-spored, medium-sized basidiospores (4.5-6.5 × 3.5-6 µm), and broadleaf forest habitat. Sistotrema flavorhizomorphae is characterized by hydnoid-irpicoid hymenophore, bright yellowish rhizomorphs, basidia 6-8-spored, small basidiospores (3-3.5 × 2.5-3 µm), and pine forest habitat. Phylogenetic trees inferred from the fungal nrDNA ITS and LSU and the rpb2 sequences supported that both species were distinct and grouped with other ectomycorrhizal Sistotrema and Hydnum species, but their generic boundary was unclear. Mycorrhizae underneath basidiomes of both species were identified and described via molecular techniques. Mycorrhizae of S. chloroporum have similar characteristics to those of other Sistotrema s.l. and Hydnum species, i.e., S. confluens and H. repandum, whereas S. flavorhizomorphae has a distinct morpho-anatomy, for example, a distinct pseudoparenchymatous mantle. Comprehensive characterizations of basidiomes and mycorrhizae improve the taxonomic analysis of mycorrhizal species of Sistotrema s.l.
Collapse
Affiliation(s)
- Ryo Sugawara
- The United Graduate School of Agricultural Sciences, Tottori University
| | - Nana Shirasuka
- Graduate School of Sustainability Science, Tottori University
| | | | | | | | - Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| | - Akira Nakagiri
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| | | | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
16
|
Diversity of Cantharellus (Cantharellales, Basidiomycota) in China with Description of Some New Species and New Records. J Fungi (Basel) 2022; 8:jof8050483. [PMID: 35628737 PMCID: PMC9143868 DOI: 10.3390/jof8050483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cantharellus is a well-known genus of edible mushrooms, belonging to the family Hydnaceae in the class Agaricomycetes. In this study, a phylogenetic overview of Cantharellus subg. Cinnabarinus and C. subg. Parvocantharellus in China is carried out with the description of four new species. Species description are based on morphological characters of basidiomata and phylogenetic analyses of multi-locus dataset of 28S + tef1 + rpb2. Among the new species, two species, C. chrysanthus and C. sinocinnabarinus, belong to C. subg. Cinnabarinus and two new species, C. convexus and C. neopersicinus, belong to C. subg. Parvocantharellus. Species delimitation characters of the new taxa are compared with closely related species. In addition, three new records of Cantharellus are reported for China: C. albovenosus and C. citrinus of subg. Cinnabarinus and C. koreanus of subg. Parvocantharellus. A key to the species of subg. Cinnabarinus in China was provided.
Collapse
|
17
|
Sugawara R, Maekawa N, Sotome K, Nakagiri A, Endo N. Systematic revision of Hydnum species in Japan. Mycologia 2022; 114:413-452. [PMID: 35394899 DOI: 10.1080/00275514.2021.2024407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hydnum (Hydnaceae, Basidiomycota) exhibits endemic species diversity in East Asia; however, few comprehensive systematic studies have been conducted to date. Here, we performed morphological, ecological, phylogenetic, and biological evaluations of the taxonomy of Hydnum species in Japan. In total, 186 Japanese Hydnum specimens were used for morphological observations. Phylogenetic trees were constructed using sequence data of nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS) region and a portion of translation elongation factor 1-α (tef1). Intra- and interspecific mating tests using 78 monokaryotic strains of 13 species did not conflict with species delimitation inferred from their ITS and tef1 phylogenetic relationships. This study provides detailed morphological descriptions of 15 rigorously identified species from Japan, nine of which are described as new: H. alboluteum, H. albopallidum, H. pinicola, H. itachiharitake, H. minospororufescens, H. orientalbidum, H. subberkeleyanum, H. tomaense, and H. tottoriense. Three species documented in this work are new to Japan: H. boreorepandum, H. mulsicolor, and H. umbilicatum. The remaining three species (H. cremeoalbum, H. minus, and H. repando-orientale), previously reported from Japan, are redescribed using data from newly collected materials. We also transferred two old species (Hericium fimbrillatum and Sarcodon nauseofoetidus) from East Asian Hydnum into other genera.
Collapse
Affiliation(s)
- Ryo Sugawara
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Akira Nakagiri
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori 680-8553, Japan
| |
Collapse
|
18
|
Arifin AR, Reiter NH, May TW, Linde CC. New species of Tulasnella associated with Australian terrestrial orchids in the subtribes Megastylidinae and Thelymitrinae. Mycologia 2022; 114:388-412. [PMID: 35316155 DOI: 10.1080/00275514.2021.2019547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tulasnella (Tulasnellaceae) is a genus of fungus that can form mycorrhizal associations with orchids (Orchidaceae). Here we used molecular phylogenetic analyses and morphological characteristics of pure cultures across four different media to support the description of five new Tulasnella species associated with commonly occurring and endangered Australian orchids. Tulasnella nerrigaensis associates with Calochilus; T. subasymmetrica and T. kiataensis with Thelymitra; and T. korungensis and T. multinucleata with Pyrorchis and Rimacola respectively. The newly described species were primarily delimited by analyses of five loci: nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS), C14436 (adenosine triphosphate [ATP] synthase), C4102 (glutamate synthase), C3304 (ATP helicase), and mt large subunit 16S rDNA (mtLSU). Tulasnella subasymmetrica is introduced for some isolates previously identified as T. asymmetrica, and this latter species is characterized from multilocus sequencing of a new isolate that matches ITS sequences from the ex-type culture. Morphological differences between the new species are slight. Tulasnella multinucleata has 6-12 nuclei per hyphal compartment which is the first instance of multinucleate rather than binucleate or trinucleate hyphal compartments in Tulasnella. The formal description of these species of Tulasnella will aid in future evolutionary and ecological studies of orchid-fungal interactions.
Collapse
Affiliation(s)
- Arild R Arifin
- Ecology and Evolution, Research School of Biology, the Australian National University, ACT 2601, Canberra, Australia
| | - Noushka H Reiter
- Ecology and Evolution, Research School of Biology, the Australian National University, ACT 2601, Canberra, Australia.,Science Division, Royal Botanic Gardens Victoria, cnr Ballarto Road and Botanic Drive, Cranbourne, 3977, Australia
| | - Tom W May
- Science Division, Royal Botanic Gardens Victoria, Melbourne, 3004, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, the Australian National University, ACT 2601, Canberra, Australia
| |
Collapse
|
19
|
Maekawa N. Taxonomy of corticioid fungi in Japan : Present status and future prospects. MYCOSCIENCE 2021; 62:345-355. [PMID: 37090178 PMCID: PMC9733718 DOI: 10.47371/mycosci.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Corticioid fungi form effused basidiomata with various hymenophore configurations, mostly on woody substrates, and they are presently classified into 15 orders in Agaricomycotina in the phylum Basidiomycota. In this review, the corticioid fungi of Japan are treated on the basis of the current classification system, and all currently known species are listed and classified by order. Japanese corticioid fungi number 442 species in 160 genera belonging to 14 orders. Analysis of the distribution of Japanese corticioid species reveals that 375 species (85% of the total) have wide distributions, and that the Japanese corticioid fungal flora is composed of species with diverse patterns of distribution. In the subtropical regions, 146 corticioid species belonging to 77 genera are listed, including 100 species from the Nansei Islands and 76 from the Ogasawara Islands. Although these two island groups are located at similar latitudes, they share only 30 corticioid species-21% of the total reported from the subtropical regions. Along with this summary of the current status, this study presents future directions for the taxonomic research of the Japanese corticioid fungi.
Collapse
Affiliation(s)
- Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
20
|
Zhang M, Wang CQ, Buyck B, Deng WQ, Li TH. Multigene Phylogeny and Morphology Reveal Unexpectedly High Number of New Species of Cantharellus Subgenus Parvocantharellus (Hydnaceae, Cantharellales) in China. J Fungi (Basel) 2021; 7:jof7110919. [PMID: 34829207 PMCID: PMC8623453 DOI: 10.3390/jof7110919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Cantharellus, commonly known as chanterelles, has recently been divided into six subgenera; however, wider sampling approaches are needed to clarify the relationships within and between these groups. A phylogenetic overview of Cantharellus subgenus Parvocantharellus in China was inferred based on the large subunit nuclear ribosomal RNA gene (nrLSU), the DNA-directed RNA polymerase II subunit 2 (rpb2), and the transcription elongation factor 1-alpha (tef1). A total of nine species from China were assigned to the subgenus, including seven novel species, namely Cantharellusaurantinus, C. austrosinensis, C. galbanus, C. luteolus, C. luteovirens, C. minioalbus, and C. sinominior, and two known species, namely C. albus and C. zangii. The detailed descriptions and illustrations were provided based on the newly obtained data, with the comparisons to closely related species. C. zangii was restudied based on the paratype specimens and multiple new collections from the type locality. Futhermore, the Indian species C. sikkimensis was identified as a synonym of C. zangii based on the morphological and molecular analyses. A key to the Chinese species belonging to the subg. Parvocantharellus is also provided.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.Z.); (C.-Q.W.); (W.-Q.D.)
| | - Chao-Qun Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.Z.); (C.-Q.W.); (W.-Q.D.)
| | - Bart Buyck
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, Case Postale 39, 12 rue Buffon, F-75005 Paris, France;
| | - Wang-Qiu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.Z.); (C.-Q.W.); (W.-Q.D.)
| | - Tai-Hui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (M.Z.); (C.-Q.W.); (W.-Q.D.)
- Correspondence:
| |
Collapse
|
21
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Stalpers JA, Redhead SA, May TW, Rossman AY, Crouch JA, Cubeta MA, Dai YC, Kirschner R, Langer GJ, Larsson KH, Mack J, Norvell LL, Oberwinkler F, Papp V, Roberts P, Rajchenberg M, Seifert KA, Thorn RG. Competing sexual-asexual generic names in Agaricomycotina (Basidiomycota) with recommendations for use. IMA Fungus 2021; 12:22. [PMID: 34380577 PMCID: PMC8359032 DOI: 10.1186/s43008-021-00061-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/03/2021] [Indexed: 11/10/2022] Open
Abstract
With the change to one scientific name for fungal taxa, generic names typified by species with sexual or asexual morph types are being evaluated to determine which names represent the same genus and thus compete for use. In this paper generic names of the Agaricomycotina (Basidiomycota) were evaluated to determine synonymy based on their type. Forty-seven sets of sexually and asexually typified names were determined to be congeneric and recommendations are made for which generic name to use. In most cases the principle of priority is followed. However, 16 generic names are recommended for use that do not have priority and thus need to be protected: Aleurocystis over Matula; Armillaria over Acurtis and Rhizomorpha; Asterophora over Ugola; Botryobasidium over Acladium, Allescheriella, Alysidium, Haplotrichum, Physospora, and Sporocephalium; Coprinellus over Ozonium; Coprinopsis over Rhacophyllus; Dendrocollybia over Sclerostilbum and Tilachlidiopsis; Diacanthodes over Bornetina; Echinoporia over Echinodia; Neolentinus over Digitellus; Postia over Ptychogaster; Riopa over Sporotrichum; Scytinostroma over Artocreas, Michenera, and Stereofomes; Tulasnella over Hormomyces; Typhula over Sclerotium; and Wolfiporia over Gemmularia and Pachyma. Nine species names are proposed for protection: Botryobasidium aureum, B. conspersum, B. croceum, B. simile, Pellicularia lembosporum (syn. B. lembosporum), Phanerochaete chrysosporium, Polyporus metamorphosus (syn. Riopa metamorphosa), Polyporus mylittae (syn. Laccocephalum mylittae), and Polyporus ptychogaster (syn. Postia ptychogaster). Two families are proposed for protection: Psathyrellaceae and Typhulaceae. Three new species names and 30 new combinations are established, and one lectotype is designated.
Collapse
Affiliation(s)
| | - Scott A Redhead
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, CEF, Ottawa, Ontario, K1A OC6, Canada
| | - Tom W May
- Royal Botanic Gardens Victoria, 100 Birdwood Avenue, Melbourne, Victoria, 3004, Australia
| | - Amy Y Rossman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Jo Anne Crouch
- USDA-ARS, Mycology & Nematology Genetic Diversity & Biology Laboratory, Beltsville, MD, 20705, USA
| | - Marc A Cubeta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Roland Kirschner
- Department of Biomedical Sciences and Engineering, National Central University, Zhongli District, Taoyuan City, 320, Taiwan, Republic of China
| | - Gitta Jutta Langer
- Department of Forest Protection, Northwest German Forest Research Institute (NW-FVA), 37079, Goettingen, Lower Saxony, Germany
| | | | - Jonathan Mack
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, CEF, Ottawa, Ontario, K1A OC6, Canada
| | | | - Franz Oberwinkler
- Lehrstuhl für Spezielle Botanik und Mykologie, Botanisches Institut, Universität, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Viktor Papp
- Department of Botany, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Mario Rajchenberg
- Centro Forestal CIEFAP, C.C. 14, 9200, Esquel, Chubut, Argentina.,National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Keith A Seifert
- Department of Biology, Carlton University, Ottawa, Ontario, K1S 5B6, Canada
| | - R Greg Thorn
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
23
|
Cao T, Hu YP, Yu JR, Wei TZ, Yuan HS. A phylogenetic overview of the Hydnaceae ( Cantharellales, Basidiomycota) with new taxa from China. Stud Mycol 2021; 99:100121. [PMID: 35035603 PMCID: PMC8717575 DOI: 10.1016/j.simyco.2021.100121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The family Hydnaceae (Cantharellales, Basidiomycota) is a group of fungi found worldwide which exhibit stichic nuclear division. The group is highly diverse in morphology, ecology, and phylogeny, and includes some edible species which are popular all over the world. Traditionally, Hydnaceae together with Cantharellaceae, Clavulinaceae and Sistotremataceae are four families in the Cantharellales. The four families were combined and redefined as "Hydnaceae", however, a comprehensive phylogeny based on multiple-marker dataset for the entire Hydnaceae sensu stricto is still lacking and the delimitation is also unclear. We inferred Maximum Likelihood and Bayesian phylogenies for the family Hydnaceae from the data of five DNA regions: the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the mitochondrial small subunit rDNA gene (mtSSU), the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-alpha gene (TEF1). We also produced three more phylogenetic trees for Cantharellus based on 5.8S, nLSU, mtSSU, RPB2 and TEF1, Craterellus and Hydnum both based on the combined nLSU and ITS. This study has reproduced the status of Hydnaceae in the order Cantharellales, and phylogenetically confirmed seventeen genera in Hydnaceae. Twenty nine new taxa or synonyms are described, revealed, proposed, or reported, including eight new subgenera (Cantharellus subgenus Magnus, Craterellus subgenus Cariosi, subg. Craterellus, subg. Imperforati, subg. Lamelles, subg. Longibasidiosi, subg. Ovoidei, and Hydnum subgenus Brevispina); seventeen new species (Ca. laevihymeninus, Ca. magnus, Ca. subminor, Cr. badiogriseus, Cr. croceialbus, Cr. macrosporus, Cr. squamatus, H. brevispinum, H. flabellatum, H. flavidocanum, H. longibasidium, H. pallidocroceum, H. pallidomarginatum, H. sphaericum, H. tangerinum, H. tenuistipitum and H. ventricosum); two synonyms (Ca. anzutake and Ca. tuberculosporus as Ca. yunnanensis), and two newly recorded species (H. albomagnum and H. minum). The distinguishing characters of the new species and subgenera as well as their allied taxa are discussed in the notes which follow them. The delimitation and diversity in morphology, ecology, and phylogeny of Hydnaceae is discussed. Notes of seventeen genera which are phylogenetically accepted in Hydnaceae by this study and a key to the genera in Hydnaceae are provided.
Collapse
Key Words
- Cantharellales
- Cantharellus anzutake W. Ogawa, N. Endo, M. Fukuda and A. Yamada and Ca. tuberculosporus M. Zang as Ca. yunnanensis W.F. Chiu
- Cantharellus laevihymeninus T. Cao & H.S. Yuan, Ca. magnus T. Cao & H.S. Yuan, Ca. subminor T. Cao & H.S. Yuan
- Craterellus badiogriseus T. Cao & H.S. Yuan, Cr. croceialbus T. Cao & H.S. Yuan, Cr. macrosporus T. Cao & H.S. Yuan, Cr. squamatus T. Cao & H.S. Yuan
- Hydnaceae
- Hydnum albomagnum Banker
- Hydnum brevispinum T. Cao & H.S. Yuan, H. flabellatum T. Cao & H.S. Yuan, H. flavidocanum T. Cao & H.S. Yuan, H. longibasidium T. Cao & H.S. Yuan, H. pallidocroceum T. Cao & H.S. Yuan, H. pallidomarginatum T. Cao & H.S. Yuan, H. sphaericum T. Cao & H.S. Yuan, H. tangerinum T. Cao & H.S. Yuan, H. tenuistipitum T. Cao & H.S. Yuan, H. ventricosum T. Cao & H.S. Yuan
- Hydnum minum Yanaga & N. Maek
- In genus Cantharellus: Cantharellus subgenus Magnus T. Cao & H.S. Yuan
- Multiple-marker phylogeny
- Taxonomy
- in genus Craterellus: Craterellus subgenus Cariosi T. Cao & H.S. Yuan, subg. Craterellus, subg. Imperforati T. Cao & H.S. Yuan, subg. Lamelles T. Cao & H.S. Yuan, subg. Longibasidiosi T. Cao & H.S. Yuan, subg. Ovoidei T. Cao & H.S. Yuan
- in genus Hydnum: Hydnum subgenus Brevispina T. Cao & H.S. Yuan
Collapse
Affiliation(s)
- Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Ping Hu
- Nanjing Institute of Environmental Sciences, MEE/State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains, Nanjing 210042, PR China
| | - Jia-Rui Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
24
|
New intergeneric orchid hybrid found in Romania × Pseudorhiza nieschalkii (Senghas) P.F.Hunt nothosubsp. siculorum H.Kertész & N.Anghelescu, 2020. PLoS One 2021; 16:e0241733. [PMID: 34010278 PMCID: PMC8133417 DOI: 10.1371/journal.pone.0241733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
We describe the first reported intergeneric, which naturally occurs between two subspecies belonging to different genera, Dactylorhiza fuchsii subsp. sooana (genus Dactylorhiza) and Pseudorchis albida subsp. tricuspis (genus Pseudorchis), as × Pseudorhiza nieschalkii (Senghas) P.F.Hunt nothosubsp. siculorum H.Kertész & N.Anghelescu, 2020. The hybrid was found and digitally photographed for the first time by Hajnalka Kertész in June, 2020, within Terra Siculorum, in one of the Natura 2000 protected areas, known as Harghita Mădăraș, ROSCI00090. Following detailed morphometric analysis using 67 characters and molecular karyological analyses, we identified this unique specimen as an intergeneric hybrid, new to science. The hybrid, an F1 generation plant, most likely representing a single intergeneric pollination event, is phenotypically intermediate between its parental species in most of the characters scored, but it significantly closely resembles Pseudorchis albida subsp. tricuspis parent. Since several individuals of the parental species occurred in near proximity, within 1–10 meters distance, we suggest that the production of this hybrid required a minimum travel distance of ca 1–10 meters, by the pollinators and frequent exchange of pollen between the parental species was very likely. The parental species and the hybrid, which display a considerable synchronicity in their flowering time, overlap in the pollinator community, sharing various species of Hymenopterans and Dipterans, very abundant in the heathland. This Terra Siculorum hybrid is thus best described as a rarely occurring intergeneric hybrid that shows strong Pseudorchis albida subsp. tricuspis parental dominance in inheritance patterns.
Collapse
|
25
|
Furneaux B, Bahram M, Rosling A, Yorou NS, Ryberg M. Long- and short-read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Mol Ecol Resour 2021; 21:1833-1849. [PMID: 33811446 DOI: 10.1111/1755-0998.13387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023]
Abstract
Fungi form diverse communities and play essential roles in many terrestrial ecosystems, yet there are methodological challenges in taxonomic and phylogenetic placement of fungi from environmental sequences. To address such challenges, we investigated spatiotemporal structure of a fungal community using soil metabarcoding with four different sequencing strategies: short-amplicon sequencing of the ITS2 region (300-400 bp) with Illumina MiSeq, Ion Torrent Ion S5 and PacBio RS II, all from the same PCR library, as well as long-amplicon sequencing of the full ITS and partial LSU regions (1200-1600 bp) with PacBio RS II. Resulting community structure and diversity depended more on statistical method than sequencing technology. The use of long-amplicon sequencing enables construction of a phylogenetic tree from metabarcoding reads, which facilitates taxonomic identification of sequences. However, long reads present issues for denoising algorithms in diverse communities. We present a solution that splits the reads into shorter homologous regions prior to denoising, and then reconstructs the full denoised reads. In the choice between short and long amplicons, we suggest a hybrid approach using short amplicons for sampling breadth and depth, and long amplicons to characterize the local species pool for improved identification and phylogenetic analyses.
Collapse
Affiliation(s)
- Brendan Furneaux
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Anna Rosling
- Program in Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Nourou S Yorou
- Research Unit in Tropical Mycology and Plant-Fungi Interactions, LEB, University of Parakou, Parakou, Benin
| | - Martin Ryberg
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Sugawara R, Sotome K, Maekawa N, Nakagiri A, Endo N. Mycorrhizal synthesis, morpho-anatomical characterization of mycorrhizae, and evaluation of mycorrhiza-forming ability of Hydnum albidum-like species using monokaryotic and dikaryotic cultures. MYCORRHIZA 2021; 31:349-359. [PMID: 33616720 DOI: 10.1007/s00572-021-01024-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Despite the economic and ecological importance of Hydnum species, in vitro synthesis of ectomycorrhizae of this genus has not been reported due to difficulties in establishing pure cultures. We inoculated pure cultures of 12 monokaryotic and 3 dikaryotic mycelial strains of an undescribed Hydnum albidum-like species on roots of axenic Pinus densiflora seedlings to synthesize ectomycorrhizae and to evaluate their mycorrhiza-forming ability. Six months after inoculation, both monokaryotic and dikaryotic strains formed ectomycorrhizae with Hartig net hyphae at the root cortex. Monokaryotic and dikaryotic strains exhibited similar morpho-anatomical characteristics of ectomycorrhizae, with the exception for clamped septa of emanating and outer mantle hyphae in the latter. Between monokaryotic and descendant dikaryotic strains, there were no significant differences in number of mycorrhizae in pine seedlings, whereas monokaryotic strains showed a greater total number of root tips and lower colonization rates than the descendant dikaryotic strains. These results indicate that both monokaryotic and dikaryotic mycelia of the H. albidum-like species can form mycorrhizae under axenic condition, and that can be applied toward the cultivation of hedgehog mushrooms.
Collapse
Affiliation(s)
- Ryo Sugawara
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101, Koyama, Tottori, 680-8553, Japan
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori, 680-8553, Japan
| | - Nitaro Maekawa
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori, 680-8553, Japan
| | - Akira Nakagiri
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori, 680-8553, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyama, Tottori, 680-8553, Japan.
| |
Collapse
|
27
|
Arifin AR, May TW, Linde CC. New species of Tulasnella associated with Australian terrestrial orchids in the Cryptostylidinae and Drakaeinae. Mycologia 2020; 113:212-230. [PMID: 33146586 DOI: 10.1080/00275514.2020.1813473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many orchids have an obligate relationship with Tulasnella mycorrhizal fungi for seed germination and support into adulthood. Despite the importance of Tulasnella as mycorrhizal partners, many species remain undescribed. Here, we use multiple sequence locus phylogenetic analyses to delimit and describe six new Tulasnella species associated with Australian terrestrial orchids from the subtribes Cryptostylidinae and Drakaeinae. Five of the new species, Tulasnella australiensis, T. occidentalis, T. punctata, T. densa, and T. concentrica, all associate with Cryptostylis (Cryptostylidinae), whereas T. rosea associates with Spiculaea ciliata (Drakaeinae). Isolates representing T. australiensis were previously also reported in association with Arthrochilus (Drakaeinae). All newly described Tulasnella species were delimited by phylogenetic analyses of four loci (nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 [ITS], C14436 [ATP synthase], C4102 [glutamate synthase], and mt 16S rDNA [mtLSU]). The pairwise sequence divergence between species for the ITS region ranged from 5.6% to 25.2%, and the maximum sequence divergence within the newly described species ranged from 1.64% to 4.97%. There was a gap in the distribution of within- and between-species pairwise divergences in the region of 4-6%, with only one within-species value of 4.97% (for two T. australiensis isolates) and one between-species value of 5.6% (involving an isolate of T. occidentalis) falling within this region. Based on fluorescence staining, all six new Tulasnella species are binucleate and have septate, cylindrical hyphae. There was some subtle variation in culture morphology, but colony diameter as measured on 3MN+vitamin medium after 6 wk of growth did not differ among species. However, T. australiensis grew significantly (P < 0.02) slower than others on ½ FIM and ¼ potato dextrose agar (PDA) media. Formal description of these Tulasnella species contributes significantly to documentation of Tulasnella diversity and provides names and delimitations to underpin further research on the fungi and their relationships with orchids.
Collapse
Affiliation(s)
- Arild R Arifin
- Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, ACT 2601, Australia
| | - Tom W May
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne , VIC 3004, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
28
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Masumoto H, Degawa Y. Multiclavula petricola sp. nov. (Cantharellales, Basidiomycota), a new clavarioid and lichenized fungus growing on rocks. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Masumoto H, Degawa Y. Bryoclavula phycophila gen. et sp. nov. belonging to a novel lichenized lineage in Cantharellales (Basidiomycota). Mycol Prog 2020. [DOI: 10.1007/s11557-020-01588-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Relative effectiveness of Tulasnella fungal strains in orchid mycorrhizal symbioses between germination and subsequent seedling growth. Symbiosis 2020. [DOI: 10.1007/s13199-020-00681-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Freitas EFS, da Silva M, Cruz EDS, Mangaravite E, Bocayuva MF, Veloso TGR, Selosse MA, Kasuya MCM. Diversity of mycorrhizal Tulasnella associated with epiphytic and rupicolous orchids from the Brazilian Atlantic Forest, including four new species. Sci Rep 2020; 10:7069. [PMID: 32341376 PMCID: PMC7184742 DOI: 10.1038/s41598-020-63885-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
The genus Tulasnella often forms mycorrhizas with orchids and has worldwide distribution. Species of this genus are associated with a wide range of orchids, including endangered hosts. Initially, species identification relied mostly on morphological features and few cultures were preserved for later phylogenetic comparisons. In this study, a total of 50 Tulasnella isolates were collected from their natural sites in Minas Gerais, Brazil, cultured, and subjected to a phylogenetic analysis based on alignments of sequences of the internal transcribed spacer (ITS) of the nuclear ribosomal DNA. Our results, based on phylogeny, integrated with nucleotide divergence and morphology, revealed the diversity of isolated Tulasnella species, which included four new species, namely, Tulasnella brigadeiroensis, Tulasnella hadrolaeliae, Tulasnella orchidis and Tulasnella zygopetali. The conservation of these species is important due to their association with endangered orchid hosts and endemic features in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
| | - Meiriele da Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Everaldo da Silva Cruz
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Erica Mangaravite
- Centro Universitário Unifaminas, 36888-233, Muriaé, Minas Gerais State, Brazil
| | - Melissa Faust Bocayuva
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Tomás Gomes Reis Veloso
- Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-750055, Paris, France
- University of Gdańsk, Faculty of Biology, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | | |
Collapse
|
33
|
He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutteten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zhang MZ, Ling ZL, Cao B, Antonín V, Boekhout T, da Silva BDB, De Crop E, Decock C, Dima B, Dutta AK, Fell JW, Geml J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeken A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM. Notes, outline and divergence times of Basidiomycota. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Collapse
|
34
|
Eduardo PP, Margarita VR, Roberto GO, Rodolfo SL. Two new species of Clavulina and the first record of Clavulina reae from temperate Abies religiosa forests in central Mexico. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01516-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Wu CL, He Y, Yan J, Zhang P. Two new species of Clavulina (Cantharellales) from southwestern China based on morphological and molecular evidence. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01506-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00429-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Carriconde F, Gardes M, Bellanger JM, Letellier K, Gigante S, Gourmelon V, Ibanez T, McCoy S, Goxe J, Read J, Maggia L. Host effects in high ectomycorrhizal diversity tropical rainforests on ultramafic soils in New Caledonia. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Buyck B, W Henkel T, Hofstetter V. Epitypification of the Central African Cantharellusdensifolius and C.luteopunctatus allows for the recognition of two additional species. MycoKeys 2019; 49:49-72. [PMID: 31043852 PMCID: PMC6477822 DOI: 10.3897/mycokeys.49.32034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/19/2019] [Indexed: 11/12/2022] Open
Abstract
Cantharellusdensifolius and C.luteopunctatus are epitypified on the basis of recently collected specimens from the Central African rain forest that correspond in every way to their respective original descriptions. Sequences obtained from these new collections demonstrate that both epitypes represent distinct species that belong in different subclades of Cantharellussubg.Rubrinus. Previously, the name C.densifolius has been consistently misapplied to more or less similar species from the African woodland area, including C.densilamellatus sp. nov. which is described here, In addition, C.tomentosoides sp. nov., a rain forest species that is easily confused with C.densifolius, is described.
Collapse
Affiliation(s)
- Bart Buyck
- Institut de Systematique, Evolution, Biodiversite (ISYEB - UMR 7205), Museum national d'Histoire naturelle, Sorbonne Université, CNRS, CP 39, 12 Rue Buffon, F-75005 Paris, France Sorbonne Université Paris France
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, California, 95521, USA Humboldt State University Arcata United States of America
| | - Valérie Hofstetter
- Department of Plant Protection, Agroscope Changins-Wädenswil Research Station ACW, Rte De Duiller, CH-1260 Nyon 1, Switzerland Wädenswil Research Station Nyon Switzerland
| |
Collapse
|
39
|
Li Q, Liao M, Yang M, Xiong C, Jin X, Chen Z, Huang W. Characterization of the mitochondrial genomes of three species in the ectomycorrhizal genus Cantharellus and phylogeny of Agaricomycetes. Int J Biol Macromol 2018; 118:756-769. [DOI: 10.1016/j.ijbiomac.2018.06.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
|
40
|
González-Chávez MDCA, Torres-Cruz TJ, Sánchez SA, Carrillo-González R, Carrillo-López LM, Porras-Alfaro A. Microscopic characterization of orchid mycorrhizal fungi: Scleroderma as a putative novel orchid mycorrhizal fungus of Vanilla in different crop systems. MYCORRHIZA 2018; 28:147-157. [PMID: 29177968 DOI: 10.1007/s00572-017-0808-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/09/2017] [Indexed: 05/20/2023]
Abstract
Vanilla is an orchid of economic importance widely cultivated in tropical regions and native to Mexico. We sampled three species of Vanilla (V. planifolia, V. pompona, and V. insignis) in different crop systems. We studied the effect of crop system on the abundance, type of fungi, and quality of pelotons found in the roots using light and electron microscopy and direct sequencing of mycorrhizal structures. Fungi were identified directly from pelotons obtained from terrestrial roots of vanilla plants in the flowering stage. Root samples were collected from plants in crop systems located in the Totonacapan area in Mexico (states of Puebla and Veracruz). DNA was extracted directly from 40 pelotons and amplified using ITS rRNA sequencing. Peloton-like structures were observed, presenting a combination of active pelotons characterized by abundant hyphal coils and pelotons in various stages of degradation. The most active pelotons were observed in crop systems throughout living tutors (host tree) in comparison with roots collected from dead or artificial tutors. Fungi identified directly from pelotons included Scleroderma areolatum, a common ectomycorrhizal fungus that has not been reported as a mycorrhizal symbiont in orchids. Direct amplification of pelotons also yielded common plant pathogens, including Fusarium and Pyrenophora seminiperda, especially in those sites with low colonization rates, and where large numbers of degraded pelotons were observed. This research reports for the first time the potential colonization of Vanilla by Scleroderma, as a putative orchid mycorrhizal symbiont in four sites in Mexico and the influence of crop system on mycorrhizal colonization on this orchid.
Collapse
Affiliation(s)
- Ma Del Carmen A González-Chávez
- Programa de Edafología, Colegio de Postgraduados, Campus Montecillo. Carr. México-Texcoco, 56230, Montecillo, Mexico State, Mexico
| | - Terry J Torres-Cruz
- Department of Biological Sciences, Western Illinois University, Macomb, IL, 61455, USA
| | - Samantha Albarrán Sánchez
- Programa de Edafología, Colegio de Postgraduados, Campus Montecillo. Carr. México-Texcoco, 56230, Montecillo, Mexico State, Mexico
| | - Rogelio Carrillo-González
- Programa de Edafología, Colegio de Postgraduados, Campus Montecillo. Carr. México-Texcoco, 56230, Montecillo, Mexico State, Mexico
| | - Luis Manuel Carrillo-López
- Facultad de Zootecnia y Ecología, CONACYT-Universidad Autónoma de Chihuahua, 31453, Chihuahua State, Mexico
| | - Andrea Porras-Alfaro
- Department of Biological Sciences, Western Illinois University, Macomb, IL, 61455, USA.
| |
Collapse
|
41
|
Kolařík M, Vohník M. When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 2017; 122:1-18. [PMID: 29248111 DOI: 10.1016/j.funbio.2017.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022]
Abstract
The nuclear ribosomal DNA (nuc-rDNA) is widely used for the identification and phylogenetic reconstruction of Agaricomycetes. However, nuc-rDNA-based phylogenies may sometimes be in conflict with phylogenetic relationships derived from protein coding genes. In this study, the taxonomic position of the basidiomycetous mycobiont that forms the recently discovered sheathed ericoid mycorrhiza was investigated, because its nuc-rDNA is highly dissimilar to any other available fungal sequences in terms of nucleotide composition and length, and its nuc-rDNA-based phylogeny is inconclusive and significantly disagrees with protein coding sequences and morphological data. In the present work, this mycobiont was identified as Kurtia argillacea (= Hyphoderma argillaceum) residing in the order Hymenochaetales (Basidiomycota). Bioinformatic screening of the Kurtia ribosomal DNA sequence indicates that it represents a gene with a non-standard substitution rate or nucleotide composition heterogeneity rather than a deep paralogue or a pseudogene. Such a phenomenon probably also occurs in other lineages of the Fungi and should be taken into consideration when nuc-rDNA (especially that with unusual nucleotide composition) is used as a sole marker for phylogenetic reconstructions. Kurtia argillacea so far represents the only confirmed non-sebacinoid ericoid mycorrhizal fungus in the Basidiomycota and its intriguing placement among mostly saprobic and parasitic Hymenochaetales begs further investigation of its eco-physiology.
Collapse
Affiliation(s)
- Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences (CAS), Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany CAS, CZ-252 43 Průhonice, Czech Republic; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| |
Collapse
|
42
|
Mujic AB, Kuo A, Tritt A, Lipzen A, Chen C, Johnson J, Sharma A, Barry K, Grigoriev IV, Spatafora JW. Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus. G3 (BETHESDA, MD.) 2017; 7:1775-1789. [PMID: 28450370 PMCID: PMC5473757 DOI: 10.1534/g3.117.039396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 12/04/2022]
Abstract
Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.
Collapse
Affiliation(s)
- Alija Bajro Mujic
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Alan Kuo
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Andrew Tritt
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Anna Lipzen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Cindy Chen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Jenifer Johnson
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Aditi Sharma
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Kerrie Barry
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Igor V Grigoriev
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
43
|
Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai YC, He SH, Cui BK, Zhou JL, Wu F, He MQ, Moncalvo JM, Hyde KD. A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0381-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ, Jones EBG, McKenzie EHC, Camporesi E, Bulgakov TS, Doilom M, de Azevedo Santiago ALCM, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang JB, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Raj KNA, Latha KPD, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon DS, Li J, Dayarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, de Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Chethana KWT, Luo ZL, Hapuarachchi KK, Baghela A, Soares AM, Vizzini A, Meiras-Ottoni A, Mešić A, Dutta AK, de Souza CAF, Richter C, Lin CG, Chakrabarty D, Daranagama DA, Lima DX, Chakraborty D, Ercole E, Wu F, Simonini G, Vasquez G, da Silva GA, Plautz HL, Ariyawansa HA, Lee H, Kušan I, Song J, Sun J, Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar KC, Ryvarden L, Jadan M, Hosen MI, Mikšík M, Samarakoon MC, Wijayawardene NN, Kim NK, Matočec N, Singh PN, Tian Q, Bhatt RP, de Oliveira RJV, Tulloss RE, Aamir S, Kaewchai S, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T, Bandyopadhyay TK, et alTibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ, Jones EBG, McKenzie EHC, Camporesi E, Bulgakov TS, Doilom M, de Azevedo Santiago ALCM, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang JB, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Raj KNA, Latha KPD, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon DS, Li J, Dayarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, de Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Chethana KWT, Luo ZL, Hapuarachchi KK, Baghela A, Soares AM, Vizzini A, Meiras-Ottoni A, Mešić A, Dutta AK, de Souza CAF, Richter C, Lin CG, Chakrabarty D, Daranagama DA, Lima DX, Chakraborty D, Ercole E, Wu F, Simonini G, Vasquez G, da Silva GA, Plautz HL, Ariyawansa HA, Lee H, Kušan I, Song J, Sun J, Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar KC, Ryvarden L, Jadan M, Hosen MI, Mikšík M, Samarakoon MC, Wijayawardene NN, Kim NK, Matočec N, Singh PN, Tian Q, Bhatt RP, de Oliveira RJV, Tulloss RE, Aamir S, Kaewchai S, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T, Bandyopadhyay TK, Svetasheva TY, Nguyen TTT, Antonín V, Li WJ, Wang Y, Indoliya Y, Tkalčec Z, Elgorban AM, Bahkali AH, Tang AMC, Su HY, Zhang H, Promputtha I, Luangsa-ard J, Xu J, Yan J, Ji-Chuan K, Stadler M, Mortimer PE, Chomnunti P, Zhao Q, Phillips AJL, Nontachaiyapoom S, Wen TC, Karunarathna SC. Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2017; 83:1-261. [DOI: 10.1007/s13225-017-0378-0] [Show More Authors] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
|
45
|
Affiliation(s)
- David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts 01610
| |
Collapse
|
46
|
|
47
|
Olariaga I, Moreno G, Manjón JL, Salcedo I, Hofstetter V, Rodríguez D, Buyck B. Cantharellus (Cantharellales, Basidiomycota) revisited in Europe through a multigene phylogeny. FUNGAL DIVERS 2016. [DOI: 10.1007/s13225-016-0376-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Bayman P, Mosquera-Espinosa AT, Saladini-Aponte CM, Hurtado-Guevara NC, Viera-Ruiz NL. Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. AMERICAN JOURNAL OF BOTANY 2016; 103:1880-1889. [PMID: 27797713 DOI: 10.3732/ajb.1600127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/16/2016] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Oeceoclades maculata is a naturalized, invasive, terrestrial orchid in Puerto Rico and elsewhere in the neotropics. We asked whether its success might be partly explained by its mycorrhizal associations, hypothesizing a relationship with many fungal partners or with one widely distributed partner. METHODS Oeceoclades maculata roots were collected throughout Puerto Rico, and the degree of mycorrhizal colonization was measured. For identification of fungi, the ITS region was sequenced from pure cultures and directly from roots. Representative fungi were used for symbiotic seed germination experiments. KEY RESULTS Colonization of O. maculata roots was very variable. The most common fungus identified by BLAST searches was Psathyrella cf. candolleana, but typical orchid mycorrhizal fungi (Ceratobasidium and Tulasnella) were also found, as were a range of saprotrophs. Seeds germinated in vitro only in the presence of Psathyrella. CONCLUSIONS These results are surprising in two respects. First, O. maculata appears to be highly specific for fungi during seed germination, but unusually promiscuous as adult plants. Second, mycorrhizal associations with Psathyrella and with other saprotrophic fungi have been previously reported, but only from mycoheterotrophic (i.e., nonphotosynthetic) orchids, not from green orchids like Oeceoclades. This combination may partly explain the success of Oeceoclades.
Collapse
Affiliation(s)
- Paul Bayman
- Departamento de Biología, Universidad de Puerto Rico-Río Piedras
| | - Ana T Mosquera-Espinosa
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana-Cali, Colombia
| | | | | | - Naida L Viera-Ruiz
- Departamento de Biología, Universidad de Puerto Rico-Río Piedras
- Departamento de Ciencias Naturales, Universidad de Puerto Rico-Carolina
| |
Collapse
|
49
|
He G, Chen SL, Yan SZ. Morphological and molecular evidence for a new species in Clavulina from southwestern China. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Feng B, Wang XH, Ratkowsky D, Gates G, Lee SS, Grebenc T, Yang ZL. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.). Sci Rep 2016; 6:25586. [PMID: 27151256 PMCID: PMC4858670 DOI: 10.1038/srep25586] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2022] Open
Abstract
Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before.
Collapse
Affiliation(s)
- Bang Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiang-Hua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - David Ratkowsky
- Tasmanian Institute of Agriculture, and School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Genevieve Gates
- Tasmanian Institute of Agriculture, and School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Su See Lee
- Tanarimba, Janda Baik, Bentong 28750 Bentong, Pahang, Malaysia
| | - Tine Grebenc
- Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia
| | - Zhu L. Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|