1
|
Savković Ž, Popović S, Stupar M. Unveiling the Subterranean Symphony: A Comprehensive Study of Cave Fungi Revealed Through National Center for Biotechnology Sequences. J Fungi (Basel) 2025; 11:286. [PMID: 40278107 PMCID: PMC12028181 DOI: 10.3390/jof11040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Caves can be regarded as extreme environments, and fungi are known as omnipresent and highly adaptable organisms that can easily colonize such environments. The primary objective of this study was to use the statistical analysis of sequences stored in the NCBI database, together with related metadata, to find and uncover statistically significant distribution patterns of fungi occupying different substrata inside the caves. The obtained list included a total of 1447 sequences corresponding to fungi isolated from various substrata within cave environments around the world, which corresponds to 445 fungal species, members of the 394 genera. Ascomycota was the most dominant phylum and Eurotiomycetes the dominant class of fungal dwellers in these environments. The highest species richness is detected for the genus Penicillium (57), followed by Aspergillus (51). On the other hand, the most frequently documented single species was Pseudogymnoascus destructans, isolated mostly from hibernating bats and guano, followed by Penicillium chrysogenum. Because caves have stable, nutrient-limited, low-competition microhabitats that support unusual or cryptic species, many new fungal taxa have been reported as well (such as Aspergillus, Apiotrichum, and Cephalotrichum species). Finally, cutting-edge molecular technologies and better sampling methods are revealing hitherto undiscovered fungal diversity in caves worldwide.
Collapse
Affiliation(s)
| | | | - Miloš Stupar
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (Ž.S.); (S.P.)
| |
Collapse
|
2
|
Liu Y, Yang Z, Zhang L, Deng F, Zhao Z, Xue B, Wang J. Characteristics of Fungal Communities in Red Mud/Phosphogypsum-Based Artificial Soils. BIOLOGY 2025; 14:285. [PMID: 40136542 PMCID: PMC11940152 DOI: 10.3390/biology14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025]
Abstract
Red mud and phosphogypsum are two typical industrial by-products. The preparation of red mud/phosphogypsum-based artificial soils offers a promising novel solution to the efficient synergistic disposal of them. Fungi, as key drivers, can promote the continuous development and ecological improvement of artificial soils. This study is first to report the characteristics of fungal communities in three artificial soils after one year of incubation. The preliminary formation of fungal communities (with relatively low diversity) resulted in a total of 3 fungal phyla, 81 fungal genera, and 144 operational taxonomic units (OTUs) in artificial soils. Ascomycota was the dominant fungal phylum in each artificial soil (>99.5%), and the high-abundance fungal genera included Unclassified_c_Sordariomycetes, Unclassified_o_Sordariales, Emericellopsis, Kernia, Unclassified_f_Nectriaceae, Ramophialophora, Schizothecium, and Iodophanus. There were significant differences among the three artificial soils in the compositions of fungal genera, which affected material cycling, ecological succession, and soil development and maturation to varying extents. According to the FUNGuild prediction of fungal communities, saprotrophic fungi (such as undefined saprotroph, dung saprotroph-undefined saprotroph, and dung saprotroph) played dominant roles in promoting the degradation and humification of organic matter and the cycling of carbon in artificial soils. Fungal communities in the three artificial soils had strong correlations with many environmental factors (such as pH, organic matter, available nitrogen, total nitrogen, available phosphorous, sucrase, urease, acid phosphatase, alkaline phosphatase, and catalase), indicating significant interactions between them. This is not only conducive to the continuous optimization of the structure of fungal communities in artificial soils but also promotes the balanced and homogeneous distribution of various substances, promoting continuous soil development and maturation and gradual improvement in its ecological functions. This study provides an important scientific basis for clarifying the mechanisms of mycogenesis during the continuous development and maturation of artificial soils.
Collapse
Affiliation(s)
- Yong Liu
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (IGCAS), Guiyang 550081, China
| | - Zhi Yang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Lishuai Zhang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Fang Deng
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Zhiqiang Zhao
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Binbin Xue
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (IGCAS), Guiyang 550081, China
| |
Collapse
|
3
|
Chen X, Zhang J, Xia W, Shao Y, Liu Z, Guo J, Qin W, Wan L, Liu J, Liu Y, Zhang J. Influence of Cover Crop Root Functional Traits on Sweet Potato Yield and Soil Microbial Communities. Microorganisms 2025; 13:471. [PMID: 40142366 PMCID: PMC11946476 DOI: 10.3390/microorganisms13030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The symbiotic relationship between cover crops and soil microorganisms is closely linked to nutrient cycling and crop growth within agroecosystems. However, how cover crops with different root functional traits influence soil microbial communities, soil properties, and crop yields has remained understudied. This study assessed the root traits of hairy vetch (HV) and rapeseed (RP), along with soil properties, sweet potato yield, and microbial enzyme activity under red soil dryland conditions. High-throughput sequencing was also employed to characterize the diversity, composition, and network structure of soil bacterial and fungal communities. According to the plant economic spectrum theory and our research results on plant root traits, HV can be identified as a resource-acquisitive cover crop, and RP treatment can be identified as a resource-conservative cover crop. Although RP treatment did not significantly increase the sweet potato yield, the increase rate reached 8.49%. Resource-conservative cover crops were associated with increased pH, SOC, and TP, which enhanced bacterial species diversity and boosted the populations of Chloroflexi and Alphaproteobacteria. In contrast, resource-acquisitive cover crops promoted the proliferation of Gammaproteobacteria. Network analysis indicated that resource-conservative cover crops facilitated network complexity through intensified intra-community competition. Resource-acquisitive cover crops enhanced the stability of microbial communities. Collectively, these findings underscore the distinct advantages of cover crops with varying root functional traits in shaping soil microbial communities. Appropriate cover crop rotations can effectively regulate microbial communities and hold the potential to enhance crop yield.
Collapse
Affiliation(s)
- Xinyi Chen
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Soil and Water Conservation, Nanchang Institute of Technology, Nanchang 330200, China; (X.C.); (W.X.); (Y.S.); (Z.L.); (J.G.)
| | - Jie Zhang
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Soil and Water Conservation, Nanchang Institute of Technology, Nanchang 330200, China; (X.C.); (W.X.); (Y.S.); (Z.L.); (J.G.)
| | - Wangbiao Xia
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Soil and Water Conservation, Nanchang Institute of Technology, Nanchang 330200, China; (X.C.); (W.X.); (Y.S.); (Z.L.); (J.G.)
| | - Yangyang Shao
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Soil and Water Conservation, Nanchang Institute of Technology, Nanchang 330200, China; (X.C.); (W.X.); (Y.S.); (Z.L.); (J.G.)
| | - Zhirong Liu
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Soil and Water Conservation, Nanchang Institute of Technology, Nanchang 330200, China; (X.C.); (W.X.); (Y.S.); (Z.L.); (J.G.)
| | - Jian Guo
- Jiangxi Provincial Engineering Research Center for Seed-Breeding and Utilization of Camphor Trees, School of Soil and Water Conservation, Nanchang Institute of Technology, Nanchang 330200, China; (X.C.); (W.X.); (Y.S.); (Z.L.); (J.G.)
| | - Wenjing Qin
- Institute of Soil and Fertilizer & Resource and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (W.Q.); (L.W.); (J.L.)
| | - Li Wan
- Institute of Soil and Fertilizer & Resource and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (W.Q.); (L.W.); (J.L.)
| | - Jia Liu
- Institute of Soil and Fertilizer & Resource and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; (W.Q.); (L.W.); (J.L.)
| | - Ying Liu
- Jiangxi Yichun Selenium Resources Development and Utilization Center, Yichun 336000, China;
| | - Juntong Zhang
- Hebei Institute of Product Quality Supervision and Inspection, Shijiazhuang 050227, China
| |
Collapse
|
4
|
Flores FJ, Mena E, Granda S, Duchicela J. Microbial Community Composition of Explosive-Contaminated Soils: A Metataxonomic Analysis. Microorganisms 2025; 13:453. [PMID: 40005819 PMCID: PMC11858405 DOI: 10.3390/microorganisms13020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Munition disposal practices have significant effects on microbial composition and overall soil health. Explosive soil contamination can disrupt microbial communities, leading to microbial abundance and richness changes. This study investigates the microbial diversity of soils and roots from sites with a history of ammunition disposal, aiming to identify organisms that may play a role in bioremediation. Soil and root samples were collected from two types of ammunition disposal (through open burning and open detonation) and unpolluted sites in Machachi, Ecuador, over two years (2022 and 2023). High-throughput sequencing of the 16S rRNA gene (for bacteria) and the ITS region (for fungi and plants) was conducted to obtain taxonomic profiles. There were significant variations in the composition of bacteria, fungi, and plant communities between polluted and unpolluted sites. Bacterial genera such as Pseudarthrobacter, Pseudomonas, and Rhizobium were more abundant in roots, while Candidatus Udaeobacter dominated unpolluted soils. Fungal classes Dothideomycetes and Sordariomycetes were prevalent across most samples, while Leotiomycetes and Agaricomycetes were also highly abundant in unpolluted samples. Plant-associated reads showed a higher abundance of Poa and Trifolium in root samples, particularly at contaminated sites, and Alchemilla, Vaccinium, and Hypericum were abundant in unpolluted sites. Alpha diversity analysis indicated that bacterial diversity was significantly higher in unpolluted root and soil samples, whereas fungal diversity was not significantly different among sites. Redundancy analysis of beta diversity showed that site, year, and sample type significantly influenced microbial community structure, with the site being the most influential factor. Differentially abundant microbial taxa, including bacteria such as Pseudarthrobacter and fungi such as Paraleptosphaeria and Talaromyces, may contribute to natural attenuation processes in explosive-contaminated soils. This research highlights the potential of certain microbial taxa to restore environments contaminated by explosives.
Collapse
Affiliation(s)
- Francisco J. Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito 170527, Ecuador
| | - Esteban Mena
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| | - Silvana Granda
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| | - Jéssica Duchicela
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| |
Collapse
|
5
|
Luo J, Walsh E, Faulborn A, Gao K, White J, Zhang N. Pinibarreniales, a new order of Sordariomycetes from pine barrens ecosystem. Mycologia 2024; 116:835-847. [PMID: 38959129 DOI: 10.1080/00275514.2024.2363084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Pinibarrenia chlamydospora, sp. nov. isolated from the roots of highbush blueberry in the New Jersey Pine Barrens, is described and illustrated. Based on multigene phylogenetic analysis, as well as morphological and ecological characteristics, Pinibarreniales and Pinibarreniaceae are established to accommodate this novel lineage in Sordariomycetidae, Sordariomycetes. Pinibarreniales, Tracyllalales, and Vermiculariopsiellales are proposed to be included in the subclass Sordariomycetidae. Pinibarreniales likely have a wide distribution and forms association with Ericaceae plants that live in acidic and oligotrophic environments because its DNA barcode matches with environmental sequences from other independent ecological studies. The plant-fungal interaction experiment revealed negative impacts on Arabidopsis, indicating its pathogenicity. This uncovered new fungal lineage will contribute to a better understanding of the diversity and systematics of Sordariomycetes.
Collapse
Affiliation(s)
- Jing Luo
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Emily Walsh
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Alexis Faulborn
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Kevin Gao
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - James White
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, New Jersey 08901
| |
Collapse
|
6
|
Cedeño-Sanchez M, Lambert C, Mejia LC, Ebada SS, Stadler M. Chemotaxonomic and molecular phylogenetic studies of selected Hypoxylon species from the Neotropics. Mycology 2024; 16:250-265. [PMID: 40083408 PMCID: PMC11899249 DOI: 10.1080/21501203.2024.2378071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/03/2024] [Indexed: 03/16/2025] Open
Abstract
Members of the genus Hypoxylon (Ascomycota) are pleomorphic fungi mostly forming conspicuous teleomorphs, consisting of perithecia embedded into stromal tissue, and their morphology has traditionally served for species delineation. However, analysis in tandem with other phenotypic characters, such as chemical and genetic traits, proved to be a more stable predictor of interspecies and intergeneric relationships. During 2014 and 2015, a set of species identified as Hypoxylon were described from the Neotropics, exclusively relying on morphological traits. The secondary metabolite profiles of their stromata were analysed by HPLC/DAD-ESI-MS, corroborating their classification within Xylariales. Additionally, molecular data for ex-type strains of H. dussii and H. sofaiense were incorporated into an inferred molecular phylogeny of the Hypoxylaceae and allies. Furthermore, a freshly collected specimen from North Carolina was selected as epitype of Sphaeria perforata Schweinitz (syn. Hypoxylon perforatum), as its morphological/chemotaxonomic characters matched those of the holotype. Our findings demonstrate that the secondary metabolism of Hypoxylon closely correlates with both morphological features and molecular data, serving as a complement for species identification.
Collapse
Affiliation(s)
- Marjorie Cedeño-Sanchez
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Luis C. Mejia
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT–AIP), Panamá, Republic of Panama
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panamá
| | - Sherif S. Ebada
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Braunschweig, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Zhu YQ, Li XL, Zhao DX, Wei YL, Yuan HS. Four New Species of Tomentella (Thelephorales, Basidiomycota) from Subtropical Forests in Southwestern China. J Fungi (Basel) 2024; 10:440. [PMID: 39057325 PMCID: PMC11278398 DOI: 10.3390/jof10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Species of the basidiomycetous genus Tomentella are widely distributed throughout temperate forests. Numerous studies on the taxonomy and phylogeny of Tomentella have been conducted from the temperate zone in the Northern hemisphere, but few have been from subtropical forests. In this study, four new species, T. casiae, T. guiyangensis, T. olivaceomarginata and T. rotundata from the subtropical mixed forests of Southwestern China, are described and illustrated based on morphological characteristics and phylogenetic analyses of the internal transcribed spacer regions (ITS) and the large subunit of the nuclear ribosomal RNA gene (LSU). Molecular analyses using Maximum Likelihood and Bayesian analysis confirmed the phylogenetic positions of these four new species. Anatomical comparisons among the closely related species in phylogenetic and morphological features are discussed. Four new species could be distinguished by the characteristics of basidiocarps, the color of the hymenophoral surface, the size of the basidia, the shape of the basidiospores and some other features.
Collapse
Affiliation(s)
- Ya-Quan Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; (Y.-Q.Z.); (D.-X.Z.); (Y.-L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Long Li
- Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China;
| | - Dong-Xue Zhao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; (Y.-Q.Z.); (D.-X.Z.); (Y.-L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Lian Wei
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; (Y.-Q.Z.); (D.-X.Z.); (Y.-L.W.)
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China; (Y.-Q.Z.); (D.-X.Z.); (Y.-L.W.)
| |
Collapse
|
8
|
Bosch J, Dobbler PT, Větrovský T, Tláskal V, Baldrian P, Brabcová V. Decomposition of Fomes fomentatius fruiting bodies - transition of healthy living fungus into a decayed bacteria-rich habitat is primarily driven by Arthropoda. FEMS Microbiol Ecol 2024; 100:fiae044. [PMID: 38640440 PMCID: PMC11030162 DOI: 10.1093/femsec/fiae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed. Here we used metagenomics and metatranscriptomics to analyse the microbial community associated with healthy living and decomposing F. fomentarius fruiting bodies to assess the functional potential of the fruiting body-associated microbiome and to determine the main players involved in fruiting body decomposition. F. fomentarius sequences in the metagenomes were replaced by bacterial sequences as the fruiting body decomposed. Most CAZymes expressed in decomposing fruiting bodies targeted components of the fungal cell wall with almost all chitin-targeting sequences, plus a high proportion of beta-glucan-targeting sequences, belonging to Arthropoda. We suggest that decomposing fruiting bodies of F. fomentarius represent a habitat rich in bacteria, while its decomposition is primarily driven by Arthropoda. Decomposing fruiting bodies thus represent a specific habitat supporting both microorganisms and microfauna.
Collapse
Affiliation(s)
- Jason Bosch
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Priscila Thiago Dobbler
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| | - Vendula Brabcová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 142 00 Prague, Czechia
| |
Collapse
|
9
|
Oliveira MCO, Ragonezi C, Valente S, de Freitas JGR, Pinheiro de Carvalho MAA. Microorganism community structure: A characterisation of agrosystems from Madeira Archipelago. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13227. [PMID: 38268303 PMCID: PMC10866076 DOI: 10.1111/1758-2229.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Microbial diversity profoundly influences soil ecosystem functions, making it vital to monitor community dynamics to comprehend its structure. Our study focused on six agrosystems in Madeira Archipelago, analysing bacteria, archaea, fungi and AMF through classical microbiology and molecular techniques. Despite distinct edaphoclimatic conditions and management practices, bacterial structures exhibited similarities, with Alphaproteobacteria at 18%-20%, Bacilli at 11%-18% and Clostridia at 9%-14%. The predominance of copiothrophic groups suggested that soil nutrient content was the driver of these communities. Regarding archaea, the communities changed among sites, and it was evident that agrosystems provided niches for methanogens. The Crenarchaeota varied between 15% and 29%, followed by two classes of Euryarchaeota, Methanomicrobia (17%-25%) and Methanococci (4%-32%). Fungal communities showed consistent composition at the class level but had differing diversity indices due to management practices and soil texture. Sordaryomycetes (21%-28%) and Agaricomycetes (15%-23%) were predominant. Conversely, AMF communities appeared to be also influenced by the agrosystem, with Glomus representing over 50% of the community in all agrosystems. These insights into microbial groups' susceptibilities to environmental conditions are crucial for maintaining healthy soil and predicting climate change effects on agrosystems' productivity, resilience and sustainability. Additionally, our findings enable the development of more robust prediction models for agricultural practices.
Collapse
Affiliation(s)
- Maria Cristina O. Oliveira
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
| | - Carla Ragonezi
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro – Institute for Innovation, Capacity Building and Sustainability of Agri‐Food ProductionUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Faculty of Life Sciences, Campus da PenteadaUniversity of MadeiraFunchalPortugal
| | - Sofia Valente
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
| | - José G. R. de Freitas
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
| | - Miguel A. A. Pinheiro de Carvalho
- ISOPlexis ‐ Centre of Sustainable Agriculture and Food Technology, Campus da Penteada, University of MadeiraFunchalPortugal
- Centre for the Research and Technology of Agro‐Environmental and Biological Sciences (CITAB), Inov4Agro – Institute for Innovation, Capacity Building and Sustainability of Agri‐Food ProductionUniversity of Trás‐os‐Montes and Alto DouroVila RealPortugal
- Faculty of Life Sciences, Campus da PenteadaUniversity of MadeiraFunchalPortugal
| |
Collapse
|
10
|
Fu Y, Sun H, Luo Y, Zhang W, Cai Z, Li Y, Luan L, Ning Q, Shi Q, Liang Y, Liang C, Tang C, Li Y, Zhang H, Xie Z, Chen L, Xu J, Kuzyakov Y. Deciphering Biotic and Abiotic Mechanisms Underlying Straw Decomposition and Soil Organic Carbon Priming in Agriculture Soils Receiving Long-Term Fertilizers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20549-20562. [PMID: 38099742 DOI: 10.1021/acs.jafc.3c03209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Straw-related carbon (C) dynamics are central for C accrual in agro-ecosystems and should be assessed by investigating their decomposition and soil organic carbon (SOC) priming effects. Our understanding of biotic and abiotic mechanisms underpinning these two C processes, however, is still not sufficiently profound. Soils that had received organic and mineral fertilizers for 26 years were sampled for a 28 day incubation experiment to assess 13C-labeled straw decomposition and SOC priming effects. On the basis of analyzing physicochemical properties, fungal taxonomic (MiSeq sequencing) and functional (metagenomics) guilds, we quantified the contributions of biotic and abiotic attributes to straw decomposition and SOC priming. Here, we propose two distinct mechanisms underlying straw decomposition and SOC priming in agriculture soils: (i) accelerated straw mineralization in manure-treated soils was mainly driven by biotic forces, while (ii) larger SOC priming in NPK-amended soils was through abiotic regulation.
Collapse
Affiliation(s)
- Yingyi Fu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Han Sun
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wenjun Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing 100081, People's Republic of China
| | - Zejiang Cai
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing 100081, People's Republic of China
| | - Yongchun Li
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, People's Republic of China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qi Ning
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qianer Shi
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria 3086, Australia
| | - Yongfu Li
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, People's Republic of China
| | - Huimin Zhang
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing 100081, People's Republic of China
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Lijun Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, People's Republic of China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Ważny R, Jędrzejczyk RJ, Domka A, Pliszko A, Kosowicz W, Githae D, Rozpądek P. How does metal soil pollution change the plant mycobiome? Environ Microbiol 2023; 25:2913-2930. [PMID: 37127295 DOI: 10.1111/1462-2920.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms play a key role in plant adaptation to the environment. The aim of this study was to evaluate the effect of toxic metals present in the soil on the biodiversity of plant-related, endophytic mycobiota. The mycobiome of plants and soil from a Zn-Pb heap and a metal-free ruderal area were compared via Illumina sequencing of the ITS1 rDNA. The biodiversity of plants and fungi inhabiting mine dump substrate was lower than that of the metal free site. In the endosphere of Arabidopsis arenosa from the mine dump the number of endophytic fungal taxa was comparable to that in the reference population, but the community structure significantly differed. Agaricomycetes was the most notably limited class of fungi. The results of plant mycobiota evaluation from the field study were verified in terms of the role of toxic metals in plant endophytic fungi community assembly in a reconstruction experiment. The results presented in this study indicate that metal toxicity affects the structure of the plant mycobiota not by changing the pool of microorganisms available in the soil from which the fungal symbionts are recruited but most likely by altering plant and fungi behaviour and the organisms' preferences towards associating in symbiotic relationships.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- W. Szafer Institute of Botany Polish Academy of Sciences, Kraków, Poland
| | - Artur Pliszko
- Institute of Botany, Jagiellonian University in Kraków, Kraków, Poland
| | - Weronika Kosowicz
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Dedan Githae
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
12
|
Samarakoon MC, Lumyong S, Manawasinghe IS, Suwannarach N, Cheewangkoon R. Addition of Five Novel Fungal Flora to the Xylariomycetidae (Sordariomycetes, Ascomycota) in Northern Thailand. J Fungi (Basel) 2023; 9:1065. [PMID: 37998871 PMCID: PMC10672214 DOI: 10.3390/jof9111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
The deviation of conventional fungal niches is an important factor in the implications of hidden fungal diversity and global fungal numbers. The Xylariomycetidae (Sordariomycetes, Ascomycota), which is also referred to as xylarialean taxa, has a wide range of species that demonstrate a high degree of variation in their stromatic characteristics, showing either conspicuous or inconspicuous forms. In this study, samples were collected while focusing on temporal and spatial parameters and substrate characteristics. Based on internal transcribed spacer (ITS), 28S large subunit rDNA (LSU), RNA polymerase II second largest subunit (RPB2), and β-tubulin (TUB2) multigene phylogeny and morphology, five new species are introduced as Muscodor brunneascosporus, M. lamphunensis (Xylariaceae), Nigropunctata hydei, N. saccata (Incertae sedis), and Xenoanthostomella parvispora (Gyrotrichaceae). Plant substrates in the early stages of decay and attached to the host were feasible sample niches, with an emphasis on the collection of inconspicuous, hidden xylarialean species. The appearance of inconspicuous saprobic xylarialean forms during the rainy season may be linked to the change in nutritional mode, from endophytic mode during the dry season to saprobic in the wet. Therefore, it would be fascinating to concentrate future research on how seasonal fluctuations affect nutritional mode shifts, especially in northern Thailand, which would provide the optimal spatial characteristics. In order to establish a comprehensive linkage between endophytic and saprobic modes, it is imperative to have a substantial representation of endophytic isolate sequences resembling inconspicuous xylariaceous fungi within publicly accessible databases.
Collapse
Affiliation(s)
- Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
| |
Collapse
|
13
|
Li C, Nie H, Zhang S, Jia Z, Ma S, Li T, Zhai L, Zhang B, Liu X, Zhang J, Müller C. Mineral-solubilizing microbial inoculant positively affects the multifunctionality of anthropogenic soils in abandoned mining areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118553. [PMID: 37399621 DOI: 10.1016/j.jenvman.2023.118553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
The mining industry has a significant negative impact on ecosystems, and the remediation of abandoned mining sites requires effective strategies. One promising approach is the incorporation of mineral-solubilizing microorganisms into current external soil spray seeding technologies. These microorganisms possess the ability to decrease mineral particle sizes, promote plant growth, and enhance the release of vital soil nutrients. However, most previous studies on mineral-solubilizing microorganisms have been conducted in controlled greenhouse environments, and their practical application in field settings remains uncertain. To address this knowledge gap, we conducted a four-year field experiment at an abandoned mining site to investigate the efficacy of mineral-solubilizing microbial inoculants in restoring derelict mine ecosystems. We assessed soil nutrients, enzyme activities, functional genes, and soil multifunctionality. We also examined microbial compositions, co-occurrence networks, and community assembly processes. Our results demonstrated that the application of mineral-solubilizing microbial inoculants significantly enhanced soil multifunctionality. Interestingly, certain bacterial phyla or class taxa with low relative abundances were found to be key drivers of multifunctionality. Surprisingly, we observed no significant correlation between microbial alpha diversity and soil multifunctionality, but we did identify positive associations between the relative abundance and biodiversity of keystone ecological clusters (Module #1 and #2) and soil multifunctionality. Co-occurrence network analysis revealed that microbial inoculants reduced network complexity while increasing stability. Additionally, we found that stochastic processes played a predominant role in shaping bacterial and fungal communities, and the inoculants increased the stochastic ratio of microbial communities, particularly bacteria. Moreover, microbial inoculants significantly decreased the relative importance of dispersal limitations and increased the relative importance of drift. High relative abundances of certain bacterial and fungal phyla were identified as major drivers of the microbial community assembly process. In conclusion, our findings highlight the crucial role of mineral-solubilizing microorganisms in soil restoration at abandoned mining sites, shedding light on their significance in future research endeavors focused on optimizing the effectiveness of external soil spray seeding techniques.
Collapse
Affiliation(s)
- Chong Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Hui Nie
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Shuifeng Zhang
- Faculty of Information Technology, Nanjing Forest Police College, Nanjing, 210000, China
| | - Zhaohui Jia
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Shilin Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Tao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Lu Zhai
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 74078, USA; Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Bo Zhang
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, China.
| | - Christoph Müller
- Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| |
Collapse
|
14
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
15
|
Philpott M, Liew ECY, van der Merwe MM, Mertin A, French K. The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia. J Fungi (Basel) 2023; 9:706. [PMID: 37504695 PMCID: PMC10381327 DOI: 10.3390/jof9070706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seed fungal endophytes play a crucial role in assisting the overall health and success of their host plant; however, little is known about the factors that influence the diversity and composition of these endophytes, particularly with respect to how they change over time and within urban environments. Using culturing techniques, morphological analyses, and Sanger sequencing, we identified the culturable seed fungal endophytes of Banksia ericifolia at two urban and two natural sites in Sydney, New South Wales, Australia. A total of 27 Operational Taxonomic Units were obtained from 1200 seeds. Older cones were found to contain, on average, more colonised endophytes than younger cones. Species richness was also significantly influenced by cone age, with older cones being more speciose. Between urban and natural sites, the overall community composition did not change, although species richness and diversity were greatest at urban sites. Understanding how these endophytes vary in time and space may help provide an insight into the transmission pathways used and the potential role they play within the development and survival of the seed. This knowledge may also be crucial for restoration purposes, especially regarding the need to consider endophyte viability in ex situ seed collection and storage in seed-banking practices.
Collapse
Affiliation(s)
- Merize Philpott
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Edward C Y Liew
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Marlien M van der Merwe
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Allison Mertin
- Research Centre for Ecosystem Resilience, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - Kristine French
- Centre for Sustainable Ecosystems Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
16
|
Matheri F, Kambura AK, Mwangi M, Karanja E, Adamtey N, Wanjau K, Mwangi E, Tanga CM, Bautze D, Runo S. Evolution of fungal and non-fungal eukaryotic communities in response to thermophilic co-composting of various nitrogen-rich green feedstocks. PLoS One 2023; 18:e0286320. [PMID: 37256894 DOI: 10.1371/journal.pone.0286320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Thermophilic composting is a promising soil and waste management approach involving diverse micro and macro-organisms, including eukaryotes. Due to sub-optimal amounts of nutrients in manure, supplemental feedstock materials such as Lantana camara, and Tithonia diversifolia twigs are used in composting. These materials have, however, been reported to have antimicrobial activity in in-vitro experiments. Furthermore, the phytochemical analysis has shown differences in their complexities, thus possibly requiring various periods to break down. Therefore, it is necessary to understand these materials' influence on the biological and physical-chemical stability of compost. Most compost microbiome studies have been bacterial-centric, leaving out eukaryotes despite their critical role in the environment. Here, the influence of different green feedstock on the fungal and non-fungal eukaryotic community structure in a thermophilic compost environment was examined. Total community fungal and non-fungal eukaryotic DNA was recovered from triplicate compost samples of four experimental regimes. Sequencing for fungal ITS and non-fungal eukaryotes; 18S rDNA was done under the Illumina Miseq platform, and bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 workflow in R version 4.1. Samples of mixed compost and composting day 84 recorded significantly (P<0.05) higher overall fungal populations, while Lantana-based compost and composting day 84 revealed the highest fungal community diversity. Non-fungal eukaryotic richness was significantly (P< 0.05) more abundant in Tithonia-based compost and composting day 21. The most diverse non-fungal eukaryotic biome was in the Tithonia-based compost and composting day 84. Sordariomycetes and Holozoa were the most contributors to the fungal and non-fungal community interactions in the compost environment, respectively. The findings of this study unravel the inherent influence of diverse composting materials and days on the eukaryotic community structure and compost's biological and chemical stability.
Collapse
Affiliation(s)
- Felix Matheri
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Anne Kelly Kambura
- Department of Agricultural Sciences, Taita Taveta University (TTU), Voi, Kenya
| | - Maina Mwangi
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| | - Edward Karanja
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Noah Adamtey
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Kennedy Wanjau
- International Livestock Research Institute (ILRI), Department Animal and Human Health, Nairobi, Kenya
| | - Edwin Mwangi
- International Centre for Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - David Bautze
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Steven Runo
- Department of Biochemistry, Microbiology, and Biotechnology, Kenyatta University (KU), Nairobi, Kenya
| |
Collapse
|
17
|
Samaradiwakara NP, de Farias ARG, Tennakoon DS, Aluthmuhandiram JVS, Bhunjun CS, Chethana KWT, Kumla J, Lumyong S. Appendage-Bearing Sordariomycetes from Dipterocarpus alatus Leaf Litter in Thailand. J Fungi (Basel) 2023; 9:625. [PMID: 37367561 DOI: 10.3390/jof9060625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Nethmini P Samaradiwakara
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Danushka S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Janith V S Aluthmuhandiram
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chitrabhanu S Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K W Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
18
|
Wang P, Nie J, Yang L, Zhao J, Wang X, Zhang Y, Zang H, Yang Y, Zeng Z. Plant growth stages covered the legacy effect of rotation systems on microbial community structure and function in wheat rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59632-59644. [PMID: 37012567 DOI: 10.1007/s11356-023-26703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Legume-based crop rotation is conducive to improve soil multifunctionality, but how the legacy effect of previous legumes influenced the rhizosphere microbial community of the following crops along with growth stages remains unclear. Here, the wheat rhizosphere microbial community was assessed at the regreening and filling stages with four previous legumes (mungbean, adzuki bean, soybean, and peanut), as well as cereal maize as a control. The composition and structure of both bacterial and fungal communities varied dramatically between two growth stages. The differences in fungal community structure among rotation systems were observed at both the regreening and filling stages, while the difference in bacterial community structure among rotation systems was observed only at the filling stage. The complexity and centrality of the microbial network decreased along with crop growth stages. The species associations were strengthened in legume-based rotation systems than in cereal-based rotation system at the filling stage. The abundance of KEGG orthologs (KOs) associated with carbon, nitrogen, phosphorus, and sulfur metabolism of bacterial community decreased from the regreening stage to the filling stage. However, there was no difference in the abundance of KOs among rotation systems. Together, our results showed that plant growth stages had a stronger impact than the legacy effect of rotation systems in shaping the wheat rhizosphere microbial community, and the differences among rotation systems were more obvious at the late growth stage. Such compositional, structural, and functional changes may provide predictable consequences of crop growth and soil nutrient cycling.
Collapse
Affiliation(s)
- Peixin Wang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiangwen Nie
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Lei Yang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Jie Zhao
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Xiquan Wang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Institute of Agricultural Sources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yudan Zhang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Jining Academy of Agricultural Sciences, Jining, 272000, China
| | - Huadong Zang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yadong Yang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Cedeño-Sanchez M, Schiefelbein R, Stadler M, Voglmayr H, Bensch K, Lambert C. Redisposition of apiosporous genera Induratia and Muscodor in the Xylariales, following the discovery of an authentic strain of Induratia apiospora. BOTANICAL STUDIES 2023; 64:8. [PMID: 37052736 PMCID: PMC10102272 DOI: 10.1186/s40529-023-00372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The genus Induratia is based on Induratia apiospora, a xylarialean pyrenomycete from New Zealand with clypeate uniperitheciate stromata, hyaline apiospores and a nodulisporium-like anamorph. However, because of the lack of DNA data from the generic type, its phylogenetic affinities have remained unresolved. Recently, two fungal species with teleomorphs strikingly similar to Induratia were discovered in Thailand. However, they did not produce an anamorph and were found to be phylogenetically close to the species classified within the hyphomycete genus Muscodor, which was described after Induratia. Therefore, in 2020 the species of Muscodor were transferred to Induratia, and a new family Induratiaceae was proposed. RESULTS We have encountered an unpublished ex-holotype strain of Induratia apiospora among the holdings of the ATCC collection, enabling detailed morphological and molecular phylogenetic investigations. We observed the characteristic nodulisporium-like anamorph described in the original publication. Phylogenetic analyses of multigene sequence data revealed a close relationship of Induratia apiospora to the Barrmaeliaceae, while a close relationship to the Induratia species formerly classified within Muscodor was rejected. CONCLUSIONS We here classify Induratia apiospora within the Barrmaeliaceae and consider Induratiaceae to be synonymous with the former. As the holotype specimen of Induratia apiospora is apparently lost, an isotype specimen from WSP is selected as lectotype. We also propose that the genus Muscodor is resurrected within the Xylariaceae, and formally transfer several Induratia species to Muscodor.
Collapse
Affiliation(s)
- Marjorie Cedeño-Sanchez
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Rahel Schiefelbein
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, BOKU-University of Natural Resources and Life Sciences, Franz- Schwackhöfer-Haus, Peter-Jordan-Straße 82/I, 1190, Vienna, Austria
| | - Konstanze Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Christopher Lambert
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
- Department of Cell Biology, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
20
|
Wongkanoun S, Chainuwong B, Kobmoo N, Roytrakul S, Somrithipol S, Luangsa-ard J, Charria-Girón E, Srikitikulchai P, Stadler M. Studies on the Genus Pyrenopolyporus (Hypoxylaceae) in Thailand Using a Polyphasic Taxonomic Approach. J Fungi (Basel) 2023; 9:429. [PMID: 37108884 PMCID: PMC10145029 DOI: 10.3390/jof9040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Over the past two decades, hypoxylaceous specimens were collected from several sites in Thailand. In this study, we examined their affinity to the genus Pyrenopolyporus using macroscopic and microscopic morphological characters, dereplication of their stromatal secondary metabolites using ultrahigh performance liquid chromatography coupled to diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS), and molecular phylogenetic analyses. We describe and illustrate five novel species and a new record for the country, present multi-locus phylogenetic analyses that show the distinction between the proposed species, and provide proteomic profiles of the fungi using matrix associated laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) for the first time. Based on our findings, this strategy is useful as a complementary tool to distinguish species between Daldinia and Pyrenopolyporus in a consistent way with the phylogenetic analysis.
Collapse
Affiliation(s)
- Sarunyou Wongkanoun
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.W.)
| | - Boonchuai Chainuwong
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.W.)
| | - Noppol Kobmoo
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology (IFPT), Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sayanh Somrithipol
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.)
| | - Jennifer Luangsa-ard
- Plant Microbe Interaction Research Team (APMT), Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.)
| | - Esteban Charria-Girón
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), and German Centre for Infection Research Association (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Prasert Srikitikulchai
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.W.)
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), and German Centre for Infection Research Association (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Cedeño-Sanchez M, Charria-Girón E, Lambert C, Luangsa-ard JJ, Decock C, Franke R, Brönstrup M, Stadler M. Segregation of the genus Parahypoxylon (Hypoxylaceae, Xylariales) from Hypoxylon by a polyphasic taxonomic approach. MycoKeys 2023; 95:131-162. [DOI: 10.3897/mycokeys.95.98125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
During a mycological survey of the Democratic Republic of the Congo, a fungal specimen that morphologically resembled the American species Hypoxylon papillatum was encountered. A polyphasic approach including morphological and chemotaxonomic together with a multigene phylogenetic study (ITS, LSU, tub2, and rpb2) of Hypoxylon spp. and representatives of related genera revealed that this strain represents a new species of the Hypoxylaceae. However, the multi-locus phylogenetic inference indicated that the new fungus clustered with H. papillatum in a separate clade from the other species of Hypoxylon. Studies by ultrahigh performance liquid chromatography coupled to diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) were carried out on the stromatal extracts. In particular, the MS/MS spectra of the major stromatal metabolites of these species indicated the production of hitherto unreported azaphilone pigments with a similar core scaffold to the cohaerin-type metabolites, which are exclusively found in the Hypoxylaceae. Based on these results, the new genus Parahypoxylon is introduced herein. Aside from P. papillatum, the genus also includes P. ruwenzoriensesp. nov., which clustered together with the type species within a basal clade of the Hypoxylaceae together with its sister genus Durotheca.
Collapse
|
22
|
Diouf M, Hervé V, Fréchault S, Lambourdière J, Ndiaye AB, Miambi E, Bourceret A, Jusselme MD, Selosse MA, Rouland-Lefèvre C. Succession of the microbiota in the gut of reproductives of Macrotermes subhyalinus (Termitidae) at colony foundation gives insights into symbionts transmission. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1055382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Termites have co-evolved with a complex gut microbiota consisting mostly of exclusive resident taxa, but key forces sustaining this exclusive partnership are still poorly understood. The potential for primary reproductives to vertically transmit their gut microbiota (mycobiome and bacteriome) to offspring was investigated using colony foundations from field-derived swarming alates of Macrotermes subhyalinus. Metabarcoding based on the fungal internal transcribed spacer (ITS) region and the bacterial 16S rRNA gene was used to characterize the reproductives mycobiome and bacteriome over the colony foundation time. The mycobiome of swarming alates differed from that of workers of Macrotermitinae and changed randomly within and between sampling time points, highlighting no close link with the gut habitat. The fungal ectosymbiont Termitomyces was lost early from the gut of reproductives, confirming the absence of vertical transmission to offspring. Unlike fungi, the bacteriome of alates mirrored that of workers of Macroterminae. Key genera and core OTUs inherited from the mother colony mostly persisted in the gut of reproductive until the emergence of workers, enabling their vertical transmission and explaining why they were found in offspring workers. These findings demonstrate that the parental transmission may greatly contribute to the maintenance of the bacteriome and its co-evolution with termite hosts at short time scales.
Collapse
|
23
|
Influence of climatic factors on cyanobacteria and green algae development on building surface. PLoS One 2023; 18:e0282140. [PMID: 36877710 PMCID: PMC9987821 DOI: 10.1371/journal.pone.0282140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Buildings and monuments are often colonized by microorganisms that can result in colour change and aesthetical and physico-chemical damages. This bio-colonization is dependent of the material and on the environment. In order to better understand and correlate the microbial development at the surface of buildings with meteorological parameters, concentration of green algae and cyanobacteria have been measured using an in situ instrument on the wall of a private habitation in the Parisian region during two periods: spring and fall-winter. Different locations were also chosen to assess the influence of the position (horizontal or vertical) and of the situation (shaded vs. sunny microclimate). The results show that the microorganism development rapidly responds to rainfall events but the response is more intense in winter as temperature is lower and relative humidity (RH) higher. Cyanobacteria are less sensitive to this seasonal effect as they are more resistant to desiccation than green algae. Based on all the data, different dose-response functions have been established to correlate RH, rain and temperature to the green algae concentration. The influence of the microclimate is considered via specific fitting parameters. This approach has to be extended to new campaign measurements but could be very useful to anticipate the effect of climate change.
Collapse
|
24
|
Choudhary M, Jat HS, Jat ML, Sharma PC. Climate-smart agricultural practices influence the fungal communities and soil properties under major agri-food systems. Front Microbiol 2022; 13:986519. [PMID: 36583046 PMCID: PMC9794093 DOI: 10.3389/fmicb.2022.986519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Fungal communities in agricultural soils are assumed to be affected by climate, weather, and anthropogenic activities, and magnitude of their effect depends on the agricultural activities. Therefore, a study was conducted to investigate the impact of the portfolio of management practices on fungal communities and soil physical-chemical properties. The study comprised different climate-smart agriculture (CSA)-based management scenarios (Sc) established on the principles of conservation agriculture (CA), namely, ScI is conventional tillage-based rice-wheat rotation, ScII is partial CA-based rice-wheat-mungbean, ScIII is partial CSA-based rice-wheat-mungbean, ScIV is partial CSA-based maize-wheat-mungbean, and ScV and ScVI are CSA-based scenarios and similar to ScIII and ScIV, respectively, except for fertigation method. All the scenarios were flood irrigated except the ScV and ScVI where water and nitrogen were given through subsurface drip irrigation. Soils of these scenarios were collected from 0 to 15 cm depth and analyzed by Illumina paired-end sequencing of Internal Transcribed Spacer regions (ITS1 and ITS2) for the study of fungal community composition. Analysis of 5 million processed sequences showed a higher Shannon diversity index of 1.47 times and a Simpson index of 1.12 times in maize-based CSA scenarios (ScIV and ScVI) compared with rice-based CSA scenarios (ScIII and ScV). Seven phyla were present in all the scenarios, where Ascomycota was the most abundant phyla and it was followed by Basidiomycota and Zygomycota. Ascomycota was found more abundant in rice-based CSA scenarios as compared to maize-based CSA scenarios. Soil organic carbon and nitrogen were found to be 1.62 and 1.25 times higher in CSA scenarios compared with other scenarios. Bulk density was found highest in farmers' practice (Sc1); however, mean weight diameter and water-stable aggregates were found lowest in ScI. Soil physical, chemical, and biological properties were found better under CSA-based practices, which also increased the wheat grain yield by 12.5% and system yield by 18.8%. These results indicate that bundling/layering of smart agricultural practices over farmers' practices has tremendous effects on soil properties, and hence play an important role in sustaining soil quality/health.
Collapse
Affiliation(s)
- Madhu Choudhary
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Karnal, India
| | - Hanuman S. Jat
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Karnal, India,International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India,*Correspondence: Hanuman S. Jat
| | - Mangi L. Jat
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India,International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India,Mangi L. Jat
| | - Parbodh C. Sharma
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Karnal, India
| |
Collapse
|
25
|
Pourmoghaddam MJ, Lambert C, Voglmayr H, Khodaparast SA, Krisai-Greilhuber I, Stadler M. Note on the genus Nemania (Xylariaceae) - first records and a new species of the genus from Iran. MycoKeys 2022; 93:81-105. [PMID: 36761911 PMCID: PMC9836441 DOI: 10.3897/mycokeys.93.94148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022] Open
Abstract
In a survey of xylarialean fungi in northern Iran, some specimens attributable to the genus Nemania were collected, cultured and sequenced. Morphological evidence and phylogenetic analyses of a combined ITS, LSU, RPB2 and TUB2 gene dataset confirmed the presence of Nemaniadiffusa and N.serpens in Iran for the first time. Furthermore, the new species N.hyrcana, which shows similarities to N.subaenea and its putative synonym N.plumbea, but significantly differs from the latter in its DNA sequences, was encountered. All species are illustrated, described and discussed. In the phylogenetic analyses, for the first time, the overlooked ex-type ITS sequences of the neotype of the generic type, N.serpens and that of the holotype of N.prava, were added to a multi-gene matrix of Nemania. This revealed that the two accessions of N.serpens (HAST 235 and CBS 679.86), for which multigene data are available in GenBank, are misidentified, while the Iranian accession of N.serpens has an almost identical ITS sequence to the neotype, confirming its morphological species identification. The two previously accepted species of Euepixylon, E.udum and E.sphaeriostomum, are embedded within Nemania and are revealed as close relatives of N.serpens, supporting the inclusion of Euepixylon in Nemania.
Collapse
Affiliation(s)
- Mohammad Javad Pourmoghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, IranUniversity of GuilanRashtIran
| | - Christopher Lambert
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment Microbial Drugs, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
- Department for Molecular Cell Biology, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment for Molecular Cell Biology, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, AustriaUniversity of ViennaWienAustria
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, IranUniversity of GuilanRashtIran
| | - Irmgard Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, AustriaUniversity of ViennaWienAustria
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment Microbial Drugs, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
26
|
Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M. Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Stud Mycol 2022; 103:87-212. [PMID: 37342155 PMCID: PMC10277272 DOI: 10.3114/sim.2022.103.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/02/2022] [Indexed: 06/13/2024] Open
Abstract
Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium, Gongromeriza, and Psilobotrys. Sexual morphs have been placed in the widely perceived genus Chaetosphaeria, but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys. We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza, two have been redisposed to the new genus Gongromerizella. Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi. Taxonomic novelties: New genus: Gongromerizella Réblová; New sections: Chloridium section Cryptogonytrichum Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Gonytrichopsis Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Metachloridium Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Volubilia Réblová, Hern.-Restr., M. Kolařík & F. Sklenar; New species: Chloridium bellum Réblová & Hern.-Restr., Chloridium biforme Réblová & Hern.-Restr., Chloridium detriticola Réblová & Hern.-Restr., Chloridium gamsii Réblová & Hern.-Restr., Chloridium guttiferum Réblová & Hern.-Restr., Chloridium moratum Réblová & Hern.-Restr., Chloridium peruense Réblová & Hern.-Restr., Chloridium novae-zelandiae Réblová & Hern.-Restr., Chloridium elongatum Réblová & Hern.-Restr., Chloridium volubile Réblová & Hern.-Restr.; New varieties: Chloridium bellum var. luteum Réblová & Hern.-Restr., Chloridium detriticola var. effusum Réblová & Hern.-Restr., Chloridium chloridioides var. convolutum Réblová & Hern.-Restr.; New combinations: Chloridium section Gonytrichum (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Mesobotrys (Sacc.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Pseudophialocephala (M.S. Calabon et al.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium simile (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium chloridioides (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium subglobosum (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium fuscum (Corda) Réblová & Hern.-Restr., Chloridium ypsilosporum (Hol.-Jech.) Réblová & Hern.-Restr., Chloridium costaricense (G. Weber et al.) Réblová & Hern.-Restr., Chloridium cuneatum (N.G. Liu et al.) Réblová & Hern.-Restr., Fusichloridium cylindrosporum (W. Gams & Hol.-Jech.) Réblová, Gongromeriza myriocarpa (Fr.) Réblová, Gongromeriza pygmaea (P. Karst.) Réblová, Gongromerizella lignicola (F. Mangenot) Réblová, Gongromerizella pachytrachela (W. Gams & Hol.-Jech) Réblová, Gongromerizella pini (Crous & Akulov) Réblová; New name: Chloridium pellucidum Réblová & Hern.-Restr.; Epitypifications (basionyms): Chaetopsis fusca Corda, Gonytrichum caesium var. subglobosum W. Gams & Hol.-Jech.; Lectotypification (basionym): Gonytrichum caesium Nees & T. Nees. Citation: Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022). Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Studies in Mycology 103: 87-212. doi: 10.3114/sim.2022.103.04.
Collapse
Affiliation(s)
- M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| | - M. Hernández-Restrepo
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| | - F. Sklenář
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, 142 20 Prague 4, Czech Republic
| | - J. Nekvindová
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, 500 05 Hradec Králové, Czech Republic
| | - K. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - M. Kolařík
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, 142 20 Prague 4, Czech Republic
| |
Collapse
|
27
|
Bulgarelli RG, Leite MFA, de Hollander M, Mazzafera P, Andrade SAL, Kuramae EE. Eucalypt species drive rhizosphere bacterial and fungal community assembly but soil phosphorus availability rearranges the microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155667. [PMID: 35513142 DOI: 10.1016/j.scitotenv.2022.155667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Soil phosphorus (P) availability may limit plant growth and alter root-soil interactions and rhizosphere microbial community composition. The composition of the rhizosphere microbial community can also be shaped by plant genotype. In this study, we examined the rhizosphere microbial communities of young plants of 24 species of eucalypts (22 Eucalyptus and two Corymbia species) under low or sufficient soil P availability. The taxonomic diversity of the rhizosphere bacterial and fungal communities was assessed by 16S and 18S rRNA gene amplicon sequencing. The taxonomic modifications in response to low P availability were evaluated by principal component analysis, and co-inertia analysis was performed to identify associations between bacterial and fungal community structures and parameters related to plant growth and nutritional status under low and sufficient soil P availability. The sequencing results showed that while both soil P availability and eucalypt species influenced the microbial community assembly, eucalypt species was the stronger determinant. However, when the plants are subjected to low P-availability, the rhizosphere selection became strongest. In response to low P, the bacterial and fungal communities in the rhizosphere of some species showed significant changes, whereas in others remained relatively constant under low and sufficient P. Co-inertia analyses revealed a significant co-dependence between plant nutrient contents and bacterial and fungal community composition only under sufficient P. By contrast, under low P, bacterial community composition was related to plant biomass production. In conclusion, our study shows that eucalypt species identity was the main factor modulating rhizosphere microbial community composition; significant shifts due to P availability were observed only for some eucalypt species.
Collapse
Affiliation(s)
- R G Bulgarelli
- University of Campinas, Institute of Biology, Department of Plant Biology, Campinas, SP, Brazil; Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands
| | - M F A Leite
- Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands
| | - M de Hollander
- Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands
| | - P Mazzafera
- University of Campinas, Institute of Biology, Department of Plant Biology, Campinas, SP, Brazil; University of São Paulo, School of Agriculture Luiz de Queiroz, Department of Crop Production, Piracicaba, SP, Brazil
| | - S A L Andrade
- University of Campinas, Institute of Biology, Department of Plant Biology, Campinas, SP, Brazil.
| | - E E Kuramae
- Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands; Utrecht University, Ecology and Biodiversity, Institute of Environmental Biology, Utrecht, Netherlands.
| |
Collapse
|
28
|
Dos Reis JBA, do Vale HMM, Lorenzi AS. Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: a review exploring an unique Brazilian biome and methodological limitations. World J Microbiol Biotechnol 2022; 38:202. [PMID: 35999403 DOI: 10.1007/s11274-022-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Cerrado is the second largest biome in Brazil, and it is known for harboring a wide variety of endemic plant and microbial species, among which are endophytic fungi. Endophytic fungi are microorganisms capable of colonizing the interior of plant tissues without causing disease in host plants. Especially in the Cerrado biome, this group of microorganisms is still poorly studied and information on species estimation, ecological and evolutionary importance is not accurate and remains unknown. Also, it is extremely important to emphasize that great part of studies available on Cerrado endophytic fungi are national literature, including master's dissertations, course conclusion works or unpublished doctoral theses. The majority of these studies has highlighted that the endemic plant species are an important habitat for fungal endophytes, and new species have increasingly been described. Due to the lack of international literature on Cerrado endophytic fungi, the present review brings a bibliographic survey on taxonomic diversity and bioprospecting potential of fungal endophytes from a unique environment. This review also emphasizes the importance of studying Brazilian endophytic fungi from Cerrado as a source of new technologies (biofertilizer and biocontroller), since they are secondary metabolite-producing organisms with different biological activities for biotechnological, agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Helson Mário Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil.
| |
Collapse
|
29
|
Miao Y, Lin Y, Chen Z, Zheng H, Niu Y, Kuzyakov Y, Liu D, Ding W. Fungal key players of cellulose utilization: Microbial networks in aggregates of long-term fertilized soils disentangled using 13C-DNA-stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155051. [PMID: 35390367 DOI: 10.1016/j.scitotenv.2022.155051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Long-term compost application accelerates organic carbon (C) accumulation and macroaggregate formation in soil. Stable aggregates and high soil organic C (SOC) content are supposed to increase microbiota activity and promote transformation of litter compounds (i.e., cellulose) into SOC. Here, we used 13C-DNA-stable isotope probing with subsequent high-throughput sequencing to characterize fungal succession and co-occurrence trends during 13C-cellulose decomposition in aggregate size classes in soils subjected to no fertilizer (control), nitrogen-phosphorus‑potassium (NPK) fertilizers, and compost (Compost) application for 27 years. Ascomycota (mostly saprotrophic fungi) were always highly competitive for cellulose in all aggregate size classes at the early stages of cellulose decomposition (20 days). Compost-treated soil was enriched with Ascomycota compared to the control soil, wherein Sordariomycetes, the majority, strongly dominated the cellulose utilization (13C incorporation in DNA). 13C-labeled fungal communities converged in the Compost soil, with lower abundance and diversity compared with the NPK and control soils. Such convergence led to greater cellulose decomposition, indicating that compost amendment increased the capacity of a few dominant fungal taxa to decompose litter. Compost soil had more 13C-labeled fungal decomposers in microaggregates and lower fungal decomposers in macroaggregates when compared with the levels in the NPK and control soils. This implies that compost application facilitates fungal colonization towards smaller aggregates. Fungal interactions were reinforced in microaggregates (<250 μm), with more positive associations than those in macroaggregates (>250 μm), indicating greater fungal synergism for recalcitrant resource utilization in microaggregates. The keystone taxa in the co-occurrence networks were not related to cellulose decomposition in microaggregates, but did in macroaggregates. The findings advance a process-based understanding of cellulose utilization by fungal key players based on C and energy availability and the regulation of microbial activity at the aggregate level.
Collapse
Affiliation(s)
- Yuncai Miao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zengming Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huijie Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Niu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany; Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| | - Deyan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
30
|
Maharachchikumbura SSN, Wanasinghe DN, Elgorban AM, Al-Rejaie SS, Kazerooni EA, Cheewangkoon R. Brunneosporopsis yunnanensis gen. et sp. nov. and Allocryptovalsa xishuangbanica sp. nov., New Terrestrial Sordariomycetes from Southwest China. Life (Basel) 2022; 12:life12050635. [PMID: 35629303 PMCID: PMC9146849 DOI: 10.3390/life12050635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Three fungal taxa were collected on dead branches of wood during fieldwork in Sichuan and Yunnan Provinces, China. The new generic name Brunneosporopsis gen. nov. and species B. yunnanensis sp. nov. are introduced for a novel taxon characterized by globose to subglobose and dark olivacous-brown conidia. Phylogenetic analyses based on combined LSU, SSU and tef1-α loci strongly support the monophyly of this taxon and place it in the subclass Diaporthomycetidae. It could not be assigned to any currently recognized families in the subclass and was, therefore, placed in the Diaporthomycetidae genera incertae sedis. A second taxon represents a new species in Allocryptovalsa based on an analysis of the sequence datasets of ITS and btub loci of the novel, brown-spored sexual morphic species. This taxon is described here as A. xishuangbanica sp. nov. An interesting hypocrealean fungus producing synnemata, Stilbocrea gracilipes, was collected from dead wood of an unknown host from Sichuan Province and is reported here, with asexual morph from both the host and culture as well as LSU, ITS, tef1-α, rpb2 and rpb1 sequence data.
Collapse
Affiliation(s)
- Sajeewa S. N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; or
| | - Dhanushka N. Wanasinghe
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, China
- Correspondence: or (D.N.W.); (R.C.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Elham A. Kazerooni
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea;
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: or (D.N.W.); (R.C.)
| |
Collapse
|
31
|
Li QR, Zhang X, Lin Y, Samarakoon MC, Hyde KD, Shen XC, Liao WQ, Karunarathna A, Long SH, Kang YQ, Kang JC. Morpho-molecular characterisation of Arecophila, with A.australis and A.clypeata sp. nov. and A.miscanthi comb. nov. MycoKeys 2022; 88:123-149. [PMID: 35585934 PMCID: PMC9021158 DOI: 10.3897/mycokeys.88.79475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
Three arecophila-like fungal samples were collected on dead culms of gramineous plants in China. Morphological studies of our new collections and the herbarium specimen of Arecophilagulubiicola (generic type) were conducted and the morphological affinity of our new collections with Arecophila was confirmed. Maximum likelihood and Bayesian analyses using combined ITS, LSU, rpb2 and β-tubulin data from our collections revealed the phylogeny of Cainiaceae. The monospecific genus Alishanica (type species Al.miscanthi), which had been accepted in Cainiaceae, is revisited and synonymised under Arecophila. Based on morphology and phylogeny, Arecophilaaustralis sp. nov. and A.clypeata sp. nov. are introduced as new species, while A.miscanthi is a new record for China. All the new collections are illustrated and described.
Collapse
Affiliation(s)
- Qi Rui Li
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Xu Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yan Lin
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kevin David Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xiang Chun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Wan Qing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China
| | - Anuruddha Karunarathna
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Si Han Long
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Ying Qian Kang
- Department of Microbiology, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Ji Chuan Kang
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guizhou, China
| |
Collapse
|
32
|
Ceballos-Escalera A, Richards J, Arias MB, Inward DJG, Vogler AP. Metabarcoding of insect-associated fungal communities: a comparison of internal transcribed spacer (ITS) and large-subunit (LSU) rRNA markers. MycoKeys 2022; 88:1-33. [PMID: 35585929 PMCID: PMC8924126 DOI: 10.3897/mycokeys.88.77106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Full taxonomic characterisation of fungal communities is necessary for establishing ecological associations and early detection of pathogens and invasive species. Complex communities of fungi are regularly characterised by metabarcoding using the Internal Transcribed Spacer (ITS) and the Large-Subunit (LSU) gene of the rRNA locus, but reliance on a single short sequence fragment limits the confidence of identification. Here we link metabarcoding from the ITS2 and LSU D1-D2 regions to characterise fungal communities associated with bark beetles (Scolytinae), the likely vectors of several tree pathogens. Both markers revealed similar patterns of overall species richness and response to key variables (beetle species, forest type), but identification against the respective reference databases using various taxonomic classifiers revealed poor resolution towards lower taxonomic levels, especially the species level. Thus, Operational Taxonomic Units (OTUs) could not be linked via taxonomic classifiers across ITS and LSU fragments. However, using phylogenetic trees (focused on the epidemiologically important Sordariomycetes) we placed OTUs obtained with either marker relative to reference sequences of the entire rRNA cistron that includes both loci and demonstrated the largely similar phylogenetic distribution of ITS and LSU-derived OTUs. Sensitivity analysis of congruence in both markers suggested the biologically most defensible threshold values for OTU delimitation in Sordariomycetes to be 98% for ITS2 and 99% for LSU D1-D2. Studies of fungal communities using the canonical ITS barcode require corroboration across additional loci. Phylogenetic analysis of OTU sequences aligned to the full rRNA cistron shows higher success rate and greater accuracy of species identification compared to probabilistic taxonomic classifiers.
Collapse
|
33
|
Nguyen TTT, Lim HJ, Chu SJ, Lee HB. Two New Species and Three New Records of Ascomycetes in Korea. MYCOBIOLOGY 2022; 50:30-45. [PMID: 35291599 PMCID: PMC8890549 DOI: 10.1080/12298093.2022.2038843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 05/16/2023]
Abstract
During a survey of plant-inhabiting fungi and water niches from Korea, noteworthy fungi were collected; among them, two new species, Paracamarosporium noviaquum sp. nov. and Phyllosticta gwangjuensis sp. nov., are described based on morphology and multi-gene phylogenies. Paracamarosporium noviaquum was characterized by its production of 1-celled and 2-celled conidia, forming conidiomata on only potato dextrose agar medium. Phyllosticta gwangjuensis was characterized by conidia hyaline, ovoid to ellipsoid shape, rounded at both ends, containing numerous guttulae or with a single large central guttule. Additional species were identified as Cosmospora lavitskiae, Monochaetia cameliae, and Roussoella doimaesalongensis, which are reported as new record species from Korea. Detailed descriptions and illustrations of these taxa are provided herein.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyo Jin Lim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - So Jeong Chu
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
34
|
Naureen A, Nasim FUH, Choudhary MS, Ashraf M, Grundler FMW, Schleker ASS. A new endophytic fungus CJAN1179 isolated from the Cholistan desert promotes lateral root growth in Arabidopsis and produces IAA through tryptophan-dependent pathway. Arch Microbiol 2022; 204:181. [PMID: 35175443 PMCID: PMC8854254 DOI: 10.1007/s00203-022-02768-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Fungi, important for growth of plants in arid lands, are expected to be involved in novel biochemical activities during fungal–plant interactions. We isolated 150 fungi associated with rhizosphere and root endosphere of two perennial grasses, Cymbopogon jwarancusa and Panicum antidotale, from Cholistan desert. The isolates were screened for their impact on plant growth and development using Arabidopsis thaliana (Col-0) as a model system. A root-endophytic fungus CJAN1179 from C. jwarancusa showed the highest plant growth-promoting effects. The most remarkable was enhanced number of lateral roots (3.1-fold). CJAN1179 produced indole-3-acetic acid (IAA) particularly in the presence of tryptophan. ITS sequence and phylogenetic analysis characterisation suggested the fungus to be a new species within Sordariomycetidae. CJAN1179 appears to promote plant growth by secreting IAA using tryptophan as a precursor. This fungus can be further explored for its suitability to promote growth of commercially important crops, particularly in arid regions.
Collapse
Affiliation(s)
- Adeela Naureen
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan.,INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Faiz-Ul H Nasim
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan.,Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Baghdad Ul Jadeed Campus, Bahawalpur, 63000, Pakistan
| | - Muhammad S Choudhary
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Muhammad Ashraf
- Chemistry Department, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Florian M W Grundler
- INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - A Sylvia S Schleker
- INRES, Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
| |
Collapse
|
35
|
Sugita R, Tanaka K. Thyridium revised: Synonymisation of Phialemoniopsis under Thyridium and establishment of a new order, Thyridiales. MycoKeys 2022; 86:147-176. [PMID: 35145340 PMCID: PMC8825628 DOI: 10.3897/mycokeys.86.78989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
The genus Thyridium, previously known as a saprobic or hemibiotrophic ascomycete on various plants, was revised taxonomically and phylogenetically. Sequences of the following six regions, that is, the nuclear ribosomal internal transcribed spacer (ITS) region, the large subunit (LSU) of rDNA, the second largest RNA polymerase II subunit (rpb2) gene, translation elongation factor 1-alpha (tef1) gene, the actin (act) gene, and the beta-tubulin (tub2) gene, were generated for molecular phylogenetic analyses of species of this genus. Phialemoniopsis, a genus encompassing medically important species, is synonymised with Thyridium based on molecular evidence and morphological similarities in their asexual characters. The generic concept for Thyridium is expanded to include species possessing both coelomycetous and hyphomycetous complex asexual morphs. In addition to type species of Thyridium, T.vestitum, nine species were accepted in Thyridium upon morphological comparison and molecular phylogenetic analyses in this study. All seven species of Phialemoniopsis were treated as members of the genus Thyridium and new combinations were proposed. A bambusicolous fungus, Pleosporapunctulata, was transferred to Thyridium, and an epitype is designated for this species. A new species, T.flavostromatum, was described from Phyllostachyspubescens. The family Phialemoniopsidaceae, proposed as a familial placement for Phialemoniopsis, was regarded as a synonym of Thyridiaceae. A new order, Thyridiales, was established to accommodate Thyridiaceae; it forms a well-supported, monophyletic clade in Sordariomycetes.
Collapse
|
36
|
Screening and Application of Ligninolytic Microbial Consortia to Enhance Aerobic Degradation of Solid Digestate. Microorganisms 2022; 10:microorganisms10020277. [PMID: 35208731 PMCID: PMC8878073 DOI: 10.3390/microorganisms10020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Recirculation of solid digestate through digesters has been demonstrated to be a potential simple strategy to increase continuous stirred-tank reactor biogas plant efficiency. This study extended this earlier work and investigated solid digestate post-treatment using liquid isolated ligninolytic aerobic consortia in order to increase methane recovery during the recirculation. Based on sampling in several natural environments, an enrichment and selection method was implemented using a Lab-scale Automated and Multiplexed (an)Aerobic Chemostat system to generate ligninolytic aerobic consortia. Then, obtained consortia were further cultivated under liquid form in bottles. Chitinophagia bacteria and Sordariomycetes fungi were the two dominant classes of microorganisms enriched through these steps. Finally, these consortia where mixed with the solid digestate before a short-term aerobic post-treatment. However, consortia addition did not increase the efficiency of aerobic post-treatment of solid digestate and lower methane yields were obtained in comparison to the untreated control. The main reason identified is the respiration of easily degradable fractions (e.g., sugars, proteins, amorphous cellulose) by the selected consortia. Thus, this paper highlights the difficulties of constraining microbial consortia to sole ligninolytic activities on complex feedstock, such as solid digestate, that does not only contain lignocellulosic structures.
Collapse
|
37
|
Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-021-00495-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Huang SK, Hyde KD, Mapook A, Maharachchikumbura SSN, Bhat JD, McKenzie EHC, Jeewon R, Wen TC. Taxonomic studies of some often over-looked Diaporthomycetidae and Sordariomycetidae. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00488-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Gao T, Liu Y, Liu X, Zhao K, Shan L, Wu Q, Liu Y, Zhang Z, Ma F, Li C. Exogenous dopamine and overexpression of the dopamine synthase gene MdTYDC alleviated apple replant disease. TREE PHYSIOLOGY 2021; 41:1524-1541. [PMID: 33171491 DOI: 10.1093/treephys/tpaa154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2020] [Indexed: 05/25/2023]
Abstract
Apple replant disease (ARD) is a soil-borne disease that leads to economic losses due to reduced plant growth and diminished fruit yields. Dopamine is involved in interactions between plants and pathogens. However, it remains unclear whether dopamine can directly stimulate defense responses to ARD. In this study, an exogenous dopamine treatment and dopamine synthetase MdTYDC (tyrosine decarboxylase) transgenic plants were used to verify the role of dopamine in treating ARD. First, 2-year-old apple trees (Malus domestica cv. Fuji), grafted onto rootstock M26, were grown in replant soils. The addition of dopamine (100 μM) to the soil promoted seedling growth and changed the accumulation of mineral elements in plants in replant soils. Such supplementation improved the activity of invertase, urease, proteinase and phosphatase under replant conditions. Sequencing analysis of 16S rDNA and internal transcribed spacer (ITS) rDNA revealed that dopamine had a slight influence on bacterial diversity but had an obvious effect on the fungal diversity in replant soils. The application of dopamine to replant soil changed the composition of bacterial and fungal communities. Second, overexpression of MdTYDC in apple plants alleviated the effects of ARD. MdTYDC transgenic lines exhibited mitigated ARD through inhibited degradation of photosynthetic pigment, maintaining the stability of photosystems I and II and improving the antioxidant system. Furthermore, overexpression of MdTYDC improved arbuscular mycorrhizal fungi colonization by improving the accumulation of soluble sugars under replant conditions. Together, these results demonstrated that dopamine enhances the tolerance of apples to ARD.
Collapse
Affiliation(s)
- Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yusong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qian Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
40
|
Tennakoon DS, Kuo CH, Maharachchikumbura SSN, Thambugala KM, Gentekaki E, Phillips AJL, Bhat DJ, Wanasinghe DN, de Silva NI, Promputtha I, Hyde KD. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00474-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Udayanga D, Miriyagalla SD, Manamgoda DS, Lewers KS, Gardiennet A, Castlebury LA. Molecular reassessment of diaporthalean fungi associated with strawberry, including the leaf blight fungus, Paraphomopsis obscurans gen. et comb. nov. (Melanconiellaceae). IMA Fungus 2021; 12:15. [PMID: 34158123 PMCID: PMC8218473 DOI: 10.1186/s43008-021-00069-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Phytopathogenic fungi in the order Diaporthales (Sordariomycetes) cause diseases on numerous economically important crops worldwide. In this study, we reassessed the diaporthalean species associated with prominent diseases of strawberry, namely leaf blight, leaf blotch, root rot and petiole blight, based on molecular data and morphological characters using fresh and herbarium collections. Combined analyses of four nuclear loci, 28S ribosomal DNA/large subunit rDNA (LSU), ribosomal internal transcribed spacers 1 and 2 with 5.8S ribosomal DNA (ITS), partial sequences of second largest subunit of RNA polymerase II (RPB2) and translation elongation factor 1-α (TEF1), were used to reconstruct a phylogeny for these pathogens. Results confirmed that the leaf blight pathogen formerly known as Phomopsis obscurans belongs in the family Melanconiellaceae and not with Diaporthe (syn. Phomopsis) or any other known genus in the order. A new genus Paraphomopsis is introduced herein with a new combination, Paraphomopsis obscurans, to accommodate the leaf blight fungus. Gnomoniopsis fragariae comb. nov. (Gnomoniaceae), is introduced to accommodate Gnomoniopsis fructicola, the cause of leaf blotch of strawberry. Both of the fungi causing leaf blight and leaf blotch were epitypified. Fresh collections and new molecular data were incorporated for Paragnomonia fragariae (Sydowiellaceae), which causes petiole blight and root rot of strawberry and is distinct from the above taxa. An updated multilocus phylogeny for the Diaporthales is provided with representatives of currently known families.
Collapse
Affiliation(s)
- Dhanushka Udayanga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10200, Sri Lanka.
| | - Shaneya D Miriyagalla
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10200, Sri Lanka
| | - Dimuthu S Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Kim S Lewers
- Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Alain Gardiennet
- Société Mycologique Issoise, 14 rue Roulette, F-21260, Véronnes, France
| | - Lisa A Castlebury
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture Agricultural Research Service, Beltsville, MD, 20705, USA
| |
Collapse
|
42
|
Konta S, Hyde KD, Eungwanichayapant PD, Karunarathna SC, Samarakoon MC, Xu J, Dauner LAP, Aluthwattha ST, Lumyong S, Tibpromma S. Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota). Life (Basel) 2021; 11:486. [PMID: 34073589 PMCID: PMC8227165 DOI: 10.3390/life11060486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
During our investigation of palm fungi in Thailand, two interesting taxa from Elaeis guineensis and Metroxylon sagu (Arecaceae) were collected. Based on phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 nucleotide sequences as well as unique morphological characteristics, we introduce the new genus Haploanthostomella within Xylariales, and a new species Endocalyx metroxyli. Additionally, in our study, the genus Endocalyx is transferred to the family Cainiaceae based on its brown conidia and molecular phylogenetic evidence.
Collapse
Affiliation(s)
- Sirinapa Konta
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (K.D.H.); (M.C.S.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (K.D.H.); (M.C.S.)
| | | | - Samantha C. Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- World Agroforestry Centre, East and Central Asia, Kunming 650201, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| | - Milan C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (K.D.H.); (M.C.S.)
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- World Agroforestry Centre, East and Central Asia, Kunming 650201, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| | - Lucas A. P. Dauner
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
| | - Sasith Tharanga Aluthwattha
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China;
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- World Agroforestry Centre, East and Central Asia, Kunming 650201, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| |
Collapse
|
43
|
Devadatha B, Jones EBG, Pang KL, Abdel-Wahab MA, Hyde KD, Sakayaroj J, Bahkali AH, Calabon MS, Sarma VV, Sutreong S, Zhang SN. Occurrence and geographical distribution of mangrove fungi. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00468-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Réblová M, Nekvindová J, Kolařík M, Hernández-Restrepo M. Delimitation and phylogeny of Dictyochaeta, and introduction of Achrochaeta and Tubulicolla, genera nova. Mycologia 2021; 113:390-433. [PMID: 33595417 DOI: 10.1080/00275514.2020.1822095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dictyochaeta (Chaetosphaeriaceae) is a phialidic dematiaceous hyphomycete with teleomorphs classified in Chaetosphaeria. It is associated with significant variability of asexual morphological traits, which led to its broad delimitation. In the present study, six loci: nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), nuc 18S rDNA (18S), nuc 28S rDNA (28S), DNA-directed RNA polymerase II second largest subunit gene (RPB2), translation elongation factor 1-α (TEF1-α), and β-tubulin (TUB2), along with comparative morphological and cultivation studies, are used to reevaluate the concept of Dictyochaeta and establish species boundaries. Based on revised species, morphological characteristics of conidia (shape, septation, absence or presence of setulae), collarettes (shape), and setae (presence or absence) and an extension of the conidiogenous cell proved to be important at the generic level. The dual DNA barcoding using ITS and TEF1-α, together with TUB2, facilitated accurate identification of Dictyochaeta species. Thirteen species are accepted, of which seven are characterized in this study; an identification key is provided. It was revealed that D. fuegiana, the type species, is a complex of three distinct species including D. querna and the newly described D. stratosa. Besides, a new species, D. detriticola, and two new combinations, D. callimorpha and D. montana, are proposed. An epitype of D. montana is selected. Dictyochaeta includes saprobes on decaying wood, bark, woody fruits, and fallen leaves. Dictyochaeta is shown to be distantly related to the morphologically similar Codinaea, which is resolved as paraphyletic. Chaetosphaeria talbotii with a Dictyochaeta anamorph represents a novel lineage in the Chaetosphaeriaceae; it is segregated from Dictyochaeta, and a new genus Achrochaeta is proposed. Multigene phylogenetic analysis revealed that D. cylindrospora belongs to the Vermiculariopsiellales, and a new genus Tubulicolla is introduced.
Collapse
Affiliation(s)
- Martina Réblová
- Department of Taxonomy, Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - Jana Nekvindová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | | |
Collapse
|
45
|
Resolution of the Hypoxylon fuscum Complex (Hypoxylaceae, Xylariales) and Discovery and Biological Characterization of Two of Its Prominent Secondary Metabolites. J Fungi (Basel) 2021; 7:jof7020131. [PMID: 33670169 PMCID: PMC7916920 DOI: 10.3390/jof7020131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Hypoxylon, a large, cosmopolitan genus of Ascomycota is in the focus of our current poly-thetic taxonomic studies, and served as an excellent source for bioactive secondary metabolites at the same time. The present work concerns a survey of the Hypoxylon fuscum species complex based on specimens from Iran and Europe by morphological studies and high performance liquid chromatography coupled to mass spectrometry and diode array detection (HPLC-MS-DAD). Apart from known chemotaxonomic markers like binaphthalene tetrol (BNT) and daldinin F, two unprece-dented molecules were detected and subsequently isolated to purity by semi preparative HPLC. Their structures were established by nuclear-magnetic resonance (NMR) spectroscopy as 3′-malonyl-daldinin F (6) and pseudofuscochalasin A (4). The new daldinin derivative 6 showed weak cytotoxicity towards mammalian cells but bactericidal activity. The new cytochalasin 4 was compared to cytochalasin C in an actin disruption assay using fluorescence microscopy of human osteo-sarcoma U2OS cells, revealing comparable activity towards F-actin but being irreversible compared to cytochalasin C. Concurrently, a multilocus molecular phylogeny based on ribosomal and proteinogenic nucleotide sequences of Hypoxylon species resulted in a well-supported clade for H. fuscum and its allies. From a comparison of morphological, chemotaxonomic and phylogenetic evidence, we introduce the new species H. eurasiaticum and H. pseudofuscum.
Collapse
|
46
|
Sweeney CJ, de Vries FT, van Dongen BE, Bardgett RD. Root traits explain rhizosphere fungal community composition among temperate grassland plant species. THE NEW PHYTOLOGIST 2021; 229:1492-1507. [PMID: 33006139 DOI: 10.1111/nph.16976] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 05/04/2023]
Abstract
While it is known that interactions between plants and soil fungi drive many essential ecosystem functions, considerable uncertainty exists over the drivers of fungal community composition in the rhizosphere. Here, we examined the roles of plant species identity, phylogeny and functional traits in shaping rhizosphere fungal communities and tested the robustness of these relationships to environmental change. We conducted a glasshouse experiment consisting of 21 temperate grassland species grown under three different environmental treatments and characterised the fungal communities within the rhizosphere of these plants. We found that plant species identity, plant phylogenetic relatedness and plant traits all affected rhizosphere fungal community composition. Trait relationships with fungal communities were primarily driven by interactions with arbuscular mycorrhizal fungi, and root traits were stronger predictors of fungal communities than leaf traits. These patterns were independent of the environmental treatments the plants were grown under. Our results showcase the key role of plant root traits, especially root diameter, root nitrogen and specific root length, in driving rhizosphere fungal community composition, demonstrating the potential for root traits to be used within predictive frameworks of plant-fungal relationships. Furthermore, we highlight how key limitations in our understanding of fungal function may obscure previously unmeasured plant-fungal interactions.
Collapse
Affiliation(s)
- Christopher J Sweeney
- Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Franciska T de Vries
- Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO 7 Box 94240, Amsterdam, 1090 GE, the Netherlands
| | - Bart E van Dongen
- Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Richard D Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
47
|
Xu Y, Tandon R, Ancheta C, Arroyo P, Gilbert JA, Stephens B, Kelley ST. Quantitative profiling of built environment bacterial and fungal communities reveals dynamic material dependent growth patterns and microbial interactions. INDOOR AIR 2021; 31:188-205. [PMID: 32757488 DOI: 10.1111/ina.12727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Indoor microbial communities vary in composition and diversity depending on material type, moisture levels, and occupancy. In this study, we integrated bacterial cell counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to investigate the influence of wetting on medium density fiberboard (MDF) and gypsum wallboard. Surface samples were collected longitudinally from wetted materials maintained at high relative humidity (~95%). Bacterial and fungal growth patterns were strongly time-dependent and material-specific. Fungal growth phenotypes differed between materials: spores dominated MDF surfaces while fungi transitioned from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells were intact (viable) on both materials over the course of the study. Integrated cell count and biomass data (quantitative profiling) revealed that small changes in relative abundance often resulted from large changes in absolute abundance, while negative correlations in relative abundances were explained by rapid growth of only one group of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks suggested a top-down control of fungi on bacterial growth, possibly via antibiotic production. In conclusion, quantitative profiling provides novel insights into microbial growth dynamics on building materials with potential implications for human health.
Collapse
Affiliation(s)
- Ying Xu
- Graduate Program in Bioinformatics and Medical Informatics, San Diego State University, San Diego, CA, USA
| | - Ruby Tandon
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Chrislyn Ancheta
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Pablo Arroyo
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Scott T Kelley
- Graduate Program in Bioinformatics and Medical Informatics, San Diego State University, San Diego, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
48
|
Ecological Genomics and Evolution of Trichoderma reesei. Methods Mol Biol 2021; 2234:1-21. [PMID: 33165775 DOI: 10.1007/978-1-0716-1048-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) is an efficient industrial cell factory for the production of cellulolytic enzymes used for biofuel and other applications. Therefore, researches addressing T. reesei are relatively advanced compared to other Trichoderma spp. because of the significant bulk of available knowledge, multiple genomic data, and gene manipulation techniques. However, the established role of T. reesei in industry has resulted in a frequently biased understanding of the biology of this fungus. Thus, the recent studies unexpectedly show that the superior cellulolytic activity of T. reesei and other Trichoderma species evolved due to multiple lateral gene transfer events, while the innate ability to parasitize other fungi (mycoparasitism) was maintained in the genus, including T. reesei. In this chapter, we will follow the concept of ecological genomics and describe the ecology, distribution, and evolution of T. reesei, as well as critically discuss several common misconceptions that originate from the success of this species in applied sciences and industry.
Collapse
|
49
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Abstract
AbstractIn an investigation of stromatic Xylariales in Thailand, several specimens of Daldinia were discovered. Three novel species (D. flavogranulata, D. phadaengensis, and D. chiangdaoensis) were recognized from a molecular phylogeny based on concatenated ITS, LSU, RPB2, and TUB2 sequence data, combined with morphological characters and secondary metabolite profiles based on high performance liquid chromatography coupled to diode array detection and mass spectrometry (HPLC-MS). The major components detected were cytochalasins (in D. flavogranulata and D. chiangdaoensis) and daldinin type azaphilones (in D. phadaengensis). In addition, D. brachysperma, which had hitherto only been reported from America, was found for the first time in Asia. Its phylogenetic affinities were studied, confirming previous suspicions from morphological comparisons that the species is closely related to D. eschscholtzii and D. bambusicola, both common in Thailand. Daldinia flavogranulata, one of the new taxa, was found to be closely related to the same taxa. The other two novel species, D. phadaengensis and D. chiangdaoensis, share characters with D. korfii and D. kretzschmarioides, respectively.
Collapse
|