1
|
Chaurasia R, Kaur BP, Pandian N, Pahari S, Das S, Bhattacharya U, Majood M, Mukherjee M. Leveraging the Physicochemical Attributes of Biomimetic Hydrogel Nanocomposites in Stem Cell Differentiation. Biomacromolecules 2024; 25:7543-7562. [PMID: 39277809 DOI: 10.1021/acs.biomac.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The field of tissue engineering has witnessed significant advancements with the advent of hydrogel nanocomposites (HNC), emerging as a highly promising platform for regenerative medicine. HNCs provide a versatile platform that significantly enhances the differentiation of stem cells into specific cell lineages, making them highly suitable for tissue engineering applications. By incorporating nanoparticles, the mechanical properties of hydrogels, such as elasticity, porosity, and stiffness, are improved, addressing common challenges such as short-term stability, cytotoxicity, and scalability. These nanocomposites also exhibit enhanced biocompatibility and bioavailability, which are crucial to their effectiveness in clinical applications. Furthermore, HNCs are responsive to various triggers, allowing for precise control over their chemical properties, which is beneficial in creating 3D microenvironments, promoting wound healing, and enabling controlled drug delivery systems. This review provides a comprehensive overview of the production methods of HNCs and the factors influencing their physicochemical and biological properties, particularly in relation to stem cell differentiation and tissue repair. Additionally, it discusses the challenges in developing HNCs and highlights their potential to transform the field of regenerative medicine through improved mechanotransduction and controlled release systems.
Collapse
Affiliation(s)
- Radhika Chaurasia
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Bani Preet Kaur
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Nikhita Pandian
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Siddhartha Pahari
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Susmita Das
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Uddipta Bhattacharya
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Misba Majood
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
- The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| |
Collapse
|
2
|
Lee S, Choi S, Kim MS. Intra-articular hydrogel formulation prolongs the in vivo stability of Toll-like receptor antagonistic peptides for rheumatoid arthritis treatment. J Control Release 2024; 372:467-481. [PMID: 38917954 DOI: 10.1016/j.jconrel.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation that primarily affects joint tissue and requires frequent medication. Recently, we developed cyclic phage-display-derived inhibitory peptides (CPs), which act as Toll-like Receptor 4 antagonists. These CPs exhibited therapeutic efficacy against joint diseases by alleviating inflammatory factors. Nonetheless, CP exhibits in vivo instability and a short half-life. Therefore, this study sought to improve the in vivo stability of CP, thereby reducing the frequency of CP administration through the development of an injectable hydrogel depot formulation. To improve in vivo stability, CP was chemically conjugated to hyaluronic acid (HA-CP) and subsequently mixed into a temperature-sensitive hydrogel [methoxy polyethylene glycol-b-poly(ε-caprolactone)-ran-poly(lactide) (PC)] as an injectable depot (PC+(HA-CP)). For comparison, CP was physically mixed with HA and PC (PC+(HA+CP)). Both PC+(HA-CP) and PC+(HA+CP) were found to rapidly form depots upon injection into the joint space. Cell viability assays confirmed the non-toxic nature of PC+(HA-CP) and PC+(HA+CP), whereas both formulations exhibited inhibition of inflammatory factors. Furthermore, PC+(HA-CP) retained CP for a longer duration compared to PC+(HA+CP) in the presence of hyaluronidase and within the RA joint space. Following intra-articular injection, both the PC+(HA-CP) and PC+(HA+CP) depots exhibited reductions in RA symptoms, cartilage regeneration, and suppression of pro-inflammatory cytokine levels. Specifically, by extending the in vivo retention of CP, PC+(HA-CP) demonstrated superior RA treatment efficacy compared to PC+(HA+CP). In conclusion, intra-articular injection of PC+(HA-CP) was validated as an effective strategy for treating RA, owing to its ability to prolong the in vivo retention of CP. This approach holds promise for improving RA management and patient outcomes.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Republic of Korea.
| |
Collapse
|
3
|
Kim HE, Ju HJ, Kim S, Kim YH, Lee S, Choi S, Yoon HC, Choi HS, Kim MS. Amplifying endogenous stem cell migration for in situ bone tissue formation: Substance P analog and BMP mimetic peptide-loaded click-crosslinked hyaluronic acid hydrogel. Mater Today Bio 2024; 26:101070. [PMID: 38711939 PMCID: PMC11070699 DOI: 10.1016/j.mtbio.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Endogenous stem cell-driven in situ bone tissue formation has recently garnered increasing attention. Therefore, our study sought to refine methods to enhance the migration and subsequent osteogenic differentiation of these cells. Our innovative approach involves using an injectable hydrogel that combines click cross-linking sites and a BMP-2 mimetic peptide (BP) with hyaluronic acid (HA). This injectable formulation, hereinafter referred to as SPa + Cx-HA-BP, incorporates a substance P analog peptide (SPa) with Cx-HA-BP, proving versatile for in vitro and in vivo applications without cytotoxicity. The controlled release of SPa creates a gradient that guides endogenous stem cells towards the Cx-HA scaffold from specific tissue niches. Both Cx-HA and SPa+Cx-HA induced minimal changes in the expression of genes associated with osteogenic differentiation. In contrast, these genes were robustly induced by both SPa + Cx-HA+BP and SPa + Cx-HA-BP, in which BP was respectively integrated via physical and chemical methods. Remarkably, chemically incorporating BP (Cx-HA-BP) resulted in 4-9 times higher osteogenic gene expression than physically mixed BP in Cx-HA+BP. This study validates the role of SPa role in guiding endogenous stem cells toward the hydrogel and underscores the substantial impact of sustained BP presence within the hydrogel. Collectively, our findings offer valuable insights for the development of innovative strategies to promote endogenous stem cell-based tissue regeneration. The developed hydrogel effectively guides stem cells from their natural locations and facilitates sustained osteogenic differentiation, thus holding great promise for applications in regenerative medicine.
Collapse
Affiliation(s)
- Hee Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Shina Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Young Hun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Soyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyun C. Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
- Research Institute, Medipolymer, Woncheon Dong 274, Suwon, 16522, South Korea
| |
Collapse
|
4
|
Jiang X, Yang Z, Zhang J, Liang H, Wang H, Lu J. Preparation and characterization of photosensitive methacrylate-grafted sodium carboxymethyl cellulose as an injectable material to fabricate hydrogels for biomedical applications. Int J Biol Macromol 2024; 263:130190. [PMID: 38360247 DOI: 10.1016/j.ijbiomac.2024.130190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Injectable materials have attracted great attention in the manufacture of in situ forming hydrogels for biomedical applications. In this study, a facile method to prepare methacrylic anhydride (MA)-modified sodium carboxymethyl cellulose (CMC) as an injectable material for the fabrication of hydrogels with controllable properties is reported. The chemical structure of the series of MA-grafted CMC (CMCMAs) with different MA contents was confirmed by Fourier transform infrared and nuclear magnetic resonance spectroscopy, and the properties of CMCMAs were characterized. Then, the CMCMAs gel (CMCMAs-G) was fabricated by crosslinking of MA under blue light irradiation. The gelation performances, swelling behaviors, transmittance, surface porous structures and mechanical properties of CMCMAs-G can be controlled by varying the content of MA grafted on the CMC. The compressive strength of CMCMAs-G was measured by mechanical compressibility tests and up to 180 kPa. Furthermore, the in vitro cytocompatibility evaluation results suggest that the obtained CMCMAs-G exhibit good compatibility for cell proliferation. Hence, our strategy provides a facile approach for the preparation of light-sensitive and an injectable CMC-derived polymer to fabricate hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Xia Jiang
- Division of Biliary Tract Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China..
| | - Zijiao Yang
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Jingyao Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Liang
- Division of Biliary Tract Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongge Wang
- Division of Biliary Tract Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiong Lu
- Division of Biliary Tract Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Lee S, Seo J, Kim YH, Ju HJ, Kim S, Ji YB, Lee HB, Kim HS, Choi S, Kim MS. Enhanced intra-articular therapy for rheumatoid arthritis using click-crosslinked hyaluronic acid hydrogels loaded with toll-like receptor antagonizing peptides. Acta Biomater 2023; 172:188-205. [PMID: 37866726 DOI: 10.1016/j.actbio.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder that results in the deterioration of joint cartilage and bone. Toll-like receptor 4 (TLR4) has been pinpointed as a key factor in RA-related inflammation. While Toll-like receptor antagonizing peptide 2 (TAP2) holds potential as an anti-inflammatory agent, its in vivo degradation rate hinders its efficacy. We engineered depots of TAP2 encapsulated in click-crosslinked hyaluronic acid (TAP2+Cx-HA) for intra-articular administration, aiming to enhance the effectiveness of TAP2 as an anti-inflammatory agent within the joint cavity. Our data demonstrated that FI-TAP2+Cx-HA achieves a longer retention time in the joint cavity compared to FI-TAP2 alone. Mechanistically, we found that TAP2 interacts with TLR4 on the cell membranes of inflammatory cells, thereby inhibiting the nuclear translocation of NF-κB and maintaining it in an inactive cytoplasmic state. In a rat model of RA, the TAP2+Cx-HA formulation effectively downregulated the inflammatory cytokines TNF-α and IL-6, while upregulating the anti-inflammatory cytokine IL-10 and the therapeutic protein 14-3-3ζ. This led to a more rapid restoration of cartilage thickness, increased deposition of glycosaminoglycans, and new bone tissue formation in the regenerated cartilage, in comparison to a single TAP2 treatment after a six-week period. Our results suggest that TAP2+Cx-HA could serve as a potent intra-articular treatment for RA, offering both symptomatic relief and promoting cartilage regeneration. This innovative delivery system holds significant promise for improving the management of RA and other inflammatory joint conditions. STATEMENT OF SIGNIFICANCE: In this study, we developed a therapy by creating toll-like receptor 4 (TLR4)-antagonizing peptide (TAP2)-loaded click-crosslinked hyaluronic acid (TAP2+Cx-HA) depots for direct intra-articular injection. Our study demonstrates that FI-TAP2+Cx-HA exhibits a more than threefold longer lifetime in the joint cavity compared to FI-TAP2 alone. Furthermore, we found that TAP2 binds to TLR4 and masks the nuclear localization signals of NF-κB, leading to its sequestration in an inactive state in the cytoplasm. In a rat model of RA, TAP2+Cx-HA effectively suppresses inflammatory molecules, specifically TNF-α and IL-6, while upregulating the anti-inflammatory cytokine IL-10 and the therapeutic protein 14-3-3ζ. This resulted in faster regeneration of cartilage thickness, increased glycosaminoglycan deposits in the regenerated cartilage, and a twofold increase in new bone tissue formation compared to a single TAP2 treatment.
Collapse
Affiliation(s)
- Soyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jiyoung Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Young Hun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Shina Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hai Bang Lee
- Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; Research Institute, Medipolymers, Woncheon Dong 332-2, Suwon 16522, Korea.
| |
Collapse
|
6
|
Luanda A, Badalamoole V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int J Biol Macromol 2023; 228:794-807. [PMID: 36535351 DOI: 10.1016/j.ijbiomac.2022.12.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
This review extensively surveys the biomedical applications of hydrogels containing dextran. Dextran has gained much attention as a biomaterial due to its distinctive properties such as biocompatibility, non-toxicity, water solubility and biodegradability. It has emerged as a critical constituent of hydrogels for biomedical applications including drug delivery devices, tissue engineering scaffolds and biosensor materials. The benefits, challenges and potential prospects of dextran-based hydrogels as biomaterials are highlighted in this review.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
7
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Shin GR, Kim HE, Ju HJ, Kim JH, Choi S, Choi HS, Kim MS. Injectable click-crosslinked hydrogel containing resveratrol to improve the therapeutic effect in triple negative breast cancer. Mater Today Bio 2022; 16:100386. [PMID: 35991627 PMCID: PMC9386493 DOI: 10.1016/j.mtbio.2022.100386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Triple-negative breast cancer (TNBC) patients are considered intractable, as this disease has few effective treatments and a very poor prognosis even in its early stages. Here, intratumoral therapy with resveratrol (Res), which has anticancer and metastasis inhibitory effects, was proposed for the effective treatment of TNBC. An injectable Res-loaded click-crosslinked hyaluronic acid (Res-Cx-HA) hydrogel was designed and intratumorally injected to generate a Res-Cx-HA depot inside the tumor. The Res-Cx-HA formulation exhibited good injectability into the tumor tissue, quick depot formation inside the tumor, and the depot remained inside the injected tumor for extended periods. In vivo formed Res-Cx-HA depots sustained Res inside the tumor for extended periods. More importantly, the bioavailability and therapeutic efficacy of Res remained almost exclusively within the tumor and not in other organs. Intratumoral injection of Res-Cx-HA in animal models resulted in significant negative tumor growth rates (i.e., the tumor volume decreased over time) coupled with large apoptotic cells and limited angiogenesis in tumors. Therefore, Res-Cx-HA intratumoral injection is a promising way to treat TNBC patients with high efficacy and minimal adverse effects. Intratumoral injection was developed for treatment of triple negative breast cancer. Injectable formulation exhibited good injectability, quick depot formation. The formed depot remained inside the injected tumor for extended periods. Bioavailability and therapeutic efficacy of Res inside tumor were improved. In vivo formed depots resulted in significant negative cancer growth.
Collapse
|
9
|
Abdallah MH, Abdelnabi DM, Elghamry HA. Response Surface Methodology for Optimization of Buspirone Hydrochloride-Loaded In Situ Gel for Pediatric Anxiety. Gels 2022; 8:gels8070395. [PMID: 35877480 PMCID: PMC9323393 DOI: 10.3390/gels8070395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of the current investigation was to formulate, assess, and optimize oral in situ gels of buspirone hydrochloride (BH) with the specific end goal of expanding the time the medication spends in the stomach, thereby ensuring an extended medication discharge. This would allow the use of a once-a-day dose of liquid BH formulations, which is ideal for the treatment of pediatric anxiety. In situ gels loaded with BH were prepared using various concentrations of sodium alginate (Na alg.), calcium chloride (CaCl2), and hydroxypropyl methylcellulose (HPMC K15M). The in situ gels exhibited the desired consistency, drug distribution, pH, ability to form gel, and prolonged drug release in vitro. The (33) full factorial design was utilized for the revealing of the ideal figures for the selected independent variables, Na alg. (X1), HPMC (X2), and CaCl2 (X3) based on measurements of the viscosity (Y1) and percentage drug release after 6 h (Y2). A pharmacokinetic study of the optimum formulation on rabbits was also performed. The formulation containing 2% of Na alg., 0.9% of HPMC-K15M, and 0.1125% of CaCl2 was selected as the ideal formulation, which gave the theoretical values of 269.2 cP and 44.9% for viscosity and percentage of drug released after 6 h, respectively. The pharmacokinetic study showed that the selected oral Na alg. in situ gel formulation displayed a prolonged release effect compared to BH solution and the marketed tablet (Buspar®), which was confirmed by the low Cmax and high Tmax values. The optimum oral Na alg. in situ gel showed a 1.5-fold increment in bioavailability compared with the drug solution.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (D.M.A.); (H.A.E.)
- Correspondence:
| | - Dina M. Abdelnabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (D.M.A.); (H.A.E.)
| | - Hanaa A. Elghamry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (D.M.A.); (H.A.E.)
| |
Collapse
|
10
|
Dethe MR, A P, Ahmed H, Agrawal M, Roy U, Alexander A. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release 2022; 343:217-236. [PMID: 35090961 PMCID: PMC9134269 DOI: 10.1016/j.jconrel.2022.01.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/09/2023]
Abstract
A number of stimuli-responsive-based hydrogels has been widely explored in biomedical applications in the last few decades because of their excellent biodegradability and biocompatibility. The development of synthetic chemistry and materials science leads to the emergence of in situ stimuli-responsive hydrogels. In this regard, several synthetic and natural polymers have been synthesized and utilized to prepare temperature-sensitive in situ forming hydrogels. This could be best used via injections as temperature stimulus could trigger in situ hydrogels gelation and swelling behaviors. There are many smart polymers available for the formulation of the in situ based thermoresponsive injectable hydrogel. Among these, poly (ε-caprolactone) (PCL) polymer has been recognized and approved by the FDA for numerous biomedical applications. More specifically, the PCL is coupled with polyethylene glycol (PEG) to obtain amphiphilic thermosensitive "smart" copolymers (PCL-PEG), to form rapid and reversible physical gelation behavior. However, the chemical structure of the copolymer is a critical aspect in determining water solubility, thermo-gelation behavior, drug release rate, degradation rate, and the possibility to deliver a diverse range of drugs. In this review, we have highlighted the typical PCL-PEG-based thermosensitive injectable hydrogels progress in the last decade for tissue engineering and localized drug delivery applications to treat various diseases. Additionally, the impact of molecular weight of PCL-PEG upon gelling behavior has also been critically highlighted for optimum hydrogels properties for potential pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Upal Roy
- Department of Health and Biomedical Sciences, College of Health Affairs, One West University Blvd., Brownsville, TX 78520, United States of America
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India.
| |
Collapse
|
11
|
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112489. [PMID: 34857275 DOI: 10.1016/j.msec.2021.112489] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Hydrogels have attracted much attention for biomedical and pharmaceutical applications due to the similarity of their biomimetic structure to the extracellular matrix of natural living tissues, tunable soft porous microarchitecture, superb biomechanical properties, proper biocompatibility, etc. Injectable hydrogels are an exciting type of hydrogels that can be easily injected into the target sites using needles or catheters in a minimally invasive manner. The more comfortable use, less pain, faster recovery period, lower costs, and fewer side effects make injectable hydrogels more attractive to both patients and clinicians in comparison to non-injectable hydrogels. However, it is difficult to achieve an ideal injectable hydrogel using just a single material (i.e., polymer). This challenge can be overcome by incorporating nanofillers into the polymeric matrix to engineer injectable nanocomposite hydrogels with combined or synergistic properties gained from the constituents. This work aims to critically review injectable nanocomposite hydrogels, their preparation methods, properties, functionalities, and versatile biomedical and pharmaceutical applications such as tissue engineering, drug delivery, and cancer labeling and therapy. The most common natural and synthetic polymers as matrices together with the most popular nanomaterials as reinforcements, including nanoceramics, carbon-based nanostructures, metallic nanomaterials, and various nanosized polymeric materials, are highlighted in this review.
Collapse
Affiliation(s)
- Amir Mellati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Elham Hasanzadeh
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Mohapatra S, Mirza MA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, Iqbal Z, Mahmood S. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels 2021; 7:207. [PMID: 34842705 PMCID: PMC8628667 DOI: 10.3390/gels7040207] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are known for their leading role in biomaterial systems involving pharmaceuticals that fascinate material scientists to work on the wide variety of biomedical applications. The physical and mechanical properties of hydrogels, along with their biodegradability and biocompatibility characteristics, have made them an attractive and flexible tool with various applications such as imaging, diagnosis and treatment. The water-cherishing nature of hydrogels and their capacity to swell-contingent upon a few ecological signals or the simple presence of water-is alluring for drug conveyance applications. Currently, there are several problems relating to drug delivery, to which hydrogel may provide a possible solution. Hence, it is pertinent to collate updates on hydrogels pertaining to biomedical applications. The primary objective of this review article is to garner information regarding classification, properties, methods of preparations, and of the polymers used with particular emphasis on injectable hydrogels. This review also covers the regulatory and other commerce specific information. Further, it enlists several patents and clinical trials of hydrogels with related indications and offers a consolidated resource for all facets associated with the biomedical hydrogels.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Ayah Rebhi Hilles
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia;
| | - Foziyah Zakir
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutics Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India; (S.M.); (M.A.M.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
13
|
Park SH, Ju HJ, Ji YB, Shah M, Min BH, Choi HS, Choi S, Kim MS. Endogenous Stem Cell-Based In Situ Tissue Regeneration Using Electrostatically Interactive Hydrogel with a Newly Discovered Substance P Analog and VEGF-Mimicking Peptide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103244. [PMID: 34480409 DOI: 10.1002/smll.202103244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The use of chemoattractants to promote endogenous stem cell-based in situ tissue regeneration has recently garnered much attention. This study is the first to assess the endogenous stem cell migration using a newly discovered substance P (SP) analog (SP1) by molecular dynamics simulations as an efficient chemoattractant. Further, a novel strategy based on electrostatic interaction using cationic chitosan (Ch) and anionic hyaluronic acid (HA) to prepare an SP1-loaded injectable C/H formulation without SP1 loss is developed. The formulation quickly forms an SP1-loaded C/H hydrogel in situ through in vivo injection. The newly discovered SP1 is found to possess human mesenchymal stromal cells (hMSCs) migration-inducing ability that is approximately two to three times higher than that of the existing SP. The designed VEGF-mimicking peptide (VP) chemically reacts with the hydrogel (C/H-VP) to sustain the release of VP, thus inducing vasculogenic differentiation of the hMSCs that migrate toward the C/H-VP hydrogel. Similarly, in animal experiments, SP1 attracts a large number of hMSCs toward the C/H-VP hydrogel, after which VP induces vasculogenic differentiation. Collectively, these findings indicate that SP1-loaded C/H-VP hydrogels are a promising strategy to facilitate endogenous stem cell-based in situ tissue regeneration.
Collapse
Affiliation(s)
- Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- Medipolymers, Research Institute, Woncheon Dong 332-2, Suwon, 16522, Korea
| |
Collapse
|
14
|
Mariano KCF, Papini JZB, de Faria NC, Heluany DNC, Botega ALL, Cereda CMS, de Paula E, Tófoli GR, de Araujo DR. Ropivacaine-Loaded Poloxamer Binary Hydrogels for Prolonged Regional Anesthesia: Structural Aspects, Biocompatibility, and Pharmacological Evaluation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7300098. [PMID: 34568494 PMCID: PMC8460376 DOI: 10.1155/2021/7300098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
This study reports the development of thermosensitive hydrogels for delivering ropivacaine (RVC), a wide clinically used local anesthetic. For this purpose, poloxamer- (PL-) based hydrogels were synthesized for evaluating the influence of polymer concentration, hydrophilic-lipophilic balances, and binary system formation on biopharmaceutical properties and pharmacological performance. Transition temperatures were shifted, and rheological analysis revealed a viscoelastic behavior with enhanced elastic/viscous modulus relationship (G'/G " = 1.8 to 22 times), according to hydrogel composition and RVC incorporation. The RVC release from PL407 and PL407/338 systems followed the Higuchi model (R 2 = 0.923-0.989), indicating the drug diffusion from hydrogels to the medium. RVC-PL hydrogels were potentially biocompatible evoking low cytotoxic effects (in fibroblasts and Schwann cells) and mild/moderate inflammation signs on sciatic nerve nearby histological evaluation. In vivo pharmacological assays demonstrated that PL407 and PL407/338 evoked differential analgesic effects, by prolonging the sensory blockade duration up to ~340 and 250 min., respectively. All those results highlighted PL407 and PL407/338 as promising new strategies for sustaining analgesic effects during the postoperative period.
Collapse
Affiliation(s)
| | | | | | | | | | - Cíntia Maria Saia Cereda
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, São Paulo, Brazil
| | - Eneida de Paula
- Department of Biochemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Giovana Radomille Tófoli
- São Leopoldo Mandic Faculty, São Leopoldo Mandic Research Institute, Campinas, São Paulo, Brazil
| | - Daniele Ribeiro de Araujo
- Human and Natural Sciences Center, Federal University of ABC, Santo André, SP, Brazil
- Drugs and Bioactives Delivery Systems Research Group–SISLIBIO, Federal University of ABC, Av. dos Estados, 5001 Bl. A, T3, Lab. 503-3. Bangú, Santo André, SP, Brazil
| |
Collapse
|
15
|
Kim DY, Ju HJ, Kim JH, Choi S, Kim MS. Injectable in situ forming hydrogel gene depot to improve the therapeutic effect of STAT3 shRNA. Biomater Sci 2021; 9:4459-4472. [PMID: 33997877 DOI: 10.1039/d1bm00624j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Down-regulation of the signal transducer and activity of transcription 3 (Stat3) plays a crucial role in suppression of many solid tumors. Intratumoral injection of a gene carrier applying Stat3-small hairpin RNA (St3-shRNA) is a potential therapeutic strategy. To our knowledge, this is the first report of the intratumoral injection of St3-shRNA using a gene carrier. We herein designed biodegradable (methoxy)polyethylene glycol-b-(polycaprolactone-ran-polylactide) copolymer (MP) derivatized with a spermine group with cationic properties at the pendant position of the MP chain (MP-NH2). The designed MP-NH2 can act as a gene carrier of St3-shRNA by forming an electrostatic complex with cationic spermine. This can increase the stability of the complexes because of protection of PEG in biologic environments and can exhibit a sol-gel phase transition around body temperature for the formation of intratumorally injected MP-NH2 hydrogel depot for St3-shRNA. MP-NH2 was observed to completely condense with St3-shRNA to form St3-shRNA/MP-NH2 complexes. These complexes were protected for a relatively long time (≥72 h) from external biologic molecules of the serum, DNase, and heparin. St3-shRNA/MP-NH2 complexes in in vitro tumor cell experiments can enhance transfection of St3-shRNA, correspondingly enhance Stat3 knockdown efficiency, and inhibit tumor cell growth. St3-shRNA/MP-NH2 complexes and St3-shRNA/MP-NH2 complex-loaded hydrogel were intratumorally injected into the tumor as new efficient delivery carriers and depots of St3-shRNA. The intratumoral injection of St3-shRNA/MP-NH2 complexes and St3-shRNA/MP-NH2 complex-loaded hydrogel showed effective anti-tumor effect for an extended period of time due to the effect of Stat3 knockdown. Collectively, the development of MP-NH2 as a carrier and depot of St3-shRNA provides a new strategy for St3-shRNA therapy through intratumoral injection with high efficacy and minimal adverse effects.
Collapse
Affiliation(s)
- Da Yeon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Korea.
| |
Collapse
|
16
|
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9:3543-3575. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China. and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
17
|
Park SH, Park JY, Ji YB, Ju HJ, Min BH, Kim MS. An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold. Acta Biomater 2020; 117:108-120. [PMID: 32927087 DOI: 10.1016/j.actbio.2020.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/16/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
An injectable, click-crosslinking (Cx) hyaluronic acid (HA) hydrogel scaffold modified with a bone morphogenetic protein-2 (BMP-2) mimetic peptide (BP) was prepared for bone tissue engineering applications. The injectable click-crosslinking HA formulation was prepared from HA-tetrazine (HA-Tet) and HA-cyclooctene (HA-TCO). The Cx-HA hydrogel scaffold was prepared simply by mixing HA-Tet and HA-TCO. The Cx-HA hydrogel scaffold was stable for a longer period than HA both in vitro and in vivo, which was verified via in-vivo fluorescence imaging in real time. BP acted as an osteogenic differentiation factor for human dental pulp stem cells (hDPSCs). After its formation in vivo, the Cx-HA scaffold provided a fine environment for the hDPSCs, and the biocompatibility of the hydrogel scaffold with tissue was good. Like traditional BMP-2, BP induced the osteogenic differentiation of hDPSCs in vitro. The physical properties and injectability of the chemically loaded BP for the Cx-HA hydrogel (Cx-HA-BP) were nearly identical to those of the physically loaded BP hydrogels and the Cx-HA-BP formulation quickly formed a hydrogel scaffold in vivo. The chemically loaded hydrogel scaffold retained the BP for over a month. The Cx-HA-BP hydrogel was better at inducing the osteogenic differentiation of loaded hDPSCs, because it prolonged the availability of BP. In summary, we successfully developed an injectable, click-crosslinking Cx-HA hydrogel scaffold to prolong the availability of BP for efficient bone tissue engineering.
Collapse
|
18
|
Comparison of Scaffolds Fabricated via 3D Printing and Salt Leaching: In Vivo Imaging, Biodegradation, and Inflammation. Polymers (Basel) 2020; 12:polym12102210. [PMID: 32993178 PMCID: PMC7599662 DOI: 10.3390/polym12102210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, we prepared fluorescently labeled poly(ε-caprolactone-ran-lactic acid) (PCLA-F) as a biomaterial to fabricate three-dimensional (3D) scaffolds via salt leaching and 3D printing. The salt-leached PCLA-F scaffold was fabricated using NaCl and methylene chloride, and it had an irregular, interconnected 3D structure. The printed PCLA-F scaffold was fabricated using a fused deposition modeling printer, and it had a layered, orthogonally oriented 3D structure. The printed scaffold fabrication method was clearly more efficient than the salt leaching method in terms of productivity and repeatability. In the in vivo fluorescence imaging of mice and gel permeation chromatography of scaffolds removed from rats, the salt-leached PCLA scaffolds showed slightly faster degradation than the printed PCLA scaffolds. In the inflammation reaction, the printed PCLA scaffolds induced a slightly stronger inflammation reaction due to the slower biodegradation. Collectively, we can conclude that in vivo biodegradability and inflammation of scaffolds were affected by the scaffold fabrication method.
Collapse
|
19
|
Ju HJ, Park M, Park JH, Shin GR, Choi HS, Suh MW, Kim MS. In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection. MATERIALS 2020; 13:ma13143070. [PMID: 32660032 PMCID: PMC7412526 DOI: 10.3390/ma13143070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
In this study, we developed injectable intratympanic hyaluronic acid (HA) depots for the treatment of hearing loss. We prepared an injectable click-crosslinking formulation by modifying HA with tetrazine (HA-TET) and trans-cyclooctene (HA-TCO), which crosslinked to form an HA depot (Cx-HA). Preparation of the click-crosslinking HA formulation was facile, and Cx-HA depot formation was reproducible. Additionally, the Cx-HA hydrogel was significantly stiffer than HA hydrogel. To monitor the degradation pattern of hydrogels, we mixed a zwitterionic near-infrared (NIR) fluorophore (e.g., ZW800-1C) in the click-crosslinking HA formulation. Then, HA-TET and HA-TCO solutions containing ZW800-1C were loaded separately into the compartments of a dual-barrel syringe for intratympanic injection. The Cx-HA depots formed quickly, and an extended residence time in the tympanic cavity was confirmed by performing NIR fluorescence imaging. We have successfully prepared an injectable click-crosslinking HA formulation that has promise as an intratympanic drug depot.
Collapse
Affiliation(s)
- Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
| | - Mina Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Medical Center, Seoul 05505, Korea;
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
| | - Gi Ru Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (H.S.C.); (M.-W.S.); (M.S.K.); Tel.: +1-617-726-5784 (H.S.C.); +82-2-2072-3649 (M.-W.S.); +82-31-219-2608 (M.S.K.); Fax: +1-617-643-2604 (H.S.C.); +82-2-745-2387 (M.-W.S.); +82-31-219-3931 (M.S.K.)
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Medical Center, Seoul 05505, Korea;
- Correspondence: (H.S.C.); (M.-W.S.); (M.S.K.); Tel.: +1-617-726-5784 (H.S.C.); +82-2-2072-3649 (M.-W.S.); +82-31-219-2608 (M.S.K.); Fax: +1-617-643-2604 (H.S.C.); +82-2-745-2387 (M.-W.S.); +82-31-219-3931 (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
- Correspondence: (H.S.C.); (M.-W.S.); (M.S.K.); Tel.: +1-617-726-5784 (H.S.C.); +82-2-2072-3649 (M.-W.S.); +82-31-219-2608 (M.S.K.); Fax: +1-617-643-2604 (H.S.C.); +82-2-745-2387 (M.-W.S.); +82-31-219-3931 (M.S.K.)
| |
Collapse
|
20
|
Zagórska-Dziok M, Sobczak M. Hydrogel-Based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics 2020; 12:pharmaceutics12050396. [PMID: 32357389 PMCID: PMC7284449 DOI: 10.3390/pharmaceutics12050396] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/17/2023] Open
Abstract
Hydrogels are playing an increasingly important role in medicine and pharmacy. Due to their favorable physicochemical properties, biocompatibility, and designed interaction with living surroundings, they seem to be one of the most promising groups of biomaterials. Hydrogel formulations from natural, semi, or synthetic polymeric materials have gained great attention in recent years for treating various dermatology maladies and for cosmetology procedures. The purpose of this review is to present a brief review on the basic concept of hydrogels, synthesis methods, relevant mechanisms, and applications in dermatology or cosmetology. This review discusses transdermal therapies and the recent advances that have occurred in the field.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Cosmetics and Pharmaceutical Products Technology, Medical College, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszów, Poland
| | - Marcin Sobczak
- Department of Cosmetics and Pharmaceutical Products Technology, Medical College, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszów, Poland
- Chair of Analytical Chemistry and Biomaterials, Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Correspondence: or
| |
Collapse
|
21
|
Heo JY, Noh JH, Park SH, Ji YB, Ju HJ, Kim DY, Lee B, Kim MS. An Injectable Click-Crosslinked Hydrogel that Prolongs Dexamethasone Release from Dexamethasone-Loaded Microspheres. Pharmaceutics 2019; 11:pharmaceutics11090438. [PMID: 31480552 PMCID: PMC6781549 DOI: 10.3390/pharmaceutics11090438] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Our purpose was to test whether a preparation of injectable formulations of dexamethasone (Dex)-loaded microspheres (Dex-Ms) mixed with click-crosslinked hyaluronic acid (Cx-HA) (or Pluronic (PH) for comparison) prolongs therapeutic levels of released Dex. Dex-Ms were prepared using a monoaxial-nozzle ultrasonic atomizer with an 85% yield of the Dex-Ms preparation, encapsulation efficiency of 80%, and average particle size of 57 μm. Cx-HA was prepared via a click reaction between transcyclooctene (TCO)-modified HA (TCO-HA) and tetrazine (TET)-modified HA (TET-HA). The injectable formulations (Dex-Ms/PH and Dex-Ms/Cx-HA) were fabricated as suspensions and became a Dex-Ms-loaded hydrogel drug depot after injection into the subcutaneous tissue of Sprague Dawley rats. Dex-Ms alone also formed a drug depot after injection. The Cx-HA hydrogel persisted in vivo for 28 days, but the PH hydrogel disappeared within six days, as evidenced by in vivo near-infrared fluorescence imaging. The in vitro and in vivo cumulative release of Dex by Dex-Ms/Cx-HA was much slower in the early days, followed by sustained release for 28 days, compared with Dex-Ms alone and Dex-Ms/PH. The reason was that the Cx-HA hydrogel acted as an external gel matrix for Dex-Ms, resulting in the retarded release of Dex from Dex-Ms. Therefore, we achieved significantly extended duration of a Dex release from an in vivo Dex-Ms-loaded hydrogel drug depot formed by Dex-Ms wrapped in an injectable click-crosslinked HA hydrogel in a minimally invasive manner. In conclusion, the Dex-Ms/Cx-HA drug depot described in this work showed excellent performance on extended in vivo delivery of Dex.
Collapse
Affiliation(s)
- Ji Yeon Heo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Da Yeon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48547, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
22
|
Yang H, Lei K, Zhou F, Yang X, An Q, Zhu W, Yu L, Ding J. Injectable PEG/polyester thermogel: A new liquid embolization agent for temporary vascular interventional therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:606-615. [DOI: 10.1016/j.msec.2019.04.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 02/07/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
|
23
|
Abstract
Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.
Collapse
|
24
|
Cao M, Wang Y, Hu X, Gong H, Li R, Cox H, Zhang J, Waigh TA, Xu H, Lu JR. Reversible Thermoresponsive Peptide–PNIPAM Hydrogels for Controlled Drug Delivery. Biomacromolecules 2019; 20:3601-3610. [PMID: 31365246 DOI: 10.1021/acs.biomac.9b01009] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yu Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xuzhi Hu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Ruiheng Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Henry Cox
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Thomas A. Waigh
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
25
|
Seo J, Park SH, Kim MJ, Ju HJ, Yin XY, Min BH, Kim MS. Injectable Click-Crosslinked Hyaluronic Acid Depot To Prolong Therapeutic Activity in Articular Joints Affected by Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24984-24998. [PMID: 31264830 DOI: 10.1021/acsami.9b04979] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to design a click-crosslinked hyaluronic acid (HA) (Cx-HA) depot via a click crosslinking reaction between tetrazine-modified HA and trans-cyclooctene-modified HA for direct intra-articular injection into joints affected by rheumatoid arthritis (RA). The Cx-HA depot had significantly more hydrogel-like features and a longer in vivo residence time than the HA depot. Methotrexate (MTX)-loaded Cx-HA (MTX-Cx-HA)-easily prepared as an injectable formulation-quickly formed an MTX-Cx-HA depot that persisted at the injection site for an extended period. In vivo MTX biodistribution in MTX-Cx-HA depots showed that a high concentration of MTX persisted at the intra-articular injection site for an extended period, with little distribution of MTX to normal tissues. In contrast, direct intra-articular injection of MTX alone or MTX-HA resulted in rapid clearance from the injection site. After intra-articular injection of MTX-Cx-HA into rats with RA, we noted the most significant RA reversal, measured by an articular index score, increased cartilage thickness, extensive generation of chondrocytes and glycosaminoglycan deposits, extensive new bone formation in the RA region, and suppression of tumor necrosis factor-α or interleukin-6 expression. Therefore, MTX-Cx-HA injected intra-articularly persists at the joint site in therapeutic MTX concentrations for an extended period, thus increasing the duration of RA treatment, resulting in an improved relief of RA.
Collapse
|
26
|
Darge HF, Andrgie AT, Tsai HC, Lai JY. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 2019; 133:545-563. [DOI: 10.1016/j.ijbiomac.2019.04.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/19/2023]
|
27
|
Lee JS, Park D, Yang T, Lee JY, Kang JY, Kim D, Kim JW, Jin L, Kim JW. Controlled rheological behaviors of hyaluronic acid solutions through attractive polymeric micelle-mediated interchain association. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Luo JW, Liu C, Wu JH, Lin LX, Fan HM, Zhao DH, Zhuang YQ, Sun YL. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:628-634. [DOI: 10.1016/j.msec.2019.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
|
29
|
Zhao H, Xu K, Zhu P, Wang C, Chi Q. Smart hydrogels with high tunability of stiffness as a biomimetic cell carrier. Cell Biol Int 2019; 43:84-97. [DOI: 10.1002/cbin.11091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Han Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Kang Xu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Peng Zhu
- Department of Cardiovascular Surgery; Union Hospital; Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Chunli Wang
- “111 ” Project Laboratory of Biomechanics and Tissue Repair; Bioengineering College; Chongqing University; Chongqing China
| | - Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics; Department of Mechanics and Engineering Structure; Wuhan University of Technology; Wuhan China
| |
Collapse
|
30
|
Seo JY, Lee B, Kang TW, Noh JH, Kim MJ, Ji YB, Ju HJ, Min BH, Kim MS. Electrostatically Interactive Injectable Hydrogels for Drug Delivery. Tissue Eng Regen Med 2018; 15:513-520. [PMID: 30603575 PMCID: PMC6171702 DOI: 10.1007/s13770-018-0146-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/15/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Several injectable hydrogels have been developed extensively for a broad range of biomedical applications. Injectable hydrogels forming in situ through the change in external stimuli have the distinct properties of easy management and minimal invasiveness, and thus provide the advantage of bypassing surgical procedures for administration resulting in better patient compliance. METHODS The injectable in situ-forming hydrogels can be formed irreversibly or reversibly under physiological stimuli. Among several external stimuli that induce formation of hydrogels in situ, in this review, we focused on the electrostatic interactions as the most simple and interesting stimulus. RESULTS Currently, numerous polyelectrolytes have been reported as potential electrostatically interactive in situ-forming hydrogels. In this review, a comprehensive overview of the rapidly developing electrostatically interactive in situ-forming hydrogels, which are produced by various anionic and cationic polyelectrolytes such as chitosan, celluloses, and alginates, has been outlined and summarized. Further, their biomedical applications have also been discussed. CONCLUSION The review concludes with perspectives on the future of electrostatically interactive in situ-forming hydrogels.
Collapse
Affiliation(s)
- Ji Young Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Min Ju Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
- Cell Therapy Center, Ajou University Medical Center, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| |
Collapse
|
31
|
Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. JOURNAL OF CLEANER PRODUCTION 2018; 198:143-159. [DOI: 10.1016/j.jclepro.2018.06.259] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Lee BK, Noh JH, Park JH, Park SH, Kim JH, Oh SH, Kim MS. Thermoresponsive and Biodegradable Amphiphilic Block Copolymers with Pendant Functional Groups. Tissue Eng Regen Med 2018; 15:393-402. [PMID: 30603563 PMCID: PMC6171651 DOI: 10.1007/s13770-018-0121-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND To develop the biodegradability and thermoresponsive hydrogel, in this work we designed a pendant-functionalized, thermoresponsive, amphiphilic block copolymer. METHODS Methoxy poly(ethylene glycol) (MPEG)-b-[poly(ε-caprolactone)-ran-poly(ε-caprolactone-3-one)-ran-polylactic acid] (MCL) and (MPEG-b-[PCL-ran-POD-ran-PLA]) [MCL-(CO)] block copolymers were prepared by ring-opening polymerization of ε-caprolactone, OD and lactide monomers. The subsequent derivatization of MCL-(CO) provided MPEG-b-[PCL-ran-poly(ε-caprolactone-3-COOH)-ran-PLA] [MCL-(COOH)] with COOH pendant groups and MPEG-b-[PCL-ran-poly(ε-caprolactone-3-NH2)-ran-PLA] [MCL-(NH2)] with NH2 pendant groups. RESULTS The measured segment ratios of MCL-(CO), MCL-(COOH), and MCL-(NH2) agreed well with the target ratios. The abundances of the COOH and NH2 groups in the MCL-(COOH) and MCL-(NH2) copolymers were determined by 1H- and 13C-nuclear magnetic resonance spectroscopy, and agreed well with the target abundances. MCL-(CO), MCL-(COOH), and MCL-(NH2) formed homogeneous, white, opaque emulsions at room temperature. Rheological analysis of the block copolymer suspensions indicated a solution-to-hydrogel phase transition as a function of temperature. The solution-to-hydrogel phase transitions and the biodegradation of MCL-(CO), MCL-(COOH), and MCL-(NH2) were affected by varying the type (ketone, COOH, or NH2) and abundance of the pendant groups. CONCLUSION MCL-(CO), MCL-(COOH), and MCL-(NH2) with ketone, COOH, and NH2 pendant groups showed solution-to-hydrogel phase transitions and biodegradation behaviors that depended on both the type and number of pendant groups.
Collapse
Affiliation(s)
- Bo Keun Lee
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116 Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| |
Collapse
|
33
|
Burek M, Wandzik I. Synthetic Hydrogels with Covalently Incorporated Saccharides Studied for Biomedical Applications – 15 Year Overview. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1443122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Małgorzata Burek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego, Gliwice, Poland
| |
Collapse
|
34
|
Lee HY, Park JH, Ji YB, Kwon DY, Lee BK, Kim JH, Park K, Kim MS. Preparation of pendant group-functionalized amphiphilic diblock copolymers in the presence of a monomer activator and evaluation as temperature-responsive hydrogels. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Park JH, Park SH, Lee HY, Lee JW, Lee BK, Lee BY, Kim JH, Kim MS. An injectable, electrostatically interacting drug depot for the treatment of rheumatoid arthritis. Biomaterials 2018; 154:86-98. [DOI: 10.1016/j.biomaterials.2017.10.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
|
36
|
Park JY, Park SH, Kim MG, Park SH, Yoo TH, Kim MS. Biomimetic Scaffolds for Bone Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:109-121. [PMID: 30471029 DOI: 10.1007/978-981-13-0445-3_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of biomimetic scaffolds for bone tissue engineering has been studied for a long time. Biomimetic scaffolds can assist and accelerate bone regeneration that is similar to that of authentic tissue, which represents the environment of cells in a living organism. Currently, numerous biomaterials have been reported for use as a biomimetic scaffold. This review focuses on the design of biomimetic scaffolds, kinds of biomaterials and methods used to fabricate biomimetic scaffolds, growth factors used with biomimetic scaffold for bone regeneration, mobilization of biological agents into biomimetic scaffolds, and studies on (pre)clinical bone regeneration from biomimetic scaffolds. Then, future prospects for biomimetic scaffolds are discussed.
Collapse
Affiliation(s)
- Joon Yeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Mal Geum Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.
| |
Collapse
|
37
|
Woodard LN, Kmetz KT, Roth AA, Page VM, Grunlan MA. Porous Poly(ε-caprolactone)-Poly(l-lactic acid) Semi-Interpenetrating Networks as Superior, Defect-Specific Scaffolds with Potential for Cranial Bone Defect Repair. Biomacromolecules 2017; 18:4075-4083. [PMID: 29037044 PMCID: PMC6371392 DOI: 10.1021/acs.biomac.7b01155] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The treatment of irregular cranial bone defects is currently limited due to the graft resorption that can occur when an ill-fitting interface exists between an autograft and the surrounding tissue. A tissue engineering scaffold able to achieve defect-specific geometries could improve healing. This work reports a macroporous, shape memory polymer (SMP) scaffold composed of a semi-interpenetrating network (semi-IPN) of thermoplastic poly(l-lactic acid) (PLLA) within cross-linked poly(ε-caprolactone) diacrylate (PCL-DA) that is capable of conformal fit within a defect. The macroporous scaffolds were fabricated using a fused salt template and were also found to have superior, highly controlled properties needed for regeneration. Specifically, the scaffolds displayed interconnected pores, improved rigidity, and controlled, accelerated degradation. Although slow degradation rates of scaffolds can limit healing, the unique degradation behavior observed could prove promising. Thus, the described SMP semi-IPN scaffolds overcome two of the largest limitations in bone tissue engineering: defect "fit" and tailored degradation.
Collapse
Affiliation(s)
- Lindsay N. Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Kevin T. Kmetz
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Abigail A. Roth
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Vanessa M. Page
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
38
|
Vidyasagar A, Ku SH, Kim M, Kim M, Lee HS, Pearce TR, McCormick AV, Bates FS, Kokkoli E. Design and Characterization of a PVLA-PEG-PVLA Thermosensitive and Biodegradable Hydrogel. ACS Macro Lett 2017; 6:1134-1139. [PMID: 35650931 DOI: 10.1021/acsmacrolett.7b00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A set of poly(δ-valerolactone-co-d,l-lactide)-b-poly(ethylene glycol)-b-poly(δ-valerolactone-co-d,l-lactide) (PVLA-PEG-PVLA) triblock copolymers was synthesized and the solution properties were characterized using rheology, cryo-TEM, cryo-SEM, SANS, and degradation studies. This polymer self-assembles into a low viscosity fluid with flowerlike spherical micelles in water at room temperature and transforms into a wormlike morphology upon heating, accompanied by gelation. At even higher temperatures syneresis is observed. At physiological temperature (37 °C) the hydrogel's average pore size is around 600 nm. The PVLA-PEG-PVLA gel degrades in about 45 days in cell media, making this unique hydrogel a promising candidate for biomedical applications.
Collapse
Affiliation(s)
- Ajay Vidyasagar
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sook Hee Ku
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Minchul Kim
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mihee Kim
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Han Seung Lee
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy R. Pearce
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alon V. McCormick
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Efrosini Kokkoli
- Department
of Chemical Engineering and Materials Science and ∥Department of
Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
|
40
|
Park SH, Kwon JS, Lee BS, Park JH, Lee BK, Yun JH, Lee BY, Kim JH, Min BH, Yoo TH, Kim MS. BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 2017; 7:6603. [PMID: 28747761 PMCID: PMC5529463 DOI: 10.1038/s41598-017-06911-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
This is the first report on the development of a covalently bone morphogenetic protein-2 (BMP2)-immobilized hydrogel that is suitable for osteogenic differentiation of human periodontal ligament stem cells (hPLSCs). O-propargyl-tyrosine (OpgY) was site-specifically incorporated into BMP2 to prepare BMP2-OpgY with an alkyne group. The engineered BMP2-OpgY exhibited osteogenic characteristics after in vitro osteogenic differentiation of hPLSCs, indicating the osteogenic ability of BMP2-OpgY. A methoxy polyethylene glycol-(polycaprolactone-(N3)) block copolymer (MC-N3) was prepared as an injectable in situ-forming hydrogel. BMP2 covalently immobilized on an MC hydrogel (MC-BMP2) was prepared quantitatively by a simple biorthogonal reaction between alkyne groups on BMP2-OpgY and azide groups on MC-N3 via a Cu(I)-catalyzed click reaction. The hPLSCs-loaded MC-BMP2 formed a hydrogel almost immediately upon injection into animals. In vivo osteogenic differentiation of hPLSCs in the MC-BMP2 formulation was confirmed by histological staining and gene expression analyses. Histological staining of hPLSC-loaded MC-BMP2 implants showed evidence of mineralized calcium deposits, whereas hPLSC-loaded MC-Cl or BMP2-OpgY mixed with MC-Cl, implants showed no mineral deposits. Additionally, MC-BMP2 induced higher levels of osteogenic gene expression in hPLSCs than in other groups. In conclusion, BMP2-OpgY covalently immobilized on MC-BMP2 induced osteogenic differentiation of hPLSCs as a noninvasive method for bone tissue engineering.
Collapse
Affiliation(s)
- Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jin Seon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Bo Keun Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jeong-Ho Yun
- Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-712, Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| |
Collapse
|
41
|
Lee BK, Park JH, Park SH, Kim JH, Oh SH, Lee SJ, Lee BY, Kim MS. Preparation of Pendant Group-Functionalized Diblock Copolymers with Adjustable Thermogelling Behavior. Polymers (Basel) 2017; 9:E239. [PMID: 30970916 PMCID: PMC6432020 DOI: 10.3390/polym9060239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 11/17/2022] Open
Abstract
Recently, several thermogelling materials have been developed for biomedical applications. In this study, we prepared methoxy polyethylene glycol (MPEG)-b-(poly(ε-caprolactone)-ran-poly(2-chloride-ε-caprolactone) (PCL-ran-PfCL)) (MP-Cl) diblock copolymers at room temperature via the ring-opening polymerization of caprolactone (CL) and 2-chloride-ε-caprolactone (fCL) monomers, using the terminal alcohol of MPEG as the initiator in the presence of HCl. MPEG-b-(poly(ε-caprolactone)-ran-poly(2-azide-ε-caprolactone) (PCL-ran-PCL-N₃)) (MP-N₃) was prepared by the reaction of MP-Cl with sodium azide. MPEG-b-(poly(ε-caprolactone)-ran-poly(2-amine-ε-caprolactone) (PCL-ran-PCL-NH₂)) (MP-NH₂) was subsequently prepared by Staudinger reaction. MP-Cl and MP-N₃ showed negative zeta potentials, but MP-NH₂ had a positive zeta potential. MP-Cl, MP-N₃, and MP-NH₂ solutions formed opaque emulsions at room temperature. The solutions exhibited a solution-to-hydrogel phase transition as a function of the temperature and were affected by variation of the chloride, azide, and the amine pendant group, as well as the amount of pendant groups present in their structure. Additionally, the phase transition of MP-Cl, MP-N₃, and MP-NH₂ copolymers was altered by pendant groups. The solution-to-hydrogel phase transition was adjusted by tailoring the crystallinity and hydrophobicity of the copolymers in aqueous solutions. Collectively, MP-Cl, MP-N₃, and MP-NH₂ with various pendant-group contents in the PCL segment showed a solution-to-hydrogel phase transition that depended on both the type of pendant groups and their content.
Collapse
Affiliation(s)
- Bo Keun Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 330-714, Korea.
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA.
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
42
|
Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions. Acta Biomater 2017; 55:396-409. [PMID: 28363786 DOI: 10.1016/j.actbio.2017.03.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 01/19/2023]
Abstract
In vivo behavior of hydrogel-based biomaterials is very important for rational design of hydrogels for various biomedical applications. Herein, we developed a facile method for in situ fabrication of radiopaque hydrogel. An iodinated functional diblock copolymer of poly(ethylene glycol) and aliphatic polyester was first synthesized by coupling the hydroxyl end of the diblock copolymer with 2,3,5-triiodobenzoic acid (TIB) and then a radiopaque thermoreversible hydrogel was obtained by mixing it with the virgin diblock copolymer. A concentrated aqueous solution of the copolymer blend was injectable at room temperature and spontaneously turned into an in situ hydrogel at body temperature after injection. The introduction of TIB moieties affords the capacity of X-ray opacity, enabling in vivo visualization of the hydrogel using Micro-CT. A rat model with cecum and abdominal defects was utilized to evaluate the efficacy of the radiopaque hydrogel in the prevention of post-operative adhesions, and a significant reduction of the post-operative adhesion formation was confirmed. Meanwhile, the maintenance of the radiopaque hydrogel in the abdomen after administration was non-destructively detected via Micro-CT scanning. The reconstructed three-dimensional images showed that the radiopaque hydrogel with an irregular morphology was located on the injured abdominal wall. The time-dependent profile of the volume of the radiopaque hydrogel determined by Micro-CT imaging was well consistent with the trend obtained from the dissection observation. Therefore, the radiopaque thermoreversible hydrogel can serve as a potential visualized biomedical implant and this practical mixing approach is also useful for further extension into the in vivo monitoring of other biomaterials. STATEMENT OF SIGNIFICANCE While a variety of biomaterials have been extensively studied, it is rare to monitor in vivo degradation and medical efficacy of a material after being implanted deeply into the body. Herein, the radiopaque thermoreversible hydrogel developed by us not only holds desirable performance on the prevention of post-operative abdominal adhesions, but also allows non-invasive monitoring of its in vivo degradation with CT imaging in a real-time, quantitative and three-dimensional manner. The methodology based on CT imaging provides important insights into the in vivo fate of the hydrogel after being deeply implanted into mammals for different biomedical applications and significantly reduces the amount of animals sacrificed.
Collapse
|
43
|
Moura MJ, Brochado J, Gil MH, Figueiredo MM. In situ forming chitosan hydrogels: Preliminary evaluation of the in vivo inflammatory response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:279-285. [DOI: 10.1016/j.msec.2017.02.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
|
44
|
Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1937-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Cheng S, Xue Y, Lu Y, Li X, Dong J. Thermoresponsive Pyrrolidone Block Copolymer Organogels from 3D Micellar Networks. ACS OMEGA 2017; 2:105-112. [PMID: 31457214 PMCID: PMC6640968 DOI: 10.1021/acsomega.6b00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/30/2016] [Indexed: 06/10/2023]
Abstract
A new series of amphiphilic pyrrolidone diblock copolymers poly[N-(2-methacrylaoyxyethyl)pyrrolidone]-block-poly(methyl methacrylate) (PNMP m -b-PMMA n ; where m is fixed at 37 and n is varied from 45 to 378) is developed. Spontaneously situ-gelling behaviors are observed in isopropanol when n varies from 117 to 230, whereas only dissolution or precipitation appears when n is beyond this region. Further analysis reveals that uniform thermoinduced reversible gel-sol transitions are observed in those organogels, which is attributed to the disassembly from micellar networks to micelles as confirmed by electron microscopy and other techniques. The gel-sol transition temperature is highly dependent on n and increases as n increases. Conformational interactions analyzed using 1H NMR and 2D Noesy NMR suggest that the thermoinduced stretch of solvophilic PNMP segments within micelles and the sequencing variation in the isopropanol molecules are the major cause of the gel-sol transitions.
Collapse
Affiliation(s)
- Shuozhen Cheng
- College
of Chemistry and Molecules Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Xue
- College
of Chemistry and Molecules Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yechang Lu
- College
of Chemistry and Molecules Sciences, Wuhan University, Wuhan 430072, P. R. China
- Lonkey
Industrial Co., Ltd., Guangzhou 510660, P. R. China
| | - Xuefeng Li
- College
of Chemistry and Molecules Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinfeng Dong
- College
of Chemistry and Molecules Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
46
|
Ravichandran R, Astrand C, Patra HK, Turner APF, Chotteau V, Phopase J. Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications. RSC Adv 2017; 7:21068-21078. [DOI: 10.1039/c7ra02927f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
A one-pot approach to fabricate in situ-gellable, thermo- and pH-responsive, hydrogels based on covalently crosslinked networks of collagen-I and thermo-responsive polymer.
Collapse
Affiliation(s)
- R. Ravichandran
- Division of Molecular Physics
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
| | - C. Astrand
- School of Biotechnology
- KTH-Royal Institute of Technology
- Stockholm
- Sweden
| | - H. K. Patra
- Biosensors and Bioelectronics Centre
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - Anthony P. F. Turner
- Biosensors and Bioelectronics Centre
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- Linköping
| | - V. Chotteau
- School of Biotechnology
- KTH-Royal Institute of Technology
- Stockholm
- Sweden
| | - J. Phopase
- Division of Molecular Physics
- Department of Physics, Chemistry and Biology (IFM)
- Linköping University
- Linköping
- Sweden
| |
Collapse
|
47
|
Yu H, Wang Y, Yang H, Peng K, Zhang X. Injectable self-healing hydrogels formed via thiol/disulfide exchange of thiol functionalized F127 and dithiolane modified PEG. J Mater Chem B 2017; 5:4121-4127. [DOI: 10.1039/c7tb00746a] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An injectable thermo-responsive hydrogel with excellent mechanical properties which can self-heal under mildly acidic to basic conditions was prepared.
Collapse
Affiliation(s)
- Hansen Yu
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yanan Wang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Kang Peng
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
48
|
Luan J, Cui S, Wang J, Shen W, Yu L, Ding J. Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions. Polym Chem 2017. [DOI: 10.1039/c7py00232g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The linking angles of positional isomers in the middle of thermogelling mPEG-PLGA-mPEG polymers were found to affect their microscopic conformations and macroscopic properties.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Juntao Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
49
|
Sun J, Liu X, Lei Y, Tang M, Dai Z, Yang X, Yu X, Yu L, Sun X, Ding J. Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery. J Mater Chem B 2017; 5:6400-6411. [DOI: 10.1039/c7tb01556a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We successfully developed a subconjunctival delivery system of CsA using an injectable thermogel to inhibit post-surgical scar formation after glaucoma filtration surgery.
Collapse
|
50
|
Lee HY, Park SH, Kim JH, Kim MS. Temperature-responsive hydrogels via the electrostatic interaction of amphiphilic diblock copolymers with pendant-ion groups. Polym Chem 2017. [DOI: 10.1039/c7py01460k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we prepared amphiphilic polyester diblock copolymers with pendant-ion groups and examined the formation of temperature-responsive hydrogels via the electrostatic interaction of cationic or anionic pendant groups.
Collapse
Affiliation(s)
- Hye Yun Lee
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| |
Collapse
|