1
|
Nowak AL, Saadat N, Sun J, Forsman AM, Liang X, Joyce C, Woo J, Engeland CG, Misra DP, Giurgescu C, Zhang W, Anderson CM. Preterm Birth in African American Women: A Multi-Omic Pilot Study in Early Pregnancy. Biol Res Nurs 2025; 27:205-215. [PMID: 39440846 DOI: 10.1177/10998004241275049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Preterm birth (PTB; <37 weeks completed gestation) is a devastating problem affecting over 13 million live births worldwide. In the U.S., African Americans experience significantly higher rates of PTB compared to non-Hispanic Whites. PTB disparities have been linked to social determinants of health (e.g., socioeconomic status, discrimination). However, the biological underpinnings related to these associations are unclear. DNA methylation (DNAm) is subject to environmental influences, and DNAm modifications are known to affect gene expression. Using a multi-omic approach, we examined differences in combined DNA methylation (DNAm) and messenger RNA (mRNA) transcriptomic data from 20 pregnant African American women (12 PTB; 8 term birth) early in pregnancy (8-18 weeks gestation). We found that the HLA-DQB2 gene was both differentially methylated (cg12296550; p = .02) and differentially expressed (p = .014; log2FC = 2.5) between women with PTB and term birth. Gene expression analysis showed HLA-DQB2 and HLA-DRB4 (p = .028; log2FC = -3.6) were the two most highly expressed genes. HLA-DQB2 expressed higher in PTB and HLA-DRB4 expressed higher in term birth. However, no genes remained significant (p < .05) after Bonferroni correction. HLA-DRB4 and AKR1C1 were identified as a potential biomarkers in dimensionality reduction models and are also important to immune function and allogenic breakdown. Altered gene expression may lead to inflammatory imbalances or allogenic intolerance resulting in PTB. This study provides proof-of-concept evidence for the feasibility and importance of future multi-omics studies with larger populations to further explore the genes and pathways identified here.
Collapse
Affiliation(s)
- Alexandra L Nowak
- Marcella Niehoff School of Nursing, Loyola University at Chicago, Maywood, IL, USA
| | - Nadia Saadat
- Department of Paediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Anna M Forsman
- Department of Biology, Colby College, Waterville, ME, USA
| | - Xiaoyu Liang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Cara Joyce
- Biostatistics Core, Department of Medicine, Center for Translational Research and Education, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jennifer Woo
- University of Texas at Arlington, Arlington, TX, USA
| | - Christopher G Engeland
- Biobehavioral Health, College of Health and Human Development, Ross and Carol Ness College of Nursing, The Pennsylvania State University, University Park, PA, USA
| | - Dawn P Misra
- Department of Epidemiology and Biostatistics, MSU College of Human Medicine, East Lansing, MI, USA
| | - Carmen Giurgescu
- Chatlos Foundation Endowed Chair in Nursing, University of Central Florida College of Nursing, Orlando, FL, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Cindy M Anderson
- Maternal Infant Health, Martha S. Pitzer Center for Women, Children and Youth, The Ohio State University College of Nursing, Columbus, OH, USA
| |
Collapse
|
2
|
Dević Pavlić S, Šverko R, Barišić A, Mladenić T, Vraneković J, Stanković A, Peterlin A, Peterlin B, Ostojić S, Pereza N. MTHFR Gene Polymorphisms and DNA Methylation in Idiopathic Spontaneous Preterm Birth. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2028. [PMID: 39768908 PMCID: PMC11728409 DOI: 10.3390/medicina60122028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives: Preterm birth (PTB) is a complex condition with various contributing factors, including genetic and epigenetic influences such as DNA methylation. Methylenetetrahydrofolate reductase (MTHFR) plays a critical role in DNA methylation and the remethylation of homocysteine. This study aimed to investigate the association between maternal MTHFR C677T and A1298C polymorphisms, LINE-1 DNA methylation levels, and the risk of idiopathic spontaneous preterm birth (SPTB) in Caucasian women from Croatia and Slovenia. Materials and Methods: A total of 50 women with SPTB (<34 weeks of gestation) and 50 control women were included in the study. MTHFR polymorphisms were analyzed using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), and LINE-1 DNA methylation levels were quantified using the MethyLight method. Results: The study found no significant differences in MTHFR C677T and A1298C polymorphisms' genotype or allele frequencies between women with SPTB and controls. Additionally, no statistical significance of LINE-1 DNA methylation was found between the genotypes of the MTHFR polymorphisms analyzed. Conclusions: The study suggests no conclusive association between MTHFR C677T and A1298C polymorphisms, LINE-1 DNA methylation, and SPTB in Croatian and Slovenian women. Considering prior evidence connecting MTHFR polymorphisms, hyperhomocysteinemia, and PTB, the lack of homocysteine measurements and unassessed impact of folate or vitamin B supplementation limit the conclusions.
Collapse
Affiliation(s)
- Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (J.V.); (S.O.); (N.P.)
| | - Roberta Šverko
- Department of Internal medicine, University Hospital Rijeka, 51000 Rijeka, Croatia;
| | - Anita Barišić
- Department of Gynecology and Obstetrics, University Hospital Rijeka, 51000 Rijeka, Croatia;
| | - Tea Mladenić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (J.V.); (S.O.); (N.P.)
| | - Jadranka Vraneković
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (J.V.); (S.O.); (N.P.)
| | - Aleksandra Stanković
- Department for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia;
| | - Ana Peterlin
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia;
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (J.V.); (S.O.); (N.P.)
| | - Nina Pereza
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.M.); (J.V.); (S.O.); (N.P.)
| |
Collapse
|
3
|
Eaves LA, Harrington CE, Fry RC. Epigenetic Responses to Nonchemical Stressors: Potential Molecular Links to Perinatal Health Outcomes. Curr Environ Health Rep 2024; 11:145-157. [PMID: 38580766 DOI: 10.1007/s40572-024-00435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE OF REVIEW We summarize the recent literature investigating exposure to four nonchemical stressors (financial stress, racism, psychosocial stress, and trauma) and DNA methylation, miRNA expression, and mRNA expression. We also highlight the relationships between these epigenetic changes and six critical perinatal outcomes (preterm birth, low birth weight, preeclampsia, gestational diabetes, childhood allergic disease, and childhood neurocognition). RECENT FINDINGS Multiple studies have found financial stress, psychosocial stress, and trauma to be associated with DNA methylation and/or miRNA and mRNA expression. Fewer studies have investigated the effects of racism. The majority of studies assessed epigenetic or genomic changes in maternal blood, cord blood, or placenta. Several studies included multi-OMIC assessments in which DNA methylation and/or miRNA expression were associated with gene expression. There is strong evidence for the role of epigenetics in driving the health outcomes considered. A total of 22 biomarkers, including numerous HPA axis genes, were identified to be epigenetically altered by both stressors and outcomes. Epigenetic changes related to inflammation, the immune and endocrine systems, and cell growth and survival were highlighted across numerous studies. Maternal exposure to nonchemical stressors is associated with epigenetic and/or genomic changes in a tissue-specific manner among inflammatory, immune, endocrine, and cell growth-related pathways, which may act as mediating pathways to perinatal health outcomes. Future research can test the mediating role of the specific biomarkers identified as linked with both stressors and outcomes. Understanding underlying epigenetic mechanisms altered by nonchemical stressors can provide a better understanding of how chemical and nonchemical exposures interact.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Cailee E Harrington
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Mead EC, Wang CA, Phung J, Fu JY, Williams SM, Merialdi M, Jacobsson B, Lye S, Menon R, Pennell CE. The Role of Genetics in Preterm Birth. Reprod Sci 2023; 30:3410-3427. [PMID: 37450251 PMCID: PMC10692032 DOI: 10.1007/s43032-023-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Preterm birth (PTB), defined as the birth of a child before 37 completed weeks gestation, affects approximately 11% of live births and is the leading cause of death in children under 5 years. PTB is a complex disease with multiple risk factors including genetic variation. Much research has aimed to establish the biological mechanisms underlying PTB often through identification of genetic markers for PTB risk. The objective of this review is to present a comprehensive and updated summary of the published data relating to the field of PTB genetics. A literature search in PubMed was conducted and English studies related to PTB genetics were included. Genetic studies have identified genes within inflammatory, immunological, tissue remodeling, endocrine, metabolic, and vascular pathways that may be involved in PTB. However, a substantial proportion of published data have been largely inconclusive and multiple studies had limited power to detect associations. On the contrary, a few large hypothesis-free approaches have identified and replicated multiple novel variants associated with PTB in different cohorts. Overall, attempts to predict PTB using single "-omics" datasets including genomic, transcriptomic, and epigenomic biomarkers have been mostly unsuccessful and have failed to translate to the clinical setting. Integration of data from multiple "-omics" datasets has yielded the most promising results.
Collapse
Affiliation(s)
- Elyse C Mead
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Jason Phung
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Joanna Yx Fu
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mario Merialdi
- Maternal Newborn Health Innovations, Geneva, PBC, Switzerland
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia.
| |
Collapse
|
5
|
Fučić A, Knežević J, Krasić J, Polančec D, Sinčić N, Sindičić Dessardo N, Starčević M, Guszak V, Ceppi M, Bruzzone M. Interleukin-2 gene methylation levels and interleukin-2 levels associated with environmental exposure as risk biomarkers for preterm birth. Croat Med J 2023; 64:320-328. [PMID: 37927185 PMCID: PMC10668044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
AIM To compare interleukin-2 levels (IL-2) and IL-2 gene site 1 methylation levels between preterm newborns (PN) and full-term newborns (FN) and investigate their association with the environmental exposure of their mothers during pregnancy. METHODS IL-2 and IL-2 gene site 1 methylation levels were assessed in 50 PN and 56 FN. Newborns' mothers filled in questionnaires about their living and occupational environments, habits, diets, and hobbies. RESULTS The mothers of PN were significantly more frequently agrarian/rural residents than the mothers of FN. PN had significantly higher IL-2 levels, and significantly lower methylation of IL-2 gene site 1 levels than FN. CONCLUSION IL-2 levels, hypomethylation of the IL-2 gene site 1, and the mother's rural residence (probably due to pesticide exposure) were predictive biomarkers for preterm birth. For the first time, we present the reference values for the methylation of IL-2 gene site 1 in PN and FN, which can be used in the clinical setting and biomonitoring.
Collapse
Affiliation(s)
- Aleksandra Fučić
- Aleksandra Fučić, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
BRAVEMAN PAULA. The Black-White Disparity in Preterm Birth: Race or Racism? Milbank Q 2023; 101:356-378. [PMID: 37096619 PMCID: PMC10126979 DOI: 10.1111/1468-0009.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/20/2022] [Accepted: 01/06/2023] [Indexed: 04/26/2023] Open
Abstract
Policy Points Racism is an upstream determinant of health that influences health through many midstream and downstream factors. This Perspective traces multiple plausible causal pathways from racism to preterm birth. Although the article focuses on the Black-White disparity in preterm birth, a key population health indicator, it has implications for many other health outcomes. It is erroneous to assume by default that underlying biological differences explain racial disparities in health. Appropriate science-based policies are needed to address racial disparities in health; this will require addressing racism.
Collapse
|
7
|
Pearson C, Bartell T, Wang G, Hong X, Rusk SA, Fu L, Cerda S, Bustamante-Helfrich B, Kuohung W, Yarrington C, Adams WG, Wang X. Boston Birth Cohort Profile: Rationale and Study Design. PRECISION NUTRITION 2022; 1:e00011. [PMID: 36660305 PMCID: PMC9844822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In 1998, the Boston Birth Cohort (BBC) was initiated at Boston Medical Center (BMC) in response to persistently high rates of preterm birth (PTB, defined as birth before 37 weeks of gestation) in the US population and the longstanding profound PTB disparity among Black, Indigenous, and people of color (BIPOC). The BBC encompasses two linked study protocols: The Preterm Birth Study serves as the baseline recruitment in the BBC. It aims to address fundamental questions about the causes and consequences of PTB. The study oversamples preterm babies using a case/control study design, in which cases are defined as mothers who deliver a preterm and/or low birthweight baby (<2500 grams regardless of gestational age). Controls are enrolled at a 2:1 control/case ratio and matched by maternal age (±5 years), self-reported race and ethnicity, and date of delivery (± 7 days for case delivery). From inception, it was designed as a comprehensive gene-environmental study of PTB. As a natural extension, the Children's Health Study, under a separate but linked IRB protocol, is a longitudinal follow-up study of the participants who were recruited at birth in the Preterm Birth Study and who continue pediatric care at BMC. This linked model allows for investigation of early life origins of pediatric and chronic disease in a prospective cohort design. The BBC is one of the largest and longest NIH-funded prospective birth cohort studies in the US, consisting of 8733 mother-child dyads enrolled in the Preterm Birth Study at birth, and of those, 3,592 children have been enrolled in the Children's Health Study, with a median follow-up of 14.5 years. The BBC mirrors the urban, under-resourced and underrepresented BIPOC population served by BMC. A high proportion of BBC children were born prematurely and had chronic health conditions (e.g., asthma, obesity and elevated blood pressure) in childhood. The BBC's long-term goal has been to build a large, comprehensive database (epidemiological, clinical, multi-omics) and biospecimen repository to elucidate early life origins of pediatric and chronic diseases and identify modifiable upstream factors (e.g., psychosocial, environmental, nutritional) to improve health across the life course for BIPOC mothers and children.
Collapse
Affiliation(s)
- Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Tami Bartell
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Serena A. Rusk
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - LingLing Fu
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Sandra Cerda
- Department of Pathology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | | | - Wendy Kuohung
- Department of Obstetrics and Gynecology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Christina Yarrington
- Department of Obstetrics and Gynecology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - William G. Adams
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Nowak AL, Anderson CM, Ford JL, Mackos A, Ohm J, Saadat N, Tan A, Zhao Y, Misra DP, Giurgescu C. DNA Methylation Patterns of Glucocorticoid Pathway Genes in Preterm Birth Among Black Women. Biol Res Nurs 2022; 24:493-502. [PMID: 35512640 PMCID: PMC9630727 DOI: 10.1177/10998004221099253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preterm birth (PTB; <37 weeks gestation) rates have increased for 5 of the last 6 consecutive years in the United States. These rates are particularly alarming for U.S. non-Hispanic Black women who give birth prematurely at 1.5 times the rate of non-Hispanic White women. Previous research suggests that psychological stress is associated with PTB in Black women. However, the biological pathways by which stress alters birth timing are not clear. We examined DNA methylation (DNAm) in peripheral blood leukocytes in 6 glucocorticoid, stress-related genes in 44 (22 PTB; 22 term birth) pregnant Black women. Four cytosine-phosphate-guanine (CpG) sites were identified as differentially methylated (p < 0.05) between women with PTB and women with term births. The ability to identify stress-related biological markers that are associated with PTB among Black women would provide a critical step toward decreasing the PTB disparity among these women. Future studies should include larger sample sizes and gene expression analyses of the stress-related biological pathways to PTB.
Collapse
Affiliation(s)
| | | | - Jodi L. Ford
- College of Nursing, The Ohio State
University, Columbus, OH, USA
| | - Amy Mackos
- College of Nursing, The Ohio State
University, Columbus, OH, USA
| | - Joyce Ohm
- Department of Genetics and
Genomics, Roswell Park Comprehensive Cancer
Center, Buffalo, NY, USA
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Alai Tan
- College of Nursing, The Ohio State
University, Columbus, OH, USA
| | - Yihong Zhao
- School of Nursing, Columbia University, New York, NY, USA
| | - Dawn P. Misra
- Department of Epidemiology and
Biostatistics, Michigan State
University, East Lansing, MI, USA
| | - Carmen Giurgescu
- College of Nursing, University of Central
Florida, Orlando, FL, USA
| |
Collapse
|
9
|
Pearson C, Bartell T, Wang G, Hong X, Rusk SA, Fu L, Cerda S, Bustamante-Helfrich B, Kuohung W, Yarrington C, Adams WG, Wang X. Boston Birth Cohort profile: rationale and study design. PRECISION NUTRITION 2022; 1:e00011. [PMID: 37745944 PMCID: PMC9844822 DOI: 10.1097/pn9.0000000000000011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 09/26/2023]
Abstract
In1998, the Boston Birth Cohort (BBC) was initiated at Boston Medical Center (BMC) in response to persistently high rates of preterm birth (PTB, defined as birth before 37 weeks of gestation) in the US population and the longstanding profound PTB disparity among Black, Indigenous, and people of color (BIPOC). The BBC encompasses two linked study protocols: The PTB Study serves as the baseline recruitment in the BBC. It aims to address fundamental questions about the causes and consequences of PTB. The study oversamples preterm babies using a case/control study design, in which cases are defined as mothers who deliver a preterm and/or low birthweight baby (<2500 grams regardless of gestational age). Controls are enrolled at a 2:1 control/case ratio and matched by maternal age (±5 years), self-reported race and ethnicity, and date of delivery (± 7 days for case delivery). From inception, it was designed as a comprehensive gene-environmental study of PTB. As a natural extension, the Children's Health Study, under a separate but linked Institutional Review Board protocol, is a longitudinal follow-up study of the participants who were recruited at birth in the PTB Study and who continue pediatric care at BMC. This linked model allows for investigation of early life origins of pediatric and chronic disease in a prospective cohort design. The BBC is one of the largest and longest National Institutes of Health-funded prospective birth cohort studies in the United States, consisting of 8733 mother-child dyads enrolled in the PTB Study at birth, and of those, 3592 children have been enrolled in the Children's Health Study, with a median follow-up of 14.5 years. The BBC mirrors the urban, underresourced, and underrepresented BIPOC population served by BMC. A high proportion of BBC children were born prematurely and had chronic health conditions (e.g., asthma, obesity, and elevated blood pressure) in childhood. The BBC's long-term goal has been to build a large, comprehensive database (epidemiological, clinical, and multiomics) and biospecimen repository to elucidate early life origins of pediatric and chronic diseases and identify modifiable upstream factors (e.g., psychosocial, environmental, and nutritional) to improve health across the life course for BIPOC mothers and children.
Collapse
Affiliation(s)
- Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Tami Bartell
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Serena A. Rusk
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - LingLing Fu
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Sandra Cerda
- Department of Pathology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | | | - Wendy Kuohung
- Department of Obstetrics and Gynecology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Christina Yarrington
- Department of Obstetrics and Gynecology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - William G. Adams
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Lin MW, Tsai MH, Shih CY, Tai YY, Lee CN, Lin SY. Comparison of DNA Methylation Changes Between the Gestation Period and the After-Delivery State: A Pilot Study of 10 Women. Front Nutr 2022; 9:829915. [PMID: 35600817 PMCID: PMC9116383 DOI: 10.3389/fnut.2022.829915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background Gestational adaptation occurs soon after fertilization and continues throughout pregnancy, whereas women return to a pre-pregnancy state after delivery and lactation. However, little is known about the role of DNA methylation in fine-tuning maternal physiology. Understanding the changes in DNA methylation during pregnancy is the first step in clarifying the association of diet, nutrition, and thromboembolism with the changes in DNA methylation. In this study, we investigated whether and how the DNA methylation pattern changes in the three trimesters and after delivery in ten uncomplicated pregnancies. Results DNA methylation was measured using a Human MethylationEPIC BeadChip. There were 14,018 cytosine-guanine dinucleotide (CpG) sites with statistically significant changes in DNA methylation over the four time periods (p <
0.001). Overall, DNA methylation after delivery was higher than that of the three trimesters (p < 0.001), with the protein ubiquitination pathway being the top canonical pathway involved. We classified the CpG sites into nine groups according to the changes in the three trimesters and found that 38.37% of CpG sites had DNA methylation changes during pregnancy, especially between the first and second trimesters. Conclusion DNA methylation pattern changes between trimesters, indicating possible involvement in maternal adaptation to pregnancy. Meanwhile, DNA methylation patterns during pregnancy and in the postpartum period were different, implying that puerperium repair may also function through DNA methylation mechanisms.
Collapse
Affiliation(s)
- Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core Lab, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Shih
- Bioinformatics and Biostatistics Core Lab, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Yun Tai
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- *Correspondence: Shin-Yu Lin
| |
Collapse
|
11
|
Gillespie SL, Christian LM, Mackos AR, Nolan TS, Gondwe KW, Anderson CM, Hall MW, Williams KP, Slavich GM. Lifetime stressor exposure, systemic inflammation during pregnancy, and preterm birth among Black American women. Brain Behav Immun 2022; 101:266-274. [PMID: 35031400 PMCID: PMC8885874 DOI: 10.1016/j.bbi.2022.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/07/2023] Open
Abstract
Although Black American mothers and infants are at higher risk for morbidity and mortality than their White counterparts, the biological mechanisms underlying these phenomena remain largely unknown. To investigate the role that lifetime stressor exposure, perceived stressor severity, and systemic inflammatory markers might play, we studied how these factors were interrelated in 92 pregnant Black American women. We also compared inflammatory marker levels for women who did versus did not go on to give birth preterm. During the early third trimester, women completed the Stress and Adversity Inventory for Adults to assess the stressors they experienced over their lifetime. Women also provided blood samples for plasma interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α quantification. Preterm births were identified by medical record review. Controlling for relevant covariates, there were significant positive associations between average levels of both overall and acute perceived stressor severity and plasma IL-1β levels. Controlling for perceived stress at assessment and exposure to racial discrimination did not affect these results. Mediation models revealed that exposure to more chronic stressors was related to higher plasma IL-1β levels, as mediated by higher average levels of overall perceived stressor severity. Exposure to fewer acute stressors was related to higher plasma IL-1β levels, as mediated by higher average levels of acute perceived stressor severity. Finally, women who went on to give birth preterm had higher levels of plasma IL-6. These data thus highlight the potential importance of assessing and addressing lifetime stressor exposure among mothers before and during maternal-infant care.
Collapse
Affiliation(s)
- Shannon L. Gillespie
- College of Nursing, The Ohio State University, Columbus, OH, USA,Please address correspondence to Shannon L. Gillespie, 358 Newton Hall, 1585 Neil Avenue, Columbus, OH, USA; 1-614-292-4589 Office;
| | - Lisa M. Christian
- Department of Psychiatry and Behavioral Health, College of Medicine, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Timiya S. Nolan
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Kaboni W. Gondwe
- College of Nursing, University of Wisconsin, Milwaukee, WI, USA,Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Nursing Research & Evidence-based Practice, Children’s Hospital of Wisconsin, Milwaukee, WI, USA
| | | | - Mark W. Hall
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA,Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | - George M. Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA
| |
Collapse
|
12
|
Winchester P, Nilsson E, Beck D, Skinner MK. Preterm birth buccal cell epigenetic biomarkers to facilitate preventative medicine. Sci Rep 2022; 12:3361. [PMID: 35232984 PMCID: PMC8888575 DOI: 10.1038/s41598-022-07262-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Preterm birth is the major cause of newborn and infant mortality affecting nearly one in every ten live births. The current study was designed to develop an epigenetic biomarker for susceptibility of preterm birth using buccal cells from the mother, father, and child (triads). An epigenome-wide association study (EWAS) was used to identify differential DNA methylation regions (DMRs) using a comparison of control term birth versus preterm birth triads. Epigenetic DMR associations with preterm birth were identified for both the mother and father that were distinct and suggest potential epigenetic contributions from both parents. The mother (165 DMRs) and female child (136 DMRs) at p < 1e-04 had the highest number of DMRs and were highly similar suggesting potential epigenetic inheritance of the epimutations. The male child had negligible DMR associations. The DMR associated genes for each group involve previously identified preterm birth associated genes. Observations identify a potential paternal germline contribution for preterm birth and identify the potential epigenetic inheritance of preterm birth susceptibility for the female child later in life. Although expanded clinical trials and preconception trials are required to optimize the potential epigenetic biomarkers, such epigenetic biomarkers may allow preventative medicine strategies to reduce the incidence of preterm birth.
Collapse
Affiliation(s)
- Paul Winchester
- Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN, 46202-5201, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
13
|
Li C, Cao M, Zhou X. Role of epigenetics in parturition and preterm birth. Biol Rev Camb Philos Soc 2021; 97:851-873. [PMID: 34939297 DOI: 10.1111/brv.12825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Preterm birth occurs worldwide and is associated with high morbidity, mortality, and economic cost. Although several risk factors associated with parturition and preterm birth have been identified, mechanisms underlying this syndrome remain unclear, thereby limiting the implementation of interventions for prevention and management. Known triggers of preterm birth include conditions related to inflammatory and immunological pathways, as well as genetics and maternal history. Importantly, epigenetics, which is the study of heritable phenotypic changes that occur without alterations in the DNA sequence, may play a role in linking social and environmental risk factors for preterm birth. Epigenetic approaches to the study of preterm birth, including analyses of the effects of microRNAs, long non-coding RNAs, DNA methylation, and histone modification, have contributed to an improved understanding of the molecular bases of both term and preterm birth. Additionally, epigenetic modifications have been linked to factors already associated with preterm birth, including obesity and smoking. The prevention and management of preterm birth remains a challenge worldwide. Although epigenetic analysis provides valuable insights into the causes and risk factors associated with this syndrome, further studies are necessary to determine whether epigenetic approaches can be used routinely for the diagnosis, prevention, and management of preterm birth.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
14
|
Barišić A, Stanković A, Stojković L, Pereza N, Ostojić S, Peterlin A, Peterlin B, Vraneković J. Maternal LINE-1 DNA Methylation in Early Spontaneous Preterm Birth. Biol Res Nurs 2021; 24:85-93. [PMID: 34727781 DOI: 10.1177/10998004211043571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite considerable effort aimed at decreasing the incidence of spontaneous preterm birth (SPTB), it remains the leading cause of infant mortality and morbidity. The aim of this study was to evaluate maternal LINE-1 DNA methylation (DNAm), along with DNMT polymorphisms and factors proposed to modulate DNAm, in patients who delivered early preterm. This case-control study included women who delivered spontaneously early preterm (23-336/7 weeks of gestation), and control women. DNAm was analyzed in peripheral blood lymphocytes by quantification of LINE-1 DNAm using the MethyLight method. There was no significant difference in LINE-1 DNAm between patients with early PTB and controls. Among the investigated predictors, only the history of previous PTB was significantly associated with LINE-1 DNAm in PTB patients (β = -0.407; R2 = 0.131; p = 0.011). The regression analysis showed the effect of DNMT3B rs1569686 TT+TG genotypes on LINE-1 DNAm in patients with familial PTB (β = -0.524; R2 = 0.275; p = 0.037). Our findings suggest novel associations of maternal LINE-1 DNA hypomethylation with DNMT3B rs1569686 T allele. These results also contribute to the understanding of a complex (epi)genetic and environmental relationship underlying the early PTB.
Collapse
Affiliation(s)
- Anita Barišić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Aleksandra Stanković
- Department for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Ljiljana Stojković
- Department for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Nina Pereza
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ana Peterlin
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, Slovenia
| | - Jadranka Vraneković
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
15
|
Barcelona V, Montalvo-Ortiz JL, Wright ML, Nagamatsu ST, Dreisbach C, Crusto CA, Sun YV, Taylor JY. DNA methylation changes in African American women with a history of preterm birth from the InterGEN study. BMC Genom Data 2021; 22:30. [PMID: 34482817 PMCID: PMC8418749 DOI: 10.1186/s12863-021-00988-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/25/2021] [Indexed: 01/20/2023] Open
Abstract
Background Preterm birth (< 37 weeks’ gestation) is a common outcome of pregnancy that has been associated with increased risk of cardiovascular disease for women later in life. Little is known about the physiologic mechanisms underlying this risk. To date, no studies have evaluated if differences in DNA methylation (DNAm) among women who experience preterm birth are short-term or if they persist and are associated with subsequent cardiovascular sequelae or other health disorders. The purpose of this study was to examine long-term epigenetic effects of preterm birth in African American mothers (n = 182) from the InterGEN Study (2014–2019). In this study, we determine if differences in DNAm exist between women who reported a preterm birth in the last 3–5 years compared to those who had full-term births by using two different approaches: epigenome-wide association study (EWAS) and genome-wide co-methylation analyses. Results Though no significant CpG sites were identified using the EWAS approach, we did identify significant modules of co-methylation associated with preterm birth. Co-methylation analyses showed correlations with preterm birth in gene ontology and KEGG pathways. Functional annotation analysis revealed enrichment for pathways related to central nervous system and sensory perception. No association was observed between DNAm age and preterm birth, though larger samples are needed to confirm this further. Conclusions We identified differentially methylated gene networks associated with preterm birth in African American women 3–5 years after birth, including pathways related to neurogenesis and sensory processing. More research is needed to understand better these associations and replicate them in an independent cohort. Further study should be done in this area to elucidate mechanisms linking preterm birth and later epigenomic changes that may contribute to the development of health disorders and maternal mood and well-being. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00988-x.
Collapse
Affiliation(s)
- Veronica Barcelona
- School of Nursing, Columbia University, 560 W. 168th St, New York, NY, 10032, USA.
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Division of Human Genetics, School of Medicine, Errera Community Care Center-Orange Annex, Yale University, 200 Edison Road, Orange, CT, 06477, USA
| | - Michelle L Wright
- School of Nursing & Dell Medical School, Department of Women's Health, University of Texas at Austin, 1710 Red River St., Austin, TX, 78712, USA
| | - Sheila T Nagamatsu
- Department of Psychiatry, Division of Human Genetics, School of Medicine, Errera Community Care Center-Orange Annex, Yale University, 200 Edison Road, Orange, CT, 06477, USA
| | - Caitlin Dreisbach
- Columbia University, Data Science Institute, Northwest Corner, 550 W 120th St #1401, New York, NY, 10027, USA
| | - Cindy A Crusto
- School of Medicine, Department of Psychiatry, Yale University, 389 Whitney Ave, New Haven, CT, 06511, USA
| | - Yan V Sun
- Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Jacquelyn Y Taylor
- Center for Research on People of Color, School of Nursing, Columbia University, 560 W 168th St, Room 605, New York, NY, 10032, USA
| |
Collapse
|
16
|
Braveman P, Dominguez TP, Burke W, Dolan SM, Stevenson DK, Jackson FM, Collins JW, Driscoll DA, Haley T, Acker J, Shaw GM, McCabe ERB, Hay WW, Thornburg K, Acevedo-Garcia D, Cordero JF, Wise PH, Legaz G, Rashied-Henry K, Frost J, Verbiest S, Waddell L. Explaining the Black-White Disparity in Preterm Birth: A Consensus Statement From a Multi-Disciplinary Scientific Work Group Convened by the March of Dimes. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:684207. [PMID: 36303973 PMCID: PMC9580804 DOI: 10.3389/frph.2021.684207] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
In 2017-2019, the March of Dimes convened a workgroup with biomedical, clinical, and epidemiologic expertise to review knowledge of the causes of the persistent Black-White disparity in preterm birth (PTB). Multiple databases were searched to identify hypothesized causes examined in peer-reviewed literature, 33 hypothesized causes were reviewed for whether they plausibly affect PTB and either occur more/less frequently and/or have a larger/smaller effect size among Black women vs. White women. While definitive proof is lacking for most potential causes, most are biologically plausible. No single downstream or midstream factor explains the disparity or its social patterning, however, many likely play limited roles, e.g., while genetic factors likely contribute to PTB, they explain at most a small fraction of the disparity. Research links most hypothesized midstream causes, including socioeconomic factors and stress, with the disparity through their influence on the hypothesized downstream factors. Socioeconomic factors alone cannot explain the disparity's social patterning. Chronic stress could affect PTB through neuroendocrine and immune mechanisms leading to inflammation and immune dysfunction, stress could alter a woman's microbiota, immune response to infection, chronic disease risks, and behaviors, and trigger epigenetic changes influencing PTB risk. As an upstream factor, racism in multiple forms has repeatedly been linked with the plausible midstream/downstream factors, including socioeconomic disadvantage, stress, and toxic exposures. Racism is the only factor identified that directly or indirectly could explain the racial disparities in the plausible midstream/downstream causes and the observed social patterning. Historical and contemporary systemic racism can explain the racial disparities in socioeconomic opportunities that differentially expose African Americans to lifelong financial stress and associated health-harming conditions. Segregation places Black women in stressful surroundings and exposes them to environmental hazards. Race-based discriminatory treatment is a pervasive stressor for Black women of all socioeconomic levels, considering both incidents and the constant vigilance needed to prepare oneself for potential incidents. Racism is a highly plausible, major upstream contributor to the Black-White disparity in PTB through multiple pathways and biological mechanisms. While much is unknown, existing knowledge and core values (equity, justice) support addressing racism in efforts to eliminate the racial disparity in PTB.
Collapse
Affiliation(s)
- Paula Braveman
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Tyan Parker Dominguez
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, United States
| | - Wylie Burke
- University of Washington School of Medicine, Seattle, WA, United States
| | - Siobhan M. Dolan
- Albert Einstein College of Medicine, New York, NY, United States
| | | | | | - James W. Collins
- Northwestern University School of Medicine, Chicago, IL, United States
| | - Deborah A. Driscoll
- University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Terinney Haley
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Julia Acker
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Gary M. Shaw
- Stanford University School of Medicine, Stanford, CA, United States
| | - Edward R. B. McCabe
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | | | - Kent Thornburg
- School of Medicine, Oregon State University, Portland, OR, United States
| | | | - José F. Cordero
- University of Georgia College of Public Health, Athens, GA, United States
| | - Paul H. Wise
- Stanford University School of Medicine, Stanford, CA, United States
| | - Gina Legaz
- March of Dimes, White Plains, NY, United States
| | | | | | - Sarah Verbiest
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | |
Collapse
|
17
|
You YA, Kwon EJ, Hwang HS, Choi SJ, Choi SK, Kim YJ. Elevated methylation of the vault RNA2-1 promoter in maternal blood is associated with preterm birth. BMC Genomics 2021; 22:528. [PMID: 34246240 PMCID: PMC8272312 DOI: 10.1186/s12864-021-07865-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Preterm birth, defined as parturition before 37 completed weeks of gestation, is associated with an increased risk of neonatal complications and death, as well as poor health and disease later in life. Epigenetics could contribute to the mechanism underlying preterm birth. Results Genome-wide DNA methylation analysis of whole blood cells from 10 women (5 term and 5 preterm deliveries) was performed using an Illumina Infinium HumanMethylation450 BeadChips array. We identified 1,581 differentially methylated CpG sites in promoter regions between term and preterm birth. Although the differences were not significant after correcting for multiple tests, seven CpGs on the genomically imprinted vault RNA2-1 (VTRNA2-1; also known as non-coding RNA, nc886 or miR-886) showed the largest differences (range: 26–39 %). Pyrosequencing verification was performed with blood samples from pregnant women recruited additionally (39 term and 43 preterm deliveries). In total, 28 (34.1 %) samples showed hypomethylation of the VTRNA2-1 promoter (< 13 % methylation), while 54 (65.9 %) samples showed elevated methylation levels between 30 and 60 %. Elevated methylation of VTRNA2-1 promoter was associated with an increased risk of preterm birth after adjusting for maternal age, season of delivery, parity and white blood cell count. The mRNA expression of VTRNA2-1 was 0.51-fold lower in women with preterm deliveries (n = 20) compared with women with term deliveries (n = 20). Conclusions VTRNA2-1 is a noncoding transcript to environmentally responsive epialleles. Our results suggest that elevated methylation of the VTRNA2-1 promoter may result in increased risk of PTB caused by the pro-inflammatory cytokines. Further studies are needed to confirm the association of VTRNA2-1 methylation with preterm birth in a large population, and to elucidate the underlying mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07865-y.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University Medical School, 07985, Seoul, Korea
| | - Eun Jin Kwon
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 03760, Seoul, Korea
| | - Han-Sung Hwang
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, 143-729, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710, Seoul, Korea
| | - Sae Kyung Choi
- College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, 137-040, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University Medical School, 07985, Seoul, Korea. .,Graduate Program in System Health Science and Engineering, Ewha Womans University, 03760, Seoul, Korea. .,Department of Obstetrics and Gynecology, Ewha Womans University Mok Dong Hospital, 158-051, Seoul, South Korea.
| |
Collapse
|
18
|
Maternal DNA Methylation During Pregnancy: a Review. Reprod Sci 2021; 28:2758-2769. [PMID: 33469876 DOI: 10.1007/s43032-020-00456-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Multiple environmental, behavioral, and hereditary factors affect pregnancy. Recent studies suggest that epigenetic modifications, such as DNA methylation (DNAm), affect both maternal and fetal health during the period of gestation. Some of the pregnancy-related risk factors can influence maternal DNAm, thus predisposing both the mother and the neonate to clinical adversities with long-lasting consequences. DNAm alterations in the promoter and enhancer regions modulate gene expression changes which play vital physiological role. In this review, we have discussed the recent advances in our understanding of maternal DNA methylation changes during pregnancy and its associated complications such as gestational diabetes and anemia, adverse pregnancy outcomes like preterm birth, and preeclampsia. We have also highlighted some major gaps and limitations in the area which if addressed might improve our understanding of pregnancy and its associated adverse clinical conditions, ultimately leading to healthy pregnancies and reduction of public health burden.
Collapse
|
19
|
Gaining a deeper understanding of social determinants of preterm birth by integrating multi-omics data. Pediatr Res 2021; 89:336-343. [PMID: 33188285 PMCID: PMC7898277 DOI: 10.1038/s41390-020-01266-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
In the US, high rates of preterm birth (PTB) and profound Black-White disparities in PTB have persisted for decades. This review focuses on the role of social determinants of health (SDH), with an emphasis on maternal stress, in PTB disparity and biological embedding. It covers: (1) PTB disparity in US Black women and possible contributors; (2) the role of SDH, highlighting maternal stress, in the persistent racial disparity of PTB; (3) epigenetics at the interface between genes and environment; (4) the role of the genome in modifying maternal stress-PTB associations; (5) recent advances in multi-omics studies of PTB; and (6) future perspectives on integrating multi-omics with SDH to elucidate the Black-White disparity in PTB. Available studies have indicated that neither environmental exposures nor genetics alone can adequately explain the Black-White PTB disparity. Preliminary yet promising findings of epigenetic and gene-environment interaction studies underscore the value of integrating SDH with multi-omics in prospective birth cohort studies, especially among high-risk Black women. In an era of rapid advancements in biomedical sciences and technologies and a growing number of prospective birth cohort studies, we have unprecedented opportunities to advance this field and finally address the long history of health disparities in PTB. IMPACT: This review provides an overview of social determinants of health (SDH) with a focus on maternal stress and its role on Black-White disparity in preterm birth (PTB). It summarizes the available literature on the interplay of maternal stress with key biological layers (e.g., individual genome and epigenome in response to environmental stressors) and significant knowledge gaps. It offers perspectives that such knowledge may provide deeper insight into how SDH affects PTB and why some women are more vulnerable than others and underscores the critical need for integrating SDH with multi-omics in prospective birth cohort studies, especially among high-risk Black women.
Collapse
|
20
|
Collier ARY, Ledyard R, Montoya-Williams D, Qiu M, Dereix AE, Farrokhi MR, Hacker MR, Burris HH. Racial and ethnic representation in epigenomic studies of preterm birth: a systematic review. Epigenomics 2020; 13:1735-1746. [PMID: 33264049 DOI: 10.2217/epi-2020-0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: We conducted a systematic review evaluating race/ethnicity representation in DNA methylomic studies of preterm birth. Data sources: PubMed, EMBASE, CINHAL, Scopus and relevant citations from 1 January 2000 to 30 June 2019. Study appraisal & synthesis methods: Two authors independently identified abstracts comparing DNA methylomic differences between term and preterm births that included race/ethnicity data. Results: 16 studies were included. Black and non-Hispanic Black deliveries were well represented (28%). However, large studies originating from more than 95% White populations were excluded due to unreported race/ethnicity data. Most studies were cross-sectional, allowing for reverse causation. Most studies were also racially/ethnically homogeneous, preventing direct comparison of DNA methylomic differences across race/ethnicities. Conclusion: In DNA methylomic studies, Black women and infants were well represented. However, the literature has limitations and precludes drawing definitive conclusions.
Collapse
Affiliation(s)
- Ai-Ris Y Collier
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Department of Obstetrics, Gynecology, & Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Ledyard
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diana Montoya-Williams
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maylene Qiu
- Biomedical Library, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra E Dereix
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Minou Raschid Farrokhi
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Colby College, Waterville, ME 04901, USA
| | - Michele R Hacker
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Department of Obstetrics, Gynecology, & Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Heather H Burris
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Chu T, Shaw P, McClain L, Simhan H, Peters D. High-resolution epigenomic liquid biopsy for noninvasive phenotyping in pregnancy. Prenat Diagn 2020; 41:61-69. [PMID: 33002217 DOI: 10.1002/pd.5833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We explored the potential of genome-wide epigenomic liquid biopsy for the comprehensive analysis of cell-free DNA (cfDNA) methylation signatures in maternal plasma in early gestation. METHOD We used solution phase hybridization for targeted region capture of bisulfite-converted DNA obtained from plasma of pregnant women in early gestation and nonpregnant female controls. RESULTS Targeted sequencing of ~80.5 Mb of the plasma methylome generated an average read depth across all 17 plasma samples of ~42x. We used these data to explore the pregnancy-specific characteristics of cfDNA methylation in plasma and found that pregnancy resulted in clearly detectable global alterations in DNA methylation patterns that were influenced by genomic location. We analyzed similar, previously published, data from first-trimester maternal leukocyte populations and gestational age-matched chorionic villus (CV) and confirmed that tissue-specific DNA methylation signatures in these samples had a significant influence on global and gene-specific methylation in the plasma of pregnant women. CONCLUSION We describe an approach for targeted epigenomic liquid biopsy in pregnancy and discuss our findings in the context of noninvasive prenatal testing with respect to phenotypic pregnancy monitoring and the early detection of complex gestational phenotypes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
- Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hyagriv Simhan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - David Peters
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Luo R, Mukherjee N, Chen S, Jiang Y, Arshad SH, Holloway JW, Hedman A, Gruzieva O, Andolf E, Pershagen G, Almqvist C, Karmaus WJ. Paternal DNA Methylation May Be Associated With Gestational Age at Birth. Epigenet Insights 2020; 13:2516865720930701. [PMID: 32964196 PMCID: PMC7488897 DOI: 10.1177/2516865720930701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022] Open
Abstract
Background: How epigenetic modifications of DNA are associated with gestational age at birth is not fully understood. We investigated potential effects of differential paternal DNA methylation (DNAm) on offspring gestational age at birth by conducting an epigenome-wide search for cytosine-phosphate-guanine (CpG) sites. Methods: Study participants in this study consist of male cohort members or partners of the F1-generation of the Isle of Wight Birth Cohort (IoWBC). DNAm levels in peripheral blood from F1-fathers (n = 92) collected around pregnancy of their spouses were analyzed using the Illumina 450K array. A 5-step statistical analysis was performed. First, a training-testing screening approach was applied to select CpG sites that are potentially associated with gestational age at birth. Second, functional enrichment analysis was employed to identify biological processes. Third, by centralizing on biologically informative genes, Cox proportional hazards models were used to assess the hazard ratios of individual paternal CpGs on gestational age adjusting for confounders. Fourth, to assess the validity of our results, we compared our CpG-gestational age correlations within a Born into Life Study in Sweden (n = 15). Finally, we investigated the correlation between the detected CpGs and differential gene expression in F2 cord blood in the IoWBC. Results: Analysis of DNAm of fathers collected around their partner’s pregnancy identified 216 CpG sites significantly associated with gestational age at birth. Functional enrichment pathways analyses of the annotated genes revealed 2 biological pathways significantly related to cell-cell membrane adhesion molecules. Differential methylation of 9 cell membrane adhesion pathway-related CpGs were significantly associated with gestational age at birth after adjustment for confounders. The replication sample showed correlation coefficients of 2 pathway-related CpGs with gestational age at birth within 95% confidence intervals of correlation coefficients in IoWBC. Finally, CpG sites of protocadherin (PCDH) gene clusters were associated with gene expression of PCDH in F2 cord blood. Conclusions: Our findings suggest that differential paternal DNAm may affect gestational age at birth through cell-cell membrane adhesion molecules. The results are novel but require future replication in a larger cohort.
Collapse
Affiliation(s)
- Rui Luo
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Su Chen
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, Newport, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Goran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Unit of Pediatric Allergy and Pulmonology at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Wilfried Jj Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
23
|
Gutierrez MJ, Nino G, Hong X, Wang X. Epigenomics and Early Life Human Humoral Immunity: Novel Paradigms and Research Opportunities. Front Immunol 2020; 11:1766. [PMID: 32983086 PMCID: PMC7492271 DOI: 10.3389/fimmu.2020.01766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
The molecular machinery controlling immune development has been extensively investigated. Studies in animal models and adult individuals have revealed fundamental mechanisms of disease and have been essential to understanding how humans sense and respond to cellular stress, tissue damage, pathogens and their environment. Nonetheless, our understanding of how immune responses originate during human development is just starting to emerge. In particular, studies to unveil how environmental and other non-heritable factors shape the immune system at the beginning of life offer great promise to yield important knowledge about determinants of normal inter-individual immune variation and to prevent and treat many human diseases. In this review, we summarize our current understanding of some of the mechanisms determining early life antibody production as a model of an immune process with sequential molecular checkpoints susceptible to influence by non-heritable factors. We discuss the potential of epigenomics as a valuable approach that may reveal not only relevant gene-environment interactions but important clues about immune developmental processes and homeostasis in early life. We then highlight the novel paradigm of human immunology as a complex field that nowadays requires a longitudinal systems-biology approach to understand normal variation and developmental changes during the first few years of life.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Medical Center, George Washington University, Washington, DC, United States.,Center for Genetic Medicine, Children's National Medical Center, Washington, DC, United States
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Ross KM, Carroll JE, Horvath S, Hobel CJ, Coussons-Read ME, Dunkel Schetter C. Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight. Clin Epigenetics 2020; 12:120. [PMID: 32762768 PMCID: PMC7409637 DOI: 10.1186/s13148-020-00909-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Advanced biological aging, as measured by epigenetic aging indices, is associated with early mortality and morbidity. Associations between maternal epigenetic aging indices in pregnancy and pregnancy outcomes, namely gestational length and birthweight, have not been assessed. The purpose of this study was to examine whether epigenetic age during pregnancy was associated with gestational length and birthweight. RESULTS The sample consisted of 77 women from the Los Angeles, CA, area enrolled in the Healthy Babies Before Birth study. Whole blood samples for DNA methylation assay were obtained during the second trimester (15.6 ± 2.15 weeks gestation). Epigenetic age indices GrimAge acceleration (GrimAgeAccel), DNAm PAI-1, DNAm ADM, and DNAm cystatin C were calculated. Gestational length and birthweight were obtained from medical chart review. Covariates were maternal sociodemographic variables, gestational age at blood sample collection, and pre-pregnancy body mass index. In separate covariate-adjusted linear regression models, higher early second trimester GrimAgeAccel, b(SE) = - .171 (.056), p = .004; DNAm PAI-1, b(SE) = - 1.95 × 10-4 (8.5 × 10-5), p = .004; DNAm ADM, b(SE) = - .033 (.011), p = .003; and DNAm cystatin C, b(SE) = 2.10 × 10-5 (8.0 × 10-5), p = .012, were each associated with shorter gestational length. Higher GrimAgeAccel, b(SE) = - 75.2 (19.7), p < .001; DNAm PAI-1, b(SE) = - .079(.031), p = .013; DNAm ADM, b(SE) = - 13.8 (3.87), p = .001; and DNAm cystatin C, b(SE) = - .010 (.003), p = .001, were also associated with lower birthweight, independent of gestational length. DISCUSSION Higher maternal prenatal GrimAgeAccel, DNAm PAI-1, DNAm ADM, and DNAm cystatin C were associated with shorter gestational length and lower birthweight. These findings suggest that biological age, as measured by these epigenetic indices, could indicate risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Kharah M. Ross
- Centre for Social Sciences, Athabasca University, 1 University Drive, Athabasca, AB T9S 3A3 Canada
- Department of Psychology, University of Calgary, Calgary, AB Canada
| | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California – Los Angeles, Los Angeles, CA USA
| | - Steve Horvath
- Department of Biostatistics, University of California – Los Angeles, Los Angeles, CA USA
| | - Calvin J. Hobel
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Mary E. Coussons-Read
- Psychology Department, University of Colorado – Colorado Springs, Colorado Springs, CO USA
| | | |
Collapse
|
25
|
Surkan PJ, Hong X, Zhang B, Nawa N, Ji H, Tang WY, Ji Y, Kimmel MC, Wang G, Pearson C, Wang X. Can social support during pregnancy affect maternal DNA methylation? Findings from a cohort of African-Americans. Pediatr Res 2020; 88:131-138. [PMID: 31349361 PMCID: PMC6982603 DOI: 10.1038/s41390-019-0512-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND While stress and the absence of social support during pregnancy have been linked to poor health outcomes, the underlying biological mechanisms are unclear. METHODS We examined whether adverse experiences during pregnancy alter DNA methylation (DNAm) in maternal epigenomes. Analyses included 250 African-American mothers from the Boston Birth Cohort. Genome-wide DNAm profiling was performed in maternal blood collected after delivery, using the Infinium HumanMethylation450 Beadchip. Linear regression models, with adjustment of pertinent covariates, were applied. RESULTS While self-reported maternal psychosocial lifetime stress and stress during pregnancy was not associated with DNAm alterations, we found that absence of support from the baby's father was significantly associated with maternal DNAm changes in TOR3A, IQCB1, C7orf36, and MYH7B and that lack of support from family and friends was associated with maternal DNA hypermethylation on multiple genes, including PRDM16 and BANKL. CONCLUSIONS This study provides intriguing results suggesting biological embedding of social support during pregnancy on maternal DNAm, warranting additional investigation, and replication.
Collapse
Affiliation(s)
- Pamela J. Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland,Corresponding author: Pamela J. Surkan, Social and Behavioral Interventions Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Room E5523, Baltimore, MD, USA, 21205-2179. . Phone: 410-502-7396. Fax: 410-502-6733
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Nobutoshi Nawa
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hongkai Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Wan-Yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Mary C. Kimmel
- Department of Psychiatry, University of North Carolina at Chapel Hill’s School of Medicine, Chapel Hill, North Carolina
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland,Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Yang M, He T, Jiang L, Wang H, Zhang J, Chai J, Li Z, Zhang Y, Zhou G, Ba Y. The role of maternal methylation in the association between prenatal meteorological conditions and neonatal H19/H19-DMR methylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110643. [PMID: 32315786 DOI: 10.1016/j.ecoenv.2020.110643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Meteorological conditions during pregnancy can affect birth outcome, which has been linked to the H19/H19-differentially methylated region (DMR). However, the detailed mechanisms underlying this association are unclear. This was investigated in the present study to provide epidemiological evidence for elucidating the pathogenesis of adverse birth outcomes. A total of 550 mother-newborn pairs were recruited in Zhengzhou, China from January 2010 to January 2012. Meteorological data including temperature (T), relative humidity (RH), and sunshine duration (SSD) were obtained from the China Meteorological Data Sharing Service System. Bisulfite sequencing PCR was performed to determine the methylation levels of H19/H19-DMR using genomic DNA extracted from maternal peripheral and umbilical cord blood. The results showed that H19-DMR methylation status in cord blood was positively associated with that in maternal blood. Neonatal H19-DMR methylation was negatively associated with T and RH during the first trimester and positively associated with these variables during the third trimester. There was a positive correlation between neonatal H19-DMR methylation and SSD during the second trimester and a negative correlation during the third trimester. Similar associations were observed between maternal H19-DMR methylation and prenatal meteorological conditions. We also observed significant interaction effects of maternal H19/H19-DMR methylation and most prenatal meteorological factors on neonatal methylation, and found that changes in the methylation status of maternal H19-DMR were responsible for the effects of prenatal meteorological conditions on neonatal methylation. In summary, neonatal H19-DMR methylation was significantly associated with prenatal meteorological conditions, which was modified and mediated by maternal H19-DMR methylation changes. These findings provide insights into the relationship between meteorological factors during pregnancy and adverse birth outcomes or disease susceptibility in offspring, and can serve as a reference for environmental policy-making.
Collapse
Affiliation(s)
- Meng Yang
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Tongkun He
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lifang Jiang
- Center for Social Medicine Research, Henan Provincial Research Institute for Population and Family Planning, Zhengzhou, Henan, 450002, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450002, PR China; Henan Provincial Key Laboratory of Intervention Technology for Birth Defects, Zhengzhou, Henan, 450002, PR China
| | - Hao Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Junxi Zhang
- Center for Social Medicine Research, Henan Provincial Research Institute for Population and Family Planning, Zhengzhou, Henan, 450002, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450002, PR China; Henan Provincial Key Laboratory of Intervention Technology for Birth Defects, Zhengzhou, Henan, 450002, PR China
| | - Jian Chai
- Center for Social Medicine Research, Henan Provincial Research Institute for Population and Family Planning, Zhengzhou, Henan, 450002, PR China; National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450002, PR China; Henan Provincial Key Laboratory of Intervention Technology for Birth Defects, Zhengzhou, Henan, 450002, PR China
| | - Zhiyuan Li
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yawei Zhang
- Department of Environment Health Science, Yale University School of Public Health, New Haven, CT, USA
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
27
|
Park B, Khanam R, Vinayachandran V, Baqui AH, London SJ, Biswal S. Epigenetic biomarkers and preterm birth. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa005. [PMID: 32551139 PMCID: PMC7293830 DOI: 10.1093/eep/dvaa005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 05/06/2023]
Abstract
Preterm birth (PTB) is a major public health challenge, and novel, sensitive approaches to predict PTB are still evolving. Epigenomic markers are being explored as biomarkers of PTB because of their molecular stability compared to gene expression. This approach is also relatively new compared to gene-based diagnostics, which relies on mutations or single nucleotide polymorphisms. The fundamental principle of epigenome diagnostics is that epigenetic reprogramming in the target tissue (e.g. placental tissue) might be captured by more accessible surrogate tissue (e.g. blood) using biochemical epigenome assays on circulating DNA that incorporate methylation, histone modifications, nucleosome positioning, and/or chromatin accessibility. Epigenomic-based biomarkers may hold great potential for early identification of the majority of PTBs that are not associated with genetic variants or mutations. In this review, we discuss recent advances made in the development of epigenome assays focusing on its potential exploration for association and prediction of PTB. We also summarize population-level cohort studies conducted in the USA and globally that provide opportunities for genetic and epigenetic marker development for PTB. In addition, we summarize publicly available epigenome resources and published PTB studies. We particularly focus on ongoing genome-wide DNA methylation and epigenome-wide association studies. Finally, we review the limitations of current research, the importance of establishing a comprehensive biobank, and possible directions for future studies in identifying effective epigenome biomarkers to enhance health outcomes for pregnant women at risk of PTB and their infants.
Collapse
Affiliation(s)
- Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rasheda Khanam
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, International Center for Maternal and Newborn Health, Baltimore, MD 21205, USA
| | - Vinesh Vinayachandran
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abdullah H Baqui
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, International Center for Maternal and Newborn Health, Baltimore, MD 21205, USA
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
The promise and pitfalls of precision medicine to resolve black-white racial disparities in preterm birth. Pediatr Res 2020; 87:221-226. [PMID: 31382269 DOI: 10.1038/s41390-019-0528-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022]
Abstract
Differences in preterm birth rates between black and white women are the largest contributor to racial disparities in infant mortality. In today's age of precision medicine, analysis of the genome, epigenome, metabolome, and microbiome has generated interest in determining whether these biomarkers can help explain racial disparities. We propose that there are pitfalls as well as opportunities when using precision medicine analyses to interrogate disparities in health. To conclude that racial disparities in complex conditions are genetic in origin ignores robust evidence that social and environmental factors that track with race are major contributors to disparities. Biomarkers measured in omic assays that may be more environmentally responsive than genomics, such as the epigenome or metabolome, may be on the causal pathway of race and preterm birth, but omic observational studies suffer from the same limitations as traditional cohort studies. Confounding can lead to false conclusions about the causal relationship between omics and preterm birth. Methodological strategies (including stratification and causal mediation analyses) may help to ensure that associations between biomarkers and exposures, as well as between biomarkers and outcomes, are valid signals. These epidemiologic strategies present opportunities to assess whether precision medicine biomarkers can uncover biology underlying perinatal health disparities.
Collapse
|
29
|
Yan J, Su R, Zhang W, Wei Y, Wang C, Lin L, Feng H, Yang H. Epigenetic alteration of Rho guanine nucleotide exchange Factor 11 (ARHGEF11) in cord blood samples in macrosomia exposed to intrauterine hyperglycemia. J Matern Fetal Neonatal Med 2019; 34:422-431. [PMID: 30999786 DOI: 10.1080/14767058.2019.1609929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Macrosomia at birth is associated with maternal hyperglycemia and leads to subsequent susceptibility to obesity, abnormal glucose metabolism, hypertension, and dyslipidemia in offspring. Epigenetic reprogramming has been reported to be involved in the development of human diseases caused by suboptimal environmental or nutritional factors. The study was aiming to explore epigenetic mechanism influences on macrosomic infants exposed to intrauterine hyperglycemia. We performed a genome-wide analysis of DNA methylation in cord blood from macrosomic infants born to women with gestational diabetes in order to identify genes related to fetal growth or early adipose tissue development.Methods: To analyze the epigenetic patterns in umbilical cord blood in gestational diabetes mellitus (GDM), we collected umbilical cord blood from women with GDM (mean pregestational BMI of 24.4 kg/m2 and mean neonatal birth weight of 4366 g) and normal glucose-tolerant women (mean pregestational BMI of 19.8 kg/m2 and mean neonatal birth weight of 3166 g). Differentially methylated genes in the GDM group were identified using the Infinium HumanMethylation450 BeadChip array.Results: A total of 1251 genes were differentially methylated compared to the controls (p < .01). The methylation microarray data showed that two specific CpG sites (cg12604331 and cg08480098) in the gene body of ARHGEF11 were significantly hypomethylated in the cord blood in macrosomic infants. Altered DNA methylation levels of ARHGEF11 were negatively correlated with glucose levels and neonatal birth weight.Conclusions: Exposure to adverse intrauterine environments can alter fetal development, such as by affecting the nutritional status of the fetus. Such exposure can also result in significant epigenetic modifications, including DNA methylation, which could serve as a potential marker for nutrition and metabolic conditions at the neonatal stage or even in the adult.
Collapse
Affiliation(s)
- Jie Yan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Rina Su
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Yumei Wei
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Hui Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
30
|
Wang XM, Tian FY, Fan LJ, Xie CB, Niu ZZ, Chen WQ. Comparison of DNA methylation profiles associated with spontaneous preterm birth in placenta and cord blood. BMC Med Genomics 2019; 12:1. [PMID: 30606219 PMCID: PMC6318854 DOI: 10.1186/s12920-018-0466-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 11/13/2022] Open
Abstract
Background The etiology and mechanism of spontaneous preterm birth (sPTB) are still unclear. Accumulating evidence has documented that various environmental exposure scenarios may cause maternal and fetal epigenetic changes, which initiates the focus on whether epigenetics can contribute to the occurrence of sPTB. Therefore, we conducted the current study to examine and compare the DNA methylation changes associated with sPTB in placenta and cord blood. Methods This hospital-based case-control study was carried out at three Women and Children’s hospitals in South China, where 32 spontaneous preterm births and 16 term births were recruited. Genome-wide DNA methylation profiles of the placenta and cord blood from these subjects were measured using the Illumina HumanMethylation EPIC BeadChip, and sPTB-associated differential methylated CpG sites were identified using limma regression model, after controlling for major maternal and infant confounders. Further Gene Ontology analysis was performed with PANTHER in order to assess different functional enrichment of the sPTB-associated genes in placenta and cord blood. Results After controlling for potential confounding factors, one differentially methylated position (DMP) in placenta and 31 DMPs in cord blood were found significantly associated with sPTB (Bonferroni corrected p < 0.05). The sPTB-associated CpG sites in placenta were mapped to genes that showed higher enrichment on biological processes including biological regulation, multicellular organismal process, and especially response to stimulus, while those in cord blood were mapped to genes that had higher enrichment on biological processes concerning cellular process, localization, and particularly metabolic process. Conclusion Findings of this study indicated that DNA methylation alteration in both placenta and cord blood are associated with sPTB, yet the DNA methylation modification patterns may appear differently in placenta and cord blood. Electronic supplementary material The online version of this article (10.1186/s12920-018-0466-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi-Meng Wang
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fu-Ying Tian
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Li-Jun Fan
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan-Bo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No 21 Qingcaigang, Jianshe Road 6, Guangzhou, 510600, Guangdong, China
| | - Zhong-Zheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 265 Farber Hall, Buffalo, NY, 14214, USA
| | - Wei-Qing Chen
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Information Management, Xinhua College, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Michita RT, Kaminski VDL, Chies JAB. Genetic Variants in Preeclampsia: Lessons From Studies in Latin-American Populations. Front Physiol 2018; 9:1771. [PMID: 30618791 PMCID: PMC6302048 DOI: 10.3389/fphys.2018.01771] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Placental vascularization is a tightly regulated physiological process in which the maternal immune system plays a fundamental role. Vascularization of the maternal-placental interface involves a wide range of mechanisms primarily orchestrated by the fetal extravillous trophoblast and maternal immune cells. In a healthy pregnancy, an immune cross-talk between the mother and fetal cells results in the secretion of immunomodulatory mediators, apoptosis of specific cells, cellular differentiation/proliferation, angiogenesis, and vasculogenesis, altogether favoring a suitable microenvironment for the developing embryo. In the context of vasculopathy underlying common pregnancy disorders, it is believed that inefficient invasion of extravillous trophoblast cells in the endometrium leads to a poor placental blood supply, which, in turn, leads to decreased secretion of angiogenic factors, hypoxia, and inflammation commonly associated with preterm delivery, intrauterine growth restriction, and preeclampsia. In this review, we will focus on studies published by Latin American research groups, providing an extensive review of the role of genetic variants from candidate genes involved in a broad spectrum of biological processes underlying the pathophysiology of preeclampsia. In addition, we will discuss how these studies contribute to fill gaps in the current understanding of preeclampsia. Finally, we discuss some trending topics from important fields associated with pregnancy vascular disorders (e.g., epigenetics, transplantation biology, and non-coding RNAs) and underscore their possible implications in the pathophysiology of preeclampsia. As a result, these efforts are expected to give an overview of the extent of scientific research produced in Latin America and encourage multicentric collaborations by highlighted regional research groups involved in preeclampsia investigation.
Collapse
Affiliation(s)
- Rafael Tomoya Michita
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
32
|
Eidem HR, Steenwyk JL, Wisecaver JH, Capra JA, Abbot P, Rokas A. integRATE: a desirability-based data integration framework for the prioritization of candidate genes across heterogeneous omics and its application to preterm birth. BMC Med Genomics 2018; 11:107. [PMID: 30453955 PMCID: PMC6245874 DOI: 10.1186/s12920-018-0426-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The integration of high-quality, genome-wide analyses offers a robust approach to elucidating genetic factors involved in complex human diseases. Even though several methods exist to integrate heterogeneous omics data, most biologists still manually select candidate genes by examining the intersection of lists of candidates stemming from analyses of different types of omics data that have been generated by imposing hard (strict) thresholds on quantitative variables, such as P-values and fold changes, increasing the chance of missing potentially important candidates. METHODS To better facilitate the unbiased integration of heterogeneous omics data collected from diverse platforms and samples, we propose a desirability function framework for identifying candidate genes with strong evidence across data types as targets for follow-up functional analysis. Our approach is targeted towards disease systems with sparse, heterogeneous omics data, so we tested it on one such pathology: spontaneous preterm birth (sPTB). RESULTS We developed the software integRATE, which uses desirability functions to rank genes both within and across studies, identifying well-supported candidate genes according to the cumulative weight of biological evidence rather than based on imposition of hard thresholds of key variables. Integrating 10 sPTB omics studies identified both genes in pathways previously suspected to be involved in sPTB as well as novel genes never before linked to this syndrome. integRATE is available as an R package on GitHub ( https://github.com/haleyeidem/integRATE ). CONCLUSIONS Desirability-based data integration is a solution most applicable in biological research areas where omics data is especially heterogeneous and sparse, allowing for the prioritization of candidate genes that can be used to inform more targeted downstream functional analyses.
Collapse
Affiliation(s)
- Haley R. Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | - Jennifer H. Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
- Department of Biochemistry, Purdue University, West Lafayette, IN USA
| | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
33
|
Knight AK, Park HJ, Hausman DB, Fleming JM, Bland VL, Rosa G, Kennedy EM, Caudill MA, Malysheva O, Kauwell GPA, Sokolow A, Fisher S, Smith AK, Bailey LB. Association between one-carbon metabolism indices and DNA methylation status in maternal and cord blood. Sci Rep 2018; 8:16873. [PMID: 30442960 PMCID: PMC6237996 DOI: 10.1038/s41598-018-35111-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023] Open
Abstract
One-carbon metabolism is essential for multiple cellular processes and can be assessed by the concentration of folate metabolites in the blood. One-carbon metabolites serve as methyl donors that are required for epigenetic regulation. Deficiencies in these metabolites are associated with a variety of poor health outcomes, including adverse pregnancy complications. DNA methylation is known to vary with one-carbon metabolite concentration, and therefore may modulate the risk of adverse pregnancy outcomes. This study addresses changes in one-carbon indices over pregnancy and the relationship between maternal and child DNA methylation and metabolite concentrations by leveraging data from 24 mother-infant dyads. Five of the 13 metabolites measured from maternal blood and methylation levels of 993 CpG sites changed over the course of pregnancy. In dyads, maternal and fetal one-carbon concentrations were highly correlated, both early in pregnancy and at delivery. The 993 CpG sites whose methylation levels changed over pregnancy in maternal blood were also investigated for associations with metabolite concentrations in infant blood at delivery, where five CpG sites were associated with the concentration of at least one metabolite. Identification of CpG sites that change over pregnancy may result in better characterization of genes and pathways involved in maintaining a healthy, term pregnancy.
Collapse
Affiliation(s)
- Anna K Knight
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Jennifer M Fleming
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Victoria L Bland
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Gisselle Rosa
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Elizabeth M Kennedy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Gail P A Kauwell
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Andrew Sokolow
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Susan Fisher
- Piedmont Athens Regional Midwifery, Athens, GA, USA
| | - Alicia K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA. .,Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| |
Collapse
|
34
|
Zhang B, Hong X, Ji H, Tang WY, Kimmel M, Ji Y, Pearson C, Zuckerman B, Surkan PJ, Wang X. Maternal smoking during pregnancy and cord blood DNA methylation: new insight on sex differences and effect modification by maternal folate levels. Epigenetics 2018; 13:505-518. [PMID: 29945474 PMCID: PMC6140808 DOI: 10.1080/15592294.2018.1475978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Maternal smoking during pregnancy may affect newborn DNA methylation (DNAm). However, little is known about how these associations vary by a newborn's sex and/or maternal nutrition. To fill in this research gap, we investigated epigenome-wide DNAm associations with maternal smoking during pregnancy in African American mother-newborn pairs. DNAm profiling in cord (n = 379) and maternal blood (n = 300) were performed using the Illumina HumanMethylation450 BeadChip array. We identified 12 CpG sites whose DNAm levels in cord blood were associated with maternal smoking, at a false discovery rate <5%. The identified associations in the GFI1 gene were more pronounced in male newborns than in females (P = 0.002 for maternal smoking × sex interaction at cg18146737). We further observed that maternal smoking and folate level may interactively affect cord blood DNAm level at cg05575921 in the AHRR gene (P = 5.0 × 10-4 for interaction): compared to newborns unexposed to maternal smoking and with a high maternal folate level (>19.2 nmol/L), the DNAm level was about 0.03 lower (P = 3.6 × 10-4) in exposed newborns with a high maternal folate level, but was 0.08 lower (P = 1.2 × 10-8) in exposed newborns with a low maternal folate level. Our data suggest that adequate maternal folate levels may partly counteract the impact of maternal smoking on DNAm. These findings may open new avenues of inquiry regarding sex differences in response to environmental insults and novel strategies to mitigate their intergenerational health effects through optimization of maternal nutrition.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wan-yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mary Kimmel
- Department of Psychiatry, University of North Carolina at Chapel Hill’s School of Medicine, Chapel Hill, NC, USA
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Pamela J. Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center on the Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Glover AV, Manuck TA. Screening for spontaneous preterm birth and resultant therapies to reduce neonatal morbidity and mortality: A review. Semin Fetal Neonatal Med 2018; 23:126-132. [PMID: 29229486 PMCID: PMC6381594 DOI: 10.1016/j.siny.2017.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite considerable effort aimed at decreasing the incidence of spontaneous preterm birth, it remains the leading cause of perinatal morbidity and mortality. Screening strategies are imperfect. Approaches used to identify women considered by historical factors to be low risk for preterm delivery (generally considered to be women with singleton pregnancies without a history of a previous preterm birth) as well as those at high risk for preterm birth (those with a previous preterm birth, short cervix, or multiple gestation) continue to evolve. Herein, we review the current evidence and approaches to screening women for preterm birth, and examine future directions for clinical practice. Further research is necessary to better identify at-risk women and provide evidence-based management.
Collapse
Affiliation(s)
- Angelica V Glover
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Abstract
Prematurity is a devastating disease with high neonatal morbidity and mortality based on gestational age at birth. Genetic and hormonal signals impact directly on the maternal predisposition to preterm birth or sudden onset of myometrial contractility. Candidate gene or genome-wide approaches are beginning to identify potential variants for women at risk for premature delivery or increased responsiveness to hormonal signals including progesterone. However, a majority of these studies have not yielded definitive results to allow for at this stage for development of personalized therapy.
Collapse
Affiliation(s)
- Kara M Rood
- Division Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43215.
| | - Catalin S Buhimschi
- Division Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43215
| |
Collapse
|