1
|
Wang Y, Zhang G, Zhang Z, Zhang M, Chen J, Wang K, Liu L, Bao J, Chen M, Qi X, Gao M. Plasma DNMT1 Activity for Assessing Tumor Burden and Predicting Neoadjuvant Therapy Response in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501064. [PMID: 40317882 DOI: 10.1002/advs.202501064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Indexed: 05/07/2025]
Abstract
DNA methylation is mediated by DNA methyltransferases (DNMTs), and the stability of their activity is essential for cellular fate. DNMT1 is considered one of the most promising targets for research. However, current detection techniques are limited in accurately quantifying its activity in peripheral blood. Here, a reaction system is developed known as DNMT1 Identification by Variable Activity (DIVA) for the highly sensitive detection of DNMT1 activity in the peripheral blood of breast cancer patients. DIVA can detect DNMT1 at levels as low as 10-7 U mL-1, with minimal time and cost. This method is applied to analyze 271 clinical samples, successfully evaluating tumor burden in patients staged I-IV. Finally, this method is utilized to assess the prognosis of 22 patients undergoing neoadjuvant therapy, demonstrating good consistency with ultrasound imaging results. It is believed that DIVA could serve as an effective auxiliary technique for both the early detection of breast cancer and evaluation of neoadjuvant therapy.
Collapse
Affiliation(s)
- Yingran Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Guozhi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Zhizhao Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Mengsi Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jiao Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Ke Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Lu Liu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jing Bao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| |
Collapse
|
2
|
Pollastri A, Kovacs P, Keller M. Circulating Cell-Free DNA in Metabolic Diseases. J Endocr Soc 2025; 9:bvaf006. [PMID: 39850787 PMCID: PMC11756337 DOI: 10.1210/jendso/bvaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Indexed: 01/25/2025] Open
Abstract
Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease. CfDNA is released from apoptotic and necrotic cells into the bloodstream and other body fluids, and it retains various molecular signatures of its tissue of origin. Thus, cfDNA load and composition can reflect tissue pathologies and systemic metabolic dysfunctions. In addition to its potential as a diagnostic biomarker, interest in cfDNA derives from its recently discovered role in adipose tissue inflammation in obesity. This review discusses detection methods and clinical significance of cfDNA in metabolic diseases.
Collapse
Affiliation(s)
- Alessio Pollastri
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| | - Peter Kovacs
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg 85764, Germany
| | - Maria Keller
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| |
Collapse
|
3
|
Tran TTQ, Pham TT, Nguyen TT, Hien Do T, Luu PTT, Nguyen UQ, Vuong LD, Nguyen QN, Ho SV, Dao HV, Hoang TV, Vo LTT. An appropriate DNA input for bisulfite conversion reveals LINE-1 and Alu hypermethylation in tissues and circulating cell-free DNA from cancers. PLoS One 2024; 19:e0316394. [PMID: 39775734 PMCID: PMC11684646 DOI: 10.1371/journal.pone.0316394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer. This study demonstrated that errors in LINE-1 and Alu methylation level measurements were caused by an excessive input quantity of genomic DNA used for bisulfite conversion. Using the minuscule DNA amount of 0.5 ng, much less than what has been used and recommended so far (500 ng-2 μg) or 1 μL of cfDNA extracted from 1 mL of blood, we revealed hypermethylation of LINE-1 and Alu in 407 tumour samples of primary breast, colon and lung cancers when compared with the corresponding pair-matched adjacent normal tissue samples (P < 0.05-0.001), and in cfDNA from 296 samples of lung cancers as compared with 477 samples from healthy controls (P < 0.0001). More importantly, LINE-1 hypermethylation in cfDNA is associated with healthy ageing. Our results have not only contributed to the standardized bisulfite-based protocols for DNA methylation assays, particularly in applications on repeated sequences but also provided another perspective for other repetitive sequences whose epigenetic properties may have crucial impacts on genome architecture and human health.
Collapse
Affiliation(s)
- Trang Thi Quynh Tran
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| | - Tung The Pham
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Than Thi Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Trang Hien Do
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phuong Thi Thu Luu
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | | | - Linh Dieu Vuong
- Pathology and Molecular Biology Center, Vietnam National Cancer Hospital, Hanoi, Vietnam
| | - Quang Ngoc Nguyen
- Pathology and Molecular Biology Center, Vietnam National Cancer Hospital, Hanoi, Vietnam
| | - Son Van Ho
- Department of Chemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Hang Viet Dao
- Endoscopic Centre, Hanoi Medical University Hospital, Hanoi, Vietnam
| | | | - Lan Thi Thuong Vo
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
- VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| |
Collapse
|
4
|
Zamuner FT, Ramos-López A, García-Negrón A, Purcell-Wiltz A, Cortés-Ortiz A, Cuevas AR, Gosala K, Winkler E, Sidransky D, Guerrero-Preston R. Evaluation of silica spin‑column and magnetic bead formats for rapid DNA methylation analysis in clinical and point‑of‑care settings. Biomed Rep 2024; 21:112. [PMID: 38912171 PMCID: PMC11190640 DOI: 10.3892/br.2024.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Late-stage cancers lack effective treatment, underscoring the need for early diagnosis to improve prognosis and decrease mortality rates. Molecular markers, such as DNA methylation, offer promise in early cancer detection. The present study compared commercial kits for analyzing DNA from cervical liquid cytology samples in cancer screening. Rapid bisulfite conversion kits using silica spin-columns and magnetic beads were assessed against standard DNA extraction and bisulfite conversion methods for profiling DNA methylation using quantitative methylation-specific PCR. β-actin amplification indicated the suitability of small sample volumes for methylation studies using either the pellet or supernatant (cell-free DNA) parts. Comparison of Bisulfite Conversion Kit-Whole Cell (Abcam), Methylamp Bisulfite Modification (Epigentek), EpiTect Fast LyseAll Bisulfite Kit (Qiagen GmbH) and EZ DNA Methylation-Direct Kit (Zymo Research Corp.) showed no significant differences in β-actin cycle threshold values. EZ-96 DNA Methylation-Lightning MagPrep (Zymo Research Corp.), a hybrid kit in a 96-well plate format, exhibited swift turnaround time and similar amplification efficiency. Automation with magnetic bead kits increased throughput without compromising amplification efficiency in open PCR systems. Cost analysis favored direct kits over the gold standard manual protocol. This comparison aids in selecting cost-effective DNA methylation diagnostic tests. The present study confirmed comparable kit performance in methylation-based analysis, highlighting the adequacy of cytology samples and the potential of bodily fluids as alternatives for liquid biopsy.
Collapse
Affiliation(s)
- Fernando T. Zamuner
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ashley Ramos-López
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
| | | | - Ana Purcell-Wiltz
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Andrea Cortés-Ortiz
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Aniris Román Cuevas
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Biology, University of Puerto Rico, Río Piedras 00931, Puerto Rico
| | - Keerthana Gosala
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eli Winkler
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- New York University Langone Health, New York, NY 10016, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- LifeGene-Biomarks, FastForward Innovation Hub, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Xu Y, Wang Z, Pei B, Wang J, Xue Y, Zhao G. DNA methylation markers in esophageal cancer. Front Genet 2024; 15:1354195. [PMID: 38774285 PMCID: PMC11106492 DOI: 10.3389/fgene.2024.1354195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Background Esophageal cancer (EC) is a prevalent malignancy characterized by a low 5-year survival rate, primarily attributed to delayed diagnosis and limited therapeutic options. Currently, early detection of EC heavily relies on endoscopy and pathological examination, which pose challenges due to their invasiveness and high costs, leading to low patient compliance. The detection of DNA methylation offers a non-endoscopic, cost-effective, and secure approach that holds promising prospects for early EC detection. Methods To identify improved methylation markers for early EC detection, we conducted a comprehensive review of relevant literature, summarized the performance of DNA methylation markers based on different input samples and analytical methods in EC early detection and screening. Findings This review reveals that blood cell free DNA methylation-based method is an effective non-invasive method for early detection of EC, although there is still a need to improve its sensitivity and specificity. Another highly sensitive and specific non-endoscopic approach for early detection of EC is the esophageal exfoliated cells based-DNA methylation analysis. However, while there are substantial studies in esophageal adenocarcinoma, further more validation is required in esophageal squamous cell carcinoma. Conclusion In conclusion, DNA methylation detection holds significant potential as an early detection and screening technology for EC.
Collapse
Affiliation(s)
- Yongle Xu
- Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Zhenzhen Wang
- Department of Laboratory Medicine, Affiliated Xuzhou Maternity and Child Healthcare Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Jie Wang
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Ying Xue
- Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Guodong Zhao
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
- Zhejiang University of Technology, Hangzhou, China
- ZJUT Yinhu Research Institute of Innovation and Entrepreneurship, Hangzhou, China
| |
Collapse
|
6
|
Mansur A, Radovanovic I. The expansion of liquid biopsies to vascular care: an overview of existing principles, techniques and potential applications to vascular malformation diagnostics. Front Genet 2024; 15:1348096. [PMID: 38304336 PMCID: PMC10832994 DOI: 10.3389/fgene.2024.1348096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Vascular malformations are congenital lesions that occur due to mutations in major cellular signalling pathways which govern angiogenesis, cell proliferation, motility, and cell death. These pathways have been widely studied in oncology and are substrates for various small molecule inhibitors. Given their common molecular biology, there is now a potential to repurpose these cancer drugs for vascular malformation care; however, a molecular diagnosis is required in order to tailour specific drugs to the individual patient's mutational profile. Liquid biopsies (LBs), emerging as a transformative tool in the field of oncology, hold significant promise in this feat. This paper explores the principles and technologies underlying LBs and evaluates their potential to revolutionize the management of vascular malformations. The review begins by delineating the fundamental principles of LBs, focusing on the detection and analysis of circulating biomarkers such as cell-free DNA, circulating tumor cells, and extracellular vesicles. Subsequently, an in-depth analysis of the technological advancements driving LB platforms is presented. Lastly, the paper highlights the current state of research in applying LBs to various vascular malformations, and uses the aforementioned principles and techniques to conceptualize a liquid biopsy framework that is unique to vascular malformation research and clinical care.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
7
|
Gristina V, Malapelle U. Dissecting the nuances of cancer epigenomics in liquid biopsy. Epigenomics 2024; 16:79-83. [PMID: 38166432 DOI: 10.2217/epi-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Affiliation(s)
- Valerio Gristina
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Palermo, 90127, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, 80131, Italy
| |
Collapse
|
8
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
9
|
Drag MH, Debes KP, Franck CS, Flethøj M, Lyhne MK, Møller JE, Ludvigsen TP, Jespersen T, Olsen LH, Kilpeläinen TO. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Göttingen Minipigs. Epigenetics 2023; 18:2199374. [PMID: 37032646 PMCID: PMC10088973 DOI: 10.1080/15592294.2023.2199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Profiling of circulating cell-free DNA (cfDNA) by tissue-specific base modifications, such as 5-methylcytosines (5mC), may enable the monitoring of ongoing pathophysiological processes. Nanopore sequencing allows genome-wide 5mC detection in cfDNA without bisulphite conversion. The aims of this study were: i) to find differentially methylated regions (DMRs) of cfDNA associated with obesity in Göttingen minipigs using Nanopore sequencing, ii) to validate a subset of the DMRs using methylation-specific PCR (MSP-PCR), and iii) to compare the cfDNA DMRs with those from whole blood genomic DNA (gDNA). Serum cfDNA and gDNA were obtained from 10 lean and 7 obese Göttingen Minipigs both with experimentally induced myocardial infarction and sequenced using Oxford Nanopore MinION. A total of 1,236 cfDNA DMRs (FDR<0.01) were associated with obesity. In silico analysis showed enrichment of the adipocytokine signalling, glucagon signalling, and cellular glucose homoeostasis pathways. A strong cfDNA DMR was discovered in PPARGC1B, a gene linked to obesity and type 2 diabetes. The DMR was validated using MSP-PCR and correlated significantly with body weight (P < 0.05). No DMRs intersected between cfDNA and gDNA, suggesting that cfDNA originates from body-wide shedding of DNA. In conclusion, nanopore sequencing detected differential methylation in minute quantities (0.1-1 ng/µl) of cfDNA. Future work should focus on translation into human and comparing 5mC from somatic tissues to pinpoint the exact location of pathology.
Collapse
Affiliation(s)
- Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Conservation, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Clara Sandkamm Franck
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flethøj
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Mille Kronborg Lyhne
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital and Odense University Hospital, Odense, Denmark
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Kresse SH, Brandt-Winge S, Pharo H, Flatin BTB, Jeanmougin M, Vedeld HM, Lind GE. Evaluation of commercial kits for isolation and bisulfite conversion of circulating cell-free tumor DNA from blood. Clin Epigenetics 2023; 15:151. [PMID: 37710283 PMCID: PMC10503171 DOI: 10.1186/s13148-023-01563-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND DNA methylation biomarkers in circulating cell-free DNA (cfDNA) have great clinical potential for cancer management. Most methods for DNA methylation analysis require bisulfite conversion, causing DNA degradation and loss. This is particularly challenging for cfDNA, which is naturally fragmented and normally present in low amounts. The aim of the present study was to identify an optimal combination of cfDNA isolation and bisulfite conversion kits for downstream analysis of DNA methylation biomarkers in plasma. RESULTS Of the five tested bisulfite conversion kits (EpiJET Bisulfite Conversion Kit, EpiTect Plus DNA Bisulfite Kit (EpiTect), EZ DNA Methylation-Direct Kit, Imprint DNA Modification Kit (Imprint) and Premium Bisulfite Kit), the highest and lowest DNA yield and recovery were achieved using the EpiTect kit and the Imprint kit, respectively, with more than double the amount of DNA for the EpiTect kit. Of the three tested cfDNA isolation kits (Maxwell RSC ccfDNA Plasma Kit, QIAamp Circulating Nucleic Acid Kit (CNA) and QIAamp MinElute ccfDNA Mini Kit), the CNA kit yielded around twice as much cfDNA compared to the two others kits, although with more high molecular weight DNA present. When comparing various combinations of cfDNA isolation kits and bisulfite conversion kits, the CNA kit and the EpiTect kit were identified as the best-performing combination, resulting in the highest yield of bisulfite converted cfDNA from normal plasma, as measured by droplet digital PCR (ddPCR). As a proof of principle, this kit combination was used to process plasma samples from 13 colorectal cancer patients for subsequent ddPCR methylation analysis of BCAT1 and IKZF1. Methylation of BCAT1 and/or IKZF1 was identified in 6/10 (60%) stage IV patients and 1/3 (33%) stage III patients. CONCLUSIONS Based on a thorough evaluation of five bisulfite conversion kits and three cfDNA isolation kits, both individually and in combination, the CNA kit and the EpiTect kit were identified as the best-performing kit combination, with highest DNA yield and recovery across a range of DNA input amounts. The combination was successfully used for detection of clinically relevant DNA methylation biomarkers in plasma from cancer patients.
Collapse
Affiliation(s)
- Stine H Kresse
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Sara Brandt-Winge
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Heidi Pharo
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Bjørnar T B Flatin
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Marine Jeanmougin
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Xue Y, Huang C, Pei B, Wang Z, Dai Y. An overview of DNA methylation markers for early detection of gastric cancer: current status, challenges, and prospects. Front Genet 2023; 14:1234645. [PMID: 37560387 PMCID: PMC10407555 DOI: 10.3389/fgene.2023.1234645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the most common malignancies, with a low 5-year survival rate. However, if diagnosed at an early stage, it can be cured by endoscopic treatment and has a good prognosis. While gastrointestinal X-ray and upper endoscopy are used as national GC screening methods in some GC high-risk countries, such as Japan and Korea, their radiation exposure, invasiveness, and high cost suggest that they are not the optimal tools for early detection of GC in many countries. Therefore, a cost-effective, and highly accurate method for GC early detection is urgently needed in clinical settings. DNA methylation plays a key role in cancer progression and metastasis and has been demonstrated as a promising marker for cancer early detection. Aims and methods: This review provides a comprehensive overview of the current status of DNA methylation markers associated with GC, the assays developed for GC early detection, challenges in methylation marker discovery and application, and the future prospects of utilizing methylation markers for early detection of GC. Through our analysis, we found that the currently reported DNA methylation markers related to GC are mainly in the early discovery stage. Most of them have only been evaluated in tissue samples. The majority of non-invasive assays developed based on blood lack standardized sampling protocols, pre-analytical procedures, and multicenter validation, and they exhibit insufficient sensitivity for early-stage GC detection. Meanwhile, the reported GC DNA methylation markers are generally considered pan-cancer markers. Conclusion: Therefore, future endeavors should focus on identifying additional methylation markers specific to GC and establishing non-invasive diagnostic assays that rely on these markers. These assays should undergo multicenter, large-scale prospective validation in diverse populations.
Collapse
Affiliation(s)
- Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - ZhenZhen Wang
- Department of Laboratory Medicine, Affiliated Xuzhou Maternity and Child Healthcare Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
12
|
Cox DRA, McClure T, Zhang F, Wong BKL, Testro A, Goh SK, Muralidharan V, Dobrovic A. Graft-Derived Cell-Free DNA Quantification following Liver Transplantation Using Tissue-Specific DNA Methylation and Donor-Specific Genotyping Techniques: An Orthogonal Comparison Study. EPIGENOMES 2023; 7:11. [PMID: 37367181 DOI: 10.3390/epigenomes7020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Graft-derived cell-free DNA (gdcfDNA) analysis has shown promise as a non-invasive tool for monitoring organ health following solid organ transplantation. A number of gdcfDNA analysis techniques have been described; however, the majority rely on sequencing or prior genotyping to detect donor-recipient mis-matched genetic polymorphisms. Differentially methylated regions of DNA can be used to identify the tissue-of-origin of cell-free DNA (cfDNA) fragments. In this study, we aimed to directly compare the performance of gdcfDNA monitoring using graft-specific DNA methylation analysis and donor-recipient genotyping techniques in a pilot cohort of clinical samples from patients post-liver transplantation. Results: 7 patients were recruited prior to LT, 3 developed early, biopsy-proven TCMR in the first 6 weeks post-LT. gdcfDNA was successfully quantified in all samples using both approaches. There was a high level of technical correlation between results using the two techniques (Spearman testing, rs = 0.87, p < 0.0001). gdcfDNA levels quantified using the genotyping approach were significantly greater across all timepoints in comparison to the tissue-specific DNA methylation-based approach: e.g., day 1 post-LT median 31,350 copies/mL (IQR 6731-64,058) vs. 4133 copies/mL (IQR 1100-8422), respectively. Qualitative trends in gdcfDNA levels for each patient were concordant between the two assays. Acute TCMR was preceded by significant elevations in gdcfDNA as quantified by both techniques. Elevations in gdcfDNA, using both techniques, were suggestive of TCMR in this pilot study with a 6- and 3-day lead-time prior to histological diagnosis in patients 1 and 2. Conclusions: Both the graft-specific methylation and genotyping techniques successfully quantified gdcfDNA in patients post-LT with statistically significant concordance. A direct comparison of these two techniques is not only important from a technical perspective for orthogonal validation, but significantly adds weight to the evidence that gdcfDNA monitoring reflects the underlying biology. Both techniques identified LT recipients who developed acute TCMR, with several days lead-time in comparison to conventional diagnostic workflows. Whilst the two assays performed comparably, gdcfDNA monitoring based on graft-specific DNA methylation patterns in cfDNA offers major practical advantages over the donor-recipient genotyping, and hence enhances the potential to translate this emerging technology into clinical practice.
Collapse
Affiliation(s)
- Daniel R A Cox
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Tess McClure
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
- Liver Transplant Unit, Department of Gastroenterology & Hepatology, Austin Health, Melbourne, VIC 3084, Australia
| | - Fan Zhang
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Boris Ka Leong Wong
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Adam Testro
- Liver Transplant Unit, Department of Gastroenterology & Hepatology, Austin Health, Melbourne, VIC 3084, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- HPB & Liver Transplant Surgery Unit, Department of Surgery, Austin Health, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Alexander Dobrovic
- Department of Surgery (Austin Precinct), University of Melbourne, Melbourne, VIC 3084, Australia
- BEACON Biomarkers Laboratory, University of Melbourne, Melbourne, VIC 3084, Australia
| |
Collapse
|
13
|
Moser T, Kühberger S, Lazzeri I, Vlachos G, Heitzer E. Bridging biological cfDNA features and machine learning approaches. Trends Genet 2023; 39:285-307. [PMID: 36792446 DOI: 10.1016/j.tig.2023.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.
Collapse
Affiliation(s)
- Tina Moser
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Stefan Kühberger
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Terp SK, Stoico MP, Dybkær K, Pedersen IS. Early diagnosis of ovarian cancer based on methylation profiles in peripheral blood cell-free DNA: a systematic review. Clin Epigenetics 2023; 15:24. [PMID: 36788585 PMCID: PMC9926627 DOI: 10.1186/s13148-023-01440-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023] Open
Abstract
Patients diagnosed with epithelial ovarian cancer (OC) have a 5-year survival rate of 49%. For early-stage disease, the 5-year survival rate is above 90%. However, advanced-stage disease accounts for most cases as patients with early stages often are asymptomatic or present with unspecific symptoms, highlighting the need for diagnostic tools for early diagnosis. Liquid biopsy is a minimal invasive blood-based approach that utilizes circulating tumor DNA (ctDNA) shed from tumor cells for real-time detection of tumor genetics and epigenetics. Increased DNA methylation of promoter regions is an early event during tumorigenesis, and the methylation can be detected in ctDNA, accentuating the promise of methylated ctDNA as a biomarker for OC diagnosis. Many studies have investigated multiple methylation biomarkers in ctDNA from plasma or serum for discriminating OC patients from patients with benign diseases of the ovaries and/or healthy females. This systematic review summarizes and evaluates the performance of the currently investigated DNA methylation biomarkers in blood-derived ctDNA for early diagnosis of OC. PubMed's MEDLINE and Elsevier's Embase were systematically searched, and essential results such as methylation frequency of OC cases and controls, performance measures, as well as preanalytical factors were extracted. Overall, 29 studies met the inclusion criteria for this systematic review. The most common method used for methylation analysis was methylation-specific PCR, with half of the studies using plasma and the other half using serum. RASSF1A, BRCA1, and OPCML were the most investigated gene-specific methylation biomarkers, with OPCML having the best performance measures. Generally, methylation panels performed better than single gene-specific methylation biomarkers, with one methylation panel of 103,456 distinct regions and 1,116,720 CpGs having better performance in both training and validation cohorts. However, the evidence is still limited, and the promising methylation panels, as well as gene-specific methylation biomarkers highlighted in this review, need validation in large, prospective cohorts with early-stage asymptomatic OC patients to assess the true diagnostic value in a clinical setting.
Collapse
Affiliation(s)
- Simone Karlsson Terp
- Department of Molecular Diagnostics, Aalborg University Hospital, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark.
| | - Malene Pontoppidan Stoico
- Department of Molecular Diagnostics, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
- Department of Hematology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| |
Collapse
|
15
|
Johnston AD, Lu J, Korbie D, Trau M. Modelling clinical DNA fragmentation in the development of universal PCR-based assays for bisulfite-converted, formalin-fixed and cell-free DNA sample analysis. Sci Rep 2022; 12:16051. [PMID: 36163372 PMCID: PMC9512909 DOI: 10.1038/s41598-022-18196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
In fragmented DNA, PCR-based methods quantify the number of intact regions at a specific amplicon length. However, the relationship between the population of DNA fragments within a sample and the likelihood they will amplify has not been fully described. To address this, we have derived a mathematical equation that relates the distribution profile of a stochastically fragmented DNA sample to the probability that a DNA fragment within that sample can be amplified by any PCR assay of arbitrary length. Two panels of multiplex PCR assays for quantifying fragmented DNA were then developed: a four-plex panel that can be applied to any human DNA sample and used to estimate the percentage of regions that are intact at any length; and a two-plex panel optimized for quantifying circulating cell-free DNA (cfDNA). For these assays, regions of the human genome least affected by copy number aberration were identified and selected; within these copy-neutral regions, each PCR assay was designed to amplify both genomic and bisulfite-converted DNA; and all assays were validated for use in both conventional qPCR and droplet-digital PCR. Finally, using the cfDNA-optimized assays we find evidence of universally conserved nucleosome positioning among individuals.
Collapse
Affiliation(s)
- Andrew D Johnston
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, Westmead, NSW, Australia
| | - Jennifer Lu
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Darren Korbie
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
16
|
Cox DR, Wong BKL, Lee E, Testro A, Muralidharan V, Dobrovic A, Goh SK. Evaluating DNA recovery efficiency following bisulphite modification from plasma samples submitted for cell-free DNA methylation analysis. Epigenetics 2022; 17:1956-1960. [PMID: 35763697 DOI: 10.1080/15592294.2022.2091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The detection of methylated templates in cell-free DNA (cfDNA) is increasingly recognized as a valuable, non-invasive tool for diagnosis, monitoring and prognostication in a range of medical contexts. The importance of controlling pre-analytical conditions in laboratory workflows prior to cfDNA quantification is well-established. Significant variations in the recovery of DNA following processes such as cfDNA extraction and sodium bisulphite modification may confound downstream analysis, particularly when accurate quantification of templates is required. Given the wealth of potential applications for this emerging molecular technology, attention has turned to the requirement to recognize and minimize pre-analytical variables prior to cfDNA methylation analysis. We recently described the development of an approach using an exogenous DNA construct to evaluate the recovery efficiency of cfDNA following the extraction and bisulphite modification steps (CEREBIS). Here, we report our experience in the practical application of this technique in 107 consecutive patient plasma samples submitted for quantitative cfDNA methylation analysis. The mean recovery of cfDNA (as estimated using cerebis), following extraction and bisulphite modification, was 37% ± 7%. Nine (8.4%) of the 107 samples were found to be outside of control limits, where the recovery of cerebis indicated significant differences in the efficiency of the pre-analytical processing of these samples. Recognition of these out-of-control samples precluded subsequent molecular analysis. Implementation of data-driven quality control measures, such as the one described, has the potential to improve the quality of liquid biopsy methylation analysis, interpretation and reporting.
Collapse
Affiliation(s)
- Daniel Ra Cox
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| | - Boris Ka Leong Wong
- Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia
| | - Eunice Lee
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Health, Heidelberg, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| | - Alexander Dobrovic
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Translational Genomics and Epigenomics Laboratory, Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia
| | - Su Kah Goh
- Department of Surgery (Austin Precinct), The University of Melbourne, Heidelberg, Australia.,Hepatopancreatobiliary and Transplant Surgery Unit, Austin Health, Heidelberg, Australia
| |
Collapse
|
17
|
Main SC, Cescon DW, Bratman SV. Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:727-748. [PMID: 36176758 PMCID: PMC9511796 DOI: 10.20517/cdr.2022.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine therapy have transformed the treatment of estrogen receptor-positive (ER+) and human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. However, some patients do not respond to this treatment, and patients inevitably develop resistance, such that novel biomarkers are needed to predict primary resistance, monitor treatment response for acquired resistance, and personalize treatment strategies. Circumventing the spatial and temporal limitations of tissue biopsy, newly developed liquid biopsy approaches have the potential to uncover biomarkers that can predict CDK4/6 inhibitor efficacy and resistance in breast cancer patients through a simple blood test. Studies on circulating tumor DNA (ctDNA)-based liquid biopsy biomarkers of CDK4/6 inhibitor resistance have focused primarily on genomic alterations and have failed thus far to identify clear and clinically validated predictive biomarkers, but emerging epigenetic ctDNA methodologies hold promise for further discovery. The present review outlines recent advances and future directions in ctDNA-based biomarkers of CDK4/6 inhibitor treatment response.
Collapse
Affiliation(s)
- Sasha C Main
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto M5T 1P5, Ontario, Canada
| |
Collapse
|
18
|
Deger T, Boers RG, de Weerd V, Angus L, van der Put MMJ, Boers JB, Azmani Z, van IJcken WFJ, Grünhagen DJ, van Dessel LF, Lolkema MPJK, Verhoef C, Sleijfer S, Martens JWM, Gribnau J, Wilting SM. High-throughput and affordable genome-wide methylation profiling of circulating cell-free DNA by methylated DNA sequencing (MeD-seq) of LpnPI digested fragments. Clin Epigenetics 2021; 13:196. [PMID: 34670587 PMCID: PMC8529776 DOI: 10.1186/s13148-021-01177-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023] Open
Abstract
Background DNA methylation detection in liquid biopsies provides a highly promising and much needed means for real-time monitoring of disease load in advanced cancer patient care. Compared to the often-used somatic mutations, tissue- and cancer-type specific epigenetic marks affect a larger part of the cancer genome and generally have a high penetrance throughout the tumour. Here, we describe the successful application of the recently described MeD-seq assay for genome-wide DNA methylation profiling on cell-free DNA (cfDNA). The compatibility of the MeD-seq assay with different types of blood collection tubes, cfDNA input amounts, cfDNA isolation methods, and vacuum concentration of samples was evaluated using plasma from both metastatic cancer patients and healthy blood donors (HBDs). To investigate the potential value of cfDNA methylation profiling for tumour load monitoring, we profiled paired samples from 8 patients with resectable colorectal liver metastases (CRLM) before and after surgery. Results The MeD-seq assay worked on plasma-derived cfDNA from both EDTA and CellSave blood collection tubes when at least 10 ng of cfDNA was used. From the 3 evaluated cfDNA isolation methods, both the manual QIAamp Circulating Nucleic Acid Kit (Qiagen) and the semi-automated Maxwell® RSC ccfDNA Plasma Kit (Promega) were compatible with MeD-seq analysis, whereas the QiaSymphony DSP Circulating DNA Kit (Qiagen) yielded significantly fewer reads when compared to the QIAamp kit (p < 0.001). Vacuum concentration of samples before MeD-seq analysis was possible with samples in AVE buffer (QIAamp) or water, but yielded inconsistent results for samples in EDTA-containing Maxwell buffer. Principal component analysis showed that pre-surgical samples from CRLM patients were very distinct from HBDs, whereas post-surgical samples were more similar. Several described methylation markers for colorectal cancer monitoring in liquid biopsies showed differential methylation between pre-surgical CRLM samples and HBDs in our data, supporting the validity of our approach. Results for MSC, ITGA4, GRIA4, and EYA4 were validated by quantitative methylation specific PCR. Conclusions The MeD-seq assay provides a promising new method for cfDNA methylation profiling. Potential future applications of the assay include marker discovery specifically for liquid biopsy analysis as well as direct use as a disease load monitoring tool in advanced cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01177-4.
Collapse
Affiliation(s)
- Teoman Deger
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ruben G Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Lindsay Angus
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marjolijn M J van der Put
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joachim B Boers
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Z Azmani
- Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Dirk J Grünhagen
- Department of Oncologic Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Lisanne F van Dessel
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Martijn P J K Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Cornelis Verhoef
- Department of Oncologic Surgery, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
19
|
Kerachian MA, Azghandi M, Mozaffari-Jovin S, Thierry AR. Guidelines for pre-analytical conditions for assessing the methylation of circulating cell-free DNA. Clin Epigenetics 2021; 13:193. [PMID: 34663458 PMCID: PMC8525023 DOI: 10.1186/s13148-021-01182-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers. It consists of isolation (pre-analytical) and detection (analytical) phases. The choice of pre-analytical variables comprising cirDNA extraction and bisulfite conversion methods can affect the identification of cirDNA methylation. Indeed, different techniques give a different return of cirDNA, which confirms the importance of pre-analytical procedures in clinical diagnostics. Although novel techniques have been developed for the simplification of methylation analysis, the process remains complex, as the steps of DNA extraction, bisulfite treatment, and methylation detection are each carried out separately. Recent studies have noted the absence of any standard method for the pre-analytical processing of methylated cirDNA. We have therefore conducted a comprehensive and systematic review of the important pre-analytical and analytical variables and the patient-related factors which form the basis of our guidelines for analyzing methylated cirDNA in liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
20
|
Pham DAT, Le SD, Doan TM, Luu PT, Nguyen UQ, Ho SV, Vo LTT. Standardization of DNA amount for bisulfite conversion for analyzing the methylation status of LINE-1 in lung cancer. PLoS One 2021; 16:e0256254. [PMID: 34403448 PMCID: PMC8370637 DOI: 10.1371/journal.pone.0256254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Highly methylated Long Interspersed Nucleotide Elements 1 (LINE-1) constitute approximately 20% of the human genome, thus serving as a surrogate marker of global genomic DNA methylation. To date, there is still lacking a consensus about the precise location in LINE-1 promoter and its methylation threshold value, making challenging the use of LINE-1 methylation as a diagnostic, prognostic markers in cancer. This study reports on a technical standardization of bisulfite-based DNA methylation analysis, which ensures the complete bisulfite conversion of repeated LINE-1 sequences, thus allowing accurate LINE-1 methylation value. In addition, the study also indicated the precise location in LINE-1 promoter of which significant variance in methylation level makes LINE-1 methylation as a potential diagnostic biomarker for lung cancer. A serial concentration of 5-50-500 ng of DNA from 275 formalin-fixed paraffin-embedded lung tissues were converted by bisulfite; methylation level of two local regions (at nucleotide position 300–368 as LINE-1.1 and 368–460 as LINE-1.2) in LINE-1 promoter was measured by real time PCR. The use of 5 ng of genomic DNA but no more allowed to detect LINE-1 hypomethylation in lung cancer tissue (14.34% versus 16.69% in non-cancerous lung diseases for LINE-1.1, p < 0.0001, and 30.28% versus 32.35% for LINE-1.2, p < 0.05). Our study thus highlighted the optimal and primordial concentration less than 5 ng of genomic DNA guarantees the complete LINE-1 bisulfite conversion, and significant variance in methylation level of the LINE-1 sequence position from 300 to 368 allowed to discriminate lung cancer from non-cancer samples.
Collapse
Affiliation(s)
| | - Son Duc Le
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Trang Mai Doan
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Phuong Thu Luu
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Uyen Quynh Nguyen
- Department of Biology, VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| | - Son Van Ho
- Department of Biochemistry, 175 Hospital, Ho Chi Minh City, Vietnam
| | - Lan Thi Thuong Vo
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, Vietnam
- * E-mail:
| |
Collapse
|
21
|
Hodges A, Boral D. Spiking the Punch: CEREBIS for Standardizing cfDNA Recovery Efficiencies. Clin Chem 2021; 67:1169-1171. [PMID: 34323994 DOI: 10.1093/clinchem/hvab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Alan Hodges
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX.,Texas A&M University System Health Science Center College of Medicine, Bryan, TX
| | - Debasish Boral
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX
| |
Collapse
|
22
|
Mehrmohamadi M, Sepehri MH, Nazer N, Norouzi MR. A Comparative Overview of Epigenomic Profiling Methods. Front Cell Dev Biol 2021; 9:714687. [PMID: 34368164 PMCID: PMC8340004 DOI: 10.3389/fcell.2021.714687] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
In the past decade, assays that profile different aspects of the epigenome have grown exponentially in number and variation. However, standard guidelines for researchers to choose between available tools depending on their needs are lacking. Here, we introduce a comprehensive collection of the most commonly used bulk and single-cell epigenomic assays and compare and contrast their strengths and weaknesses. We summarize some of the most important technical and experimental parameters that should be considered for making an appropriate decision when designing epigenomic experiments.
Collapse
Affiliation(s)
- Mahya Mehrmohamadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
23
|
Li M, Xie S, Lu C, Zhu L, Zhu L. Application of Data Science in Circulating Tumor DNA Detection: A Promising Avenue Towards Liquid Biopsy. Front Oncol 2021; 11:692322. [PMID: 34367974 PMCID: PMC8337081 DOI: 10.3389/fonc.2021.692322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
The circulating tumor DNA (ctDNA), as a promising biomarker of liquid biopsy, has potential clinical relevance on the molecular diagnosis and monitoring of cancer. However, the trace concentration level of ctDNA in the peripheral blood restricts its extensive clinical application. Recently, high-throughput-based methodologies have been leveraged to improve the sensitivity and specificity of ctDNA detection, showing a promising avenue towards liquid biopsy. This review briefly summarizes the high-throughput data features concerned by current ctDNA detection strategies and the technical obstacles, potential solutions, and clinical relevance of current ctDNA profiling technologies. We also highlight future directions improving the limit of detection of ctDNA for better clinical application. This review may serve as a reference for the crosslinks between data science and ctDNA-based liquid biopsy, benefiting clinical translation in advanced cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lvyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
24
|
Wang K, Wu P, Wang S, Ji X, Chen D, Xiao W, Gu Y, Zeng Y, Xu X, Tang G. Differential DNA methylation analysis reveals key genes in Chinese Qingyu and Landrace pigs. Genome 2021; 65:1-8. [PMID: 34242523 DOI: 10.1139/gen-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Chinese Qingyu pig is a typical domestic fatty pig breed and an invaluable indigenous genetic resource in China. Compared with the Landrace pig, the Qingyu pig has unique meat characteristics, including muscle development, intramuscular fat, and other meat quality traits. At present, few studies have explored epigenetic differences due to DNA methylation between the Qingyu pig and the Landrace pig. In this study, 30 Qingyu pigs and 31 Landrace pigs were subjected to reduced representation bisulfite sequencing (RRBS). Genome-wide differential DNA methylation analysis was conducted. Six genomic regions, including regions on Sus scrofa chromosome (SSC) 1: 266.09-274.23 Mb, SSC5: 0.88-10.68 Mb, SSC8: 41.23-48.51 Mb, SSC12: 45.43-54.38 Mb, SSC13: 202.15-207.95 Mb, and SSC14: 126.43-139.85 Mb, were regarded as key regions that may be associated with phenotypic differences between the Qingyu pig and the Landrace pig. Furthermore, according to further analysis, five differentially methylated genes (ADCY1, FUBP3, GRIN2B, KIT, and PIK3R6) were identified as key candidate genes that might be associated with meat characteristics. Our findings provide new insights into the differences in DNA methylation between the Qingyu pig and the Landrace pig. These results enrich the epigenetic research of the Chinese Qingyu pig.
Collapse
Affiliation(s)
- Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiren Gu
- Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Yangshuang Zeng
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
25
|
Goh SK, Cox DRA, Wong BKL, Musafer A, Witkowski T, Do H, Muralidharan V, Dobrovic A. A Synthetic DNA Construct to Evaluate the Recovery Efficiency of Cell-Free DNA Extraction and Bisulfite Modification. Clin Chem 2021; 67:1201-1209. [PMID: 34151944 DOI: 10.1093/clinchem/hvab095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Despite improvements in the genetic and epigenetic analysis of cell-free DNA (cfDNA), there has been limited focus on assessing the preanalytical variables of recovery efficiency following cfDNA extraction and bisulfite modification. Quantification of recovery efficiency after these steps can facilitate quality assurance and improve reliability when comparing serial samples. METHODS We developed an exogenous DNA Construct to Evaluate the Recovery Efficiency of cfDNA extraction and BISulfite modification (CEREBIS) after cfDNA extraction and/or subsequent bisulfite modification from plasma. The strategic placement of cytosine bases in the 180 bp CEREBIS enabled PCR amplification of the construct by a single primer set both after plasma DNA extraction and following subsequent bisulfite modification. RESULTS Plasma samples derived from 8 organ transplant donors and 6 serial plasma samples derived from a liver transplant recipient were spiked with a known number of copies of CEREBIS. Recovery of CEREBIS after cfDNA extraction and bisulfite modification was quantified with high analytical accuracy by droplet digital PCR. The use of CEREBIS and quantification of its recovery was useful in identifying problematic extractions. Furthermore, its use was shown to be invaluable towards improving the reliability of the analysis of serial samples. CONCLUSIONS CEREBIS can be used as a spike-in control to address the preanalytical variable of recovery efficiency both after cfDNA extraction from plasma and following bisulfite modification. Our approach can be readily implemented and its application may have significant benefits, especially in settings where longitudinal quantification of cfDNA for disease monitoring is necessary.
Collapse
Affiliation(s)
- Su Kah Goh
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, Austin Hospital, HPB & Transplant Unit, Melbourne, Victoria, Australia.,Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel R A Cox
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, Austin Hospital, HPB & Transplant Unit, Melbourne, Victoria, Australia.,Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia
| | - Boris Ka Leong Wong
- Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Ashan Musafer
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Tom Witkowski
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Hongdo Do
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,The University of Melbourne, Parkville Precinct, Victoria, Australia.,Pathology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, Austin Hospital, HPB & Transplant Unit, Melbourne, Victoria, Australia
| | - Alexander Dobrovic
- Department of Surgery-Austin Precinct, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery-Austin Precinct, Translational Genomics and Epigenomics Laboratory, The University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| |
Collapse
|
26
|
Bohers E, Viailly PJ, Jardin F. cfDNA Sequencing: Technological Approaches and Bioinformatic Issues. Pharmaceuticals (Basel) 2021; 14:ph14060596. [PMID: 34205827 PMCID: PMC8234829 DOI: 10.3390/ph14060596] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
In the era of precision medicine, it is crucial to identify molecular alterations that will guide the therapeutic management of patients. In this context, circulating tumoral DNA (ctDNA) released by the tumor in body fluids, like blood, and carrying its molecular characteristics is becoming a powerful biomarker for non-invasive detection and monitoring of cancer. Major recent technological advances, especially in terms of sequencing, have made possible its analysis, the challenge still being its reliable early detection. Different parameters, from the pre-analytical phase to the choice of sequencing technology and bioinformatic tools can influence the sensitivity of ctDNA detection.
Collapse
|
27
|
Koval AP, Blagodatskikh KA, Kushlinskii NE, Shcherbo DS. The Detection of Cancer Epigenetic Traces in Cell-Free DNA. Front Oncol 2021; 11:662094. [PMID: 33996585 PMCID: PMC8118693 DOI: 10.3389/fonc.2021.662094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Nucleic acid fragments found in blood circulation originate mostly from dying cells and carry signs pointing to specific features of the parental cell types. Deciphering these clues may be transformative for numerous research and clinical applications but strongly depends on the development and implementation of robust analytical methods. Remarkable progress has been achieved in the reliable detection of sequence alterations in cell-free DNA while decoding epigenetic information from methylation and fragmentation patterns requires more sophisticated approaches. This review discusses the currently available strategies for detecting and analyzing the epigenetic marks in the liquid biopsies.
Collapse
Affiliation(s)
- Anastasia P Koval
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin A Blagodatskikh
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nikolay E Kushlinskii
- Laboratory of Clinical Biochemistry, N.N. Blokhin Cancer Research Medical Center of Oncology, Moscow, Russia
| | - Dmitry S Shcherbo
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
28
|
Epigenetic Silencing of DAPK1and p16 INK4a Genes by CpG Island Hypermethylation in Epithelial Ovarian Cancer Patients. Indian J Clin Biochem 2021; 36:200-207. [PMID: 33867711 DOI: 10.1007/s12291-020-00888-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Transcriptional silencing induced by hypermethylation of CpG islands in the promoter regions of genes is believed to be an important mechanism of carcinogenesis in human cancers including epithelial ovarian cancer (EOC). Previously published data on gene methylation of EOC focused mainly on single gene or on cancer tissues. Objectives of the study were to estimate the promoter hypermethylation status of DAPK1 and p16 INK4a genes in circulating blood of EOC patients and to determine their association with clinicopathological features of EOC. This case-control study included 50 EOC patients and 20 apparently healthy and age matched female controls. Isolation of genomic DNA was carried out from peripheral venous blood. Methylation in promoter region of DAPK1 and p16 INK4a genes was determined by methylation-specific PCR. Methylation of DAPK1 was occurred in 42 out of 50 cases (84.0%) and methylation of p16 INK4a gene was occurred in 34 out of 50 cases (68.0%). Methylation of both genes was occurred in 25 cases (50.0%). Occurrence of methylation in DAPK1 and p16 INK4a genes was statistically significant (p < 0.0001) in cases compared to controls. Methylation of both genes was not statistically associated with age at diagnosis, menopausal status, histopathological types and FIGO staging of EOC. Identification of the peculiar promoter hypermethylation of DAPK1 and p16 INK4a genes might be a successful approach for ancillary diagnosis of EOC at early stage in blood sample.
Collapse
|
29
|
Martisova A, Holcakova J, Izadi N, Sebuyoya R, Hrstka R, Bartosik M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int J Mol Sci 2021; 22:ijms22084247. [PMID: 33921911 PMCID: PMC8073724 DOI: 10.3390/ijms22084247] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, i.e., addition of methyl group to 5′-carbon of cytosine residues in CpG dinucleotides, is an important epigenetic modification regulating gene expression, and thus implied in many cellular processes. Deregulation of DNA methylation is strongly associated with onset of various diseases, including cancer. Here, we review how DNA methylation affects carcinogenesis process and give examples of solid tumors where aberrant DNA methylation is often present. We explain principles of methods developed for DNA methylation analysis at both single gene and whole genome level, based on (i) sodium bisulfite conversion, (ii) methylation-sensitive restriction enzymes, and (iii) interactions of 5-methylcytosine (5mC) with methyl-binding proteins or antibodies against 5mC. In addition to standard methods, we describe recent advances in next generation sequencing technologies applied to DNA methylation analysis, as well as in development of biosensors that represent their cheaper and faster alternatives. Most importantly, we highlight not only advantages, but also disadvantages and challenges of each method.
Collapse
|
30
|
Hong SR, Shin KJ. Bisulfite-Converted DNA Quantity Evaluation: A Multiplex Quantitative Real-Time PCR System for Evaluation of Bisulfite Conversion. Front Genet 2021; 12:618955. [PMID: 33719336 PMCID: PMC7947210 DOI: 10.3389/fgene.2021.618955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Bisulfite (BS) conversion, which includes a series of chemical reactions using bisulfite, is a prerequisite to most DNA methylation analysis methods, and thus is an essential step in the associated research process. Unfortunately, BS conversion leads to the degradation or loss of DNA, which can hinder further downstream analysis. In addition, it is well known that incomplete BS conversion is crucial, as it causes an exaggeration of the DNA methylation level, which can adversely affect the results. Therefore, there have been many attempts to measure three key features of BS conversion: BS conversion efficiency, recovery, and degradation level. In this study, a multiplex quantitative real-time PCR system named BisQuE was suggested to simultaneously analyze three important aspects of the conversion step. By adopting cytosine-free PCR primers for two differently sized multicopy regions, the short amplicon and long amplicon were obtained from both the genomic and BS-converted DNA, thus enabling the obtaining of reliable and sensitive results and the calculation of the degradation level of the conversion step. Also, probes for detecting converted/unconverted templates and C-T indicators for inducing the formula were included in this assay to quantify BS-converted DNA in order to compute the conversion efficiency and recovery. Six BS conversion kits (EZ DNA Methylation-Lightning Kit, Premium Bisulfite kit, MethylEdge® Bisulfite Conversion System, EpiJET Bisulfite Conversion Kit, EpiTect Fast DNA Bisulfite Kit, and NEBNext® Enzymatic Methyl-seq Conversion Module) were tested in 20 samples using 50 ng of genomic DNA as an input with the BisQuE. The conversion efficiency, degradation levels, as well as recovery rates of the kits were investigated. A total of 99.61-99.90% conversion efficiency was perceived for five of the kits, while the NEBNext kit showed about 94%. The lowest degradation level was shown by the NEBNext kit, whereas the other kits were quite similar. The recovery rates of the kits were found to be within the range of 18-50%. A Qubit assay was also used to compare the recovery rate of BisQuE.
Collapse
Affiliation(s)
- Sae Rom Hong
- Department of Forensic Medicine and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Luo H, Wei W, Ye Z, Zheng J, Xu RH. Liquid Biopsy of Methylation Biomarkers in Cell-Free DNA. Trends Mol Med 2021; 27:482-500. [PMID: 33500194 DOI: 10.1016/j.molmed.2020.12.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/09/2023]
Abstract
Liquid biopsies, in particular, analysis of cell-free DNA (cfDNA), have emerged as a promising noninvasive diagnostic approach in oncology. Abnormal distribution of DNA methylation is one of the hallmarks of many cancers and methylation changes occur early during carcinogenesis. Systemic analysis of cfDNA methylation profiles is being developed for cancer early detection, monitoring for minimal residual disease (MRD), predicting treatment response and prognosis, and tracing the tissue origin. This review highlights the advantages and disadvantages of ctDNA profiling for noninvasive diagnosis of early-stage cancers and explores recent advances in the clinical application of ctDNA methylation assays. We also summarize the technologies for ctDNA methylation analysis and provide a brief overview of the bioinformatic approaches for analyzing DNA methylation sequencing data.
Collapse
Affiliation(s)
- Huiyan Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wei Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ziyi Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jiabo Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
32
|
Drag MH, Kilpeläinen TO. Cell-free DNA and RNA-measurement and applications in clinical diagnostics with focus on metabolic disorders. Physiol Genomics 2020; 53:33-46. [PMID: 33346689 DOI: 10.1152/physiolgenomics.00086.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) and RNA (cfRNA) hold enormous potential as a new class of biomarkers for the development of noninvasive liquid biopsies in many diseases and conditions. In recent years, cfDNA and cfRNA have been studied intensely as tools for noninvasive prenatal testing, solid organ transplantation, cancer screening, and monitoring of tumors. In obesity, higher cfDNA concentration indicates accelerated cellular turnover of adipocytes during expansion of adipose mass and may be directly involved in the development of adipose tissue insulin resistance by inducing inflammation. Furthermore, cfDNA and cfRNA have promising diagnostic value in a range of obesity-related metabolic disorders, such as nonalcoholic fatty liver disease, type 2 diabetes, and diabetic complications. Here, we review the current and future applications of cfDNA and cfRNA within clinical diagnostics, discuss technical and analytical challenges in the field, and summarize the opportunities of using cfDNA and cfRNA in the diagnostics and prognostics of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Markus H Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Danstrup CS, Marcussen M, Pedersen IS, Jacobsen H, Dybkær K, Gaihede M. DNA methylation biomarkers in peripheral blood of patients with head and neck squamous cell carcinomas. A systematic review. PLoS One 2020; 15:e0244101. [PMID: 33332423 PMCID: PMC7746174 DOI: 10.1371/journal.pone.0244101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinomas (HNSCC) are often diagnosed in advanced stages. In search of new diagnostic tools, focus has shifted towards the biological properties of the HNSCC, and the number of different biomarkers under investigation is rapidly growing. OBJECTIVES The objective was to review the current literature regarding aberrantly methylated DNA found in peripheral blood plasma or serum in patients with HNSCC and to evaluate the diagnostic accuracy of these changes. METHODS The inclusion criteria were clinical studies involving patients with verified HNSCC that reported findings of aberrantly methylated DNA in peripheral blood serum or plasma. We systematically searched PubMed, OVID Embase and Cochrane Library. In addition to the search, we performed forward and backward chaining in references and Web of Science. The protocol was registered in PROSPERO: CRD42019135406. Two authors independently extracted data. The quality and the risk of bias of the included studies were assessed by the QUADAS-2 tool. RESULTS A total of 1,743 studies were found eligible for screening, while ultimately seven studies were included. All studies were found to have methodological weaknesses, mainly concerning patient selection bias. The best individual marker of HNSCC was Septin 9 in plasma with a sensitivity of 57% and a specificity of 95%. CONCLUSIONS None of the aberrantly methylated genes found in the retrieved studies are applicable as single diagnostic markers for HNSCC and the best gene-panels still lack diagnostic accuracy. Future studies may benefit from newer sequencing techniques but validation studies with well-designed cohorts are also needed in the process of developing epigenetic based diagnostic tests for HNSCC.
Collapse
Affiliation(s)
- Christian Sander Danstrup
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Marcussen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henrik Jacobsen
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Gaihede
- Department of Otorhinolaryngology–Head & Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
34
|
Farooq M, Herman JG. Noninvasive Diagnostics for Early Detection of Lung Cancer: Challenges and Potential with a Focus on Changes in DNA Methylation. Cancer Epidemiol Biomarkers Prev 2020; 29:2416-2422. [PMID: 33148791 PMCID: PMC11559093 DOI: 10.1158/1055-9965.epi-20-0704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Lung cancer remains the leading cause of cancer deaths in the United States and the world. Early detection of this disease can reduce mortality, as demonstrated for low-dose computed tomography (LDCT) screening. However, there remains a need for improvements in lung cancer detection to complement LDCT screening and to increase adoption of screening. Molecular changes in the tumor, and the patient's response to the presence of the tumor, have been examined as potential biomarkers for diagnosing lung cancer. There are significant challenges to developing an effective biomarker with sufficient sensitivity and specificity for the early detection of lung cancer, particularly the detection of circulating tumor DNA, which is present in very small quantities. We will review approaches to develop biomarkers for the early detection of lung cancer, with special consideration to detection of rare tumor events, focus on the use of DNA methylation-based detection in plasma and sputum, and discuss the promise and challenges of lung cancer early detection. Plasma-based detection of lung cancer DNA methylation may provide a simple cost-effective method for the early detection of lung cancer.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Maria Farooq
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James G Herman
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- UPMC Hillman Comprehensive Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Ghodsi M, Shahmohammadi M, Modarressi MH, Karami F. Investigation of promoter methylation of MCPH1 gene in circulating cell-free DNA of brain tumor patients. Exp Brain Res 2020; 238:1903-1909. [PMID: 32556427 DOI: 10.1007/s00221-020-05848-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite advanced diagnostic and therapeutic techniques, many brain tumors are still diagnosed at high grades and, therefore finding novel molecular markers may assist in early detection and reducing brain tumors-related mortality rate. Owing to the previous reports on the importance of MCPH1 gene in tumorigenesis, the present study was aimed to study the promoter methylation of MCPH1 gene in paired circulating cell-free DNA (cfDNA) and tumor tissues of brain tumor patients. MATERIALS AND METHODS Fourteen fresh paired serum and tumor tissue samples in addition to 18 isolated serum samples were collected from patients affected by different grades of brain tumor. Genomic DNA and cfDNA was isolated from tissue and serum samples using QIAamp DNA Mini Kit Norgen Bioteck Kit, respectively. Methylation DNA immunoprecipitation Real-time polymerization chain reaction (MeDIP-Real-time PCR) was performed on isolated DNA samples using EpiQuik MeDIP Ultra Kit and specific primer pairs. cfDNA quantity was determined through Real-time PCR analysis using specific primer pairs designed for GAPDH gene. RESULTS MCPH1 was methylated in 54% of cfDNA samples which was significantly associated with tumor grade, as well (P-value = 0.02). The methylation rate of MCPH1 was found as 78% in the tissue samples which was meaningfully associated with tumor grade (P-value = 0.03). Moreover, methylation of the MCPH1 gene was consistent in 57% of the same cfDNA and tissue samples. Methylation of MCPH1 gene in neither tumor tissues nor cfDNA was not correlated with age and sex of the patients. DISCUSSION AND CONCLUSION Due to the conformity of methylation of MCPH1 gene in cfDNA and tissue samples in more than half of the enrolled patients, especially in higher grades of tumors, it seems that MCPH1 promoter methylation could be a potential epimarker in not only detection of brain tumors but also in response to chemo- and radiotherapy which warranted further assessment.
Collapse
Affiliation(s)
- Marjan Ghodsi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Karami
- Department of Medical Genetics, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
36
|
Diefenbach RJ, Lee JH, Rizos H. Methylated circulating tumor DNA as a biomarker in cutaneous melanoma. Melanoma Manag 2020; 7:MMT46. [PMID: 32922728 PMCID: PMC7475794 DOI: 10.2217/mmt-2020-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Russell J Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Jenny H Lee
- Department of Biomedical Sciences, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health & Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia
| |
Collapse
|
37
|
Erger F, Nörling D, Borchert D, Leenen E, Habbig S, Wiesener MS, Bartram MP, Wenzel A, Becker C, Toliat MR, Nürnberg P, Beck BB, Altmüller J. cfNOMe - A single assay for comprehensive epigenetic analyses of cell-free DNA. Genome Med 2020; 12:54. [PMID: 32580754 PMCID: PMC7315486 DOI: 10.1186/s13073-020-00750-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-free DNA (cfDNA) analysis has become essential in cancer diagnostics and prenatal testing. We present cfNOMe, a two-in-one method of measuring cfDNA cytosine methylation and nucleosome occupancy in a single assay using non-disruptive enzymatic cytosine conversion and a custom bioinformatic pipeline. We show that enzymatic cytosine conversion better preserves cfDNA fragmentation information than does bisulfite conversion. Whereas previously separate experiments were required to study either epigenetic marking, cfNOMe delivers reliable results for both, enabling more comprehensive and inexpensive epigenetic cfDNA profiling. cfNOMe has the potential to advance biomarker discovery and diagnostic usage in diseases with systemic perturbations of cfDNA composition.
Collapse
Affiliation(s)
- Florian Erger
- Cologne Center for Genomics, University of Cologne, Cologne, Germany. .,Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Deborah Nörling
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Domenica Borchert
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Esther Leenen
- Department of Nephrology, Transplantation and Medical Intensive Care, University Witten/Herdecke, Medical Center Cologne-Merheim, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michael S Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Malte P Bartram
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Andrea Wenzel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Mohammad R Toliat
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
38
|
Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants: review of computational tools and future perspectives. Brief Bioinform 2020; 21:906-918. [PMID: 31220217 DOI: 10.1093/bib/bbz039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA methylation studies have quickly expanded due to advances in next-generation sequencing techniques along with a wealth of computational tools to analyze the data. Most of our knowledge about DNA methylation profiles, epigenetic heritability and the function of DNA methylation in plants derives from the model species Arabidopsis thaliana. There are increasingly many studies on DNA methylation in plants-uncovering methylation profiles and explaining variations in different plant tissues. Additionally, DNA methylation comparisons of different plant tissue types and dynamics during development processes are only slowly emerging but are crucial for understanding developmental and regulatory decisions. Translating this knowledge from plant model species to commercial crops could allow the establishment of new varieties with increased stress resilience and improved yield. In this review, we provide an overview of the most commonly applied bioinformatics tools for the analysis of DNA methylation data (particularly bisulfite sequencing data). The performances of a selection of the tools are analyzed for computational time and agreement in predicted methylated sites for A. thaliana, which has a smaller genome compared to the hexaploid bread wheat. The performance of the tools was benchmarked on five plant genomes. We give examples of applications of DNA methylation data analysis in crops (with a focus on cereals) and an outlook for future developments for DNA methylation status manipulations and data integration.
Collapse
Affiliation(s)
- Jimmy Omony
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Nussbaumer
- Institute of Network Biology, Department of Environmental Science, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, Research Center for Environmental Health, Augsburg, Germany; CK CARE Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
39
|
Stastny I, Zubor P, Kajo K, Kubatka P, Golubnitschaja O, Dankova Z. Aberrantly Methylated cfDNA in Body Fluids as a Promising Diagnostic Tool for Early Detection of Breast Cancer. Clin Breast Cancer 2020; 20:e711-e722. [PMID: 32792225 DOI: 10.1016/j.clbc.2020.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Breast malignancies are the leading type of cancer among women. Its prevention and early detection, particularly in young women, remains challenging. To this end, cell-free DNA (cfDNA) detected in body fluids demonstrates great potential for early detection of tissue transformation and altered molecular setup, such as epigenetic profiles. Aberrantly methylated cfDNA in body fluids could therefore serve as a potential diagnostic and prognostic tool in breast cancer management. Abnormal methylation may lead to both an activation of oncogenes via hypomethylation and an inactivation of tumor suppressor genes by hypermethylation. We update the state of the art in the area of aberrant cfDNA methylation analyses as a diagnostic and prognostic tool in breast cancer, report on the main technological challenges, and provide an outlook for advancing the overall management of breast malignancies based on cfDNA as a target for diagnosis and tailored therapies.
Collapse
Affiliation(s)
- Igor Stastny
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Obstetrics and Gynaecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Pavol Zubor
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic; Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Hospital, Rheinische, Excellence University of Bonn, Bonn, Germany; Breast Cancer Research Centre, Rheinische, Excellence University of Bonn, Bonn, Germany; Centre for Integrated Oncology, Cologne-Bonn, Excellence University of Bonn, Bonn, Germany
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
40
|
Mauger F, Tost J. Enhanced- ice-COLD-PCR for the Sensitive Detection of Rare DNA Methylation Patterns in Liquid Biopsies. Bio Protoc 2019; 9:e3452. [PMID: 33654946 DOI: 10.21769/bioprotoc.3452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/02/2022] Open
Abstract
In the context of precision medicine, the identification of novel biomarkers for the diagnosis of disease, prognosis, predicting treatment outcome and monitoring of treatment success is of great importance. The analysis of methylated circulating-cell free DNA provides great promise to complement or replace genetic markers for these applications, but is associated with substantial challenges. This is particularly true for the detection of rare methylated DNA molecules in a limited amount of sample such as tumor released hypermethylated molecules in the background of DNA fragments from normal cells, especially lymphocytes. Technologies for the sensitive detection of DNA methylation have been developed to enrich specifically methylated DNA or unmethylated DNA using among other methods: enzymatic digestion, methylation-specific PCR (often combined with TaqMan like oligonucleotide probes (MethyLight)) and co-amplification at lower denaturation temperature PCR (COLD-PCR). E-ice-COLD-PCR (Enhanced-improved and complete enrichment-COLD-PCR) is a sensitive method that takes advantage of a Locked Nucleic Acid (LNA)-containing oligonucleotide probe to block specifically unmethylated CpG sites allowing the strong enrichment of low-abundant methylated CpG sites from a limited quantity of input. E-ice-COLD-PCRs are performed on bisulfite-converted DNA followed by Pyrosequencing analysis. The quantification of the initially present DNA methylation level is obtained using calibration curves of methylated and unmethylated DNA. The E-ice-COLD-PCR reactions can be multiplexed, allowing the analysis and quantification of the DNA methylation level of several target genes. In contrast to the above-mentioned assays, E-ice-COLD-PCR will also perform in the presence of frequently occurring heterogeneous DNA methylation patterns at the target sites. The presented protocol describes the development of an E-ice-COLD-PCR assay including assay design, optimization of E-ice-COLD-PCR conditions including annealing temperature, critical temperature and concentration of LNA blocker probe followed by Pyrosequencing analysis.
Collapse
Affiliation(s)
- Florence Mauger
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
41
|
van der Pol Y, Mouliere F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell 2019; 36:350-368. [PMID: 31614115 DOI: 10.1016/j.ccell.2019.09.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
Widespread adaptation of liquid biopsy for the early detection of cancer has yet to reach clinical utility. Circulating tumor DNA is commonly detected though the presence of genetic alterations, but only a minor fraction of tumor-derived cell-free DNA (cfDNA) fragments exhibit mutations. The cellular processes occurring in cancer development mark the chromatin. These epigenetic marks are reflected by modifications in the cfDNA methylation, fragment size, and structure. In this review, we describe how going beyond DNA sequence information alone, by analyzing cfDNA epigenetic and immune signatures, boosts the potential of liquid biopsy for the early detection of cancer.
Collapse
Affiliation(s)
- Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Lan VTT, Trang VL, Ngan NT, Son HV, Toan NL. An Internal Control for Evaluating Bisulfite Conversion in the Analysis of Short Stature Homeobox 2 Methylation in Lung Cancer. Asian Pac J Cancer Prev 2019; 20:2435-2443. [PMID: 31450918 PMCID: PMC6852808 DOI: 10.31557/apjcp.2019.20.8.2435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: The methylation status is considered as powerful diagnostic, prognostic, and predictive biomarkers. However, the limited DNA amount and conversion efficiency after bisulfite treatment are considerable hindrances in quantitative methylation analysis. In this study, we designed an artificial internal control (IC) system that contained the cytosine-free fragment (CFF) following CpG sequences of the SHOX2 promoter whose methylation status has been described as a valuable biomarker of lung cancer. Its performance in quantifying DNA recovery and bisulfite conversion efficiency as well as in detecting false-positive SHOX2 methylation was determined on samples from lung cancer patients. Material and Methods: The IC system is composed of two pConIC and pUnIC plasmids that both contain a cytosine-free (CF) sequence derived from the CFF and the CpG containing SHOX2 sequences. They are identical in sequence, except that in the ConIC insert, all cytosines have been converted into thymines. Thus, the ConIC can be used as calibrator of 100% bisulfite conversion efficiency, while the UnIC is the indicator in order to evaluate the DNA recovery, bisulfite conversion efficiency of the SHOX2 promoter sequence by quantitative real time PCR. Results: The copy number of the target sequences impacted on both DNA recovery rates and bisulfite conversion efficiency. An amount of 0.005 ng pUnIC (106 copies) showed recovery rate of 18%, similar to that of pConIC, and a bisulfite conversion efficiency of the SHOX2 reaching 98.7%. On the contrary, higher copy number of pUnIC showed incomplete conversion (<85%) and over recovery (~42%). Using this calibrator/indicator couple, we were able to detect false-positive SHOX2 methylation (3.77% instead of 0.03%) due to incomplete bisulfite conversion.Conclusion: Our results proposed a customizable internal control using the ConIC/UnIC as calibrator/indicator to quantify simultaneously and accurately the DNA recovery and bisulfite conversion efficiencies of individual sequence as well as whole genome in methylation assays, thus promoting the validation of standardized clinical DNA methylation biomarker values to progress toward clinical applications
Collapse
Affiliation(s)
| | - Vu Lan Trang
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), Paris, France
| | | | | | - Nguyen Linh Toan
- Department of Pathophysiology, Medical University, Ha Dong, Vietnam
| |
Collapse
|
43
|
Larsen LK, Lind GE, Guldberg P, Dahl C. DNA-Methylation-Based Detection of Urological Cancer in Urine: Overview of Biomarkers and Considerations on Biomarker Design, Source of DNA, and Detection Technologies. Int J Mol Sci 2019; 20:ijms20112657. [PMID: 31151158 PMCID: PMC6600406 DOI: 10.3390/ijms20112657] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Changes in DNA methylation have been causally linked with cancer and provide promising biomarkers for detection in biological fluids such as blood, urine, and saliva. The field has been fueled by genome-wide characterization of DNA methylation across cancer types as well as new technologies for sensitive detection of aberrantly methylated DNA molecules. For urological cancers, urine is in many situations the preferred "liquid biopsy" source because it contains exfoliated tumor cells and cell-free tumor DNA and can be obtained easily, noninvasively, and repeatedly. Here, we review recent advances made in the development of DNA-methylation-based biomarkers for detection of bladder, prostate, renal, and upper urinary tract cancers, with an emphasis on the performance characteristics of biomarkers in urine. For most biomarkers evaluated in independent studies, there was great variability in sensitivity and specificity. We discuss issues that impact the outcome of DNA-methylation-based detection of urological cancer and account for the great variability in performance, including genomic location of biomarkers, source of DNA, and technical issues related to the detection of rare aberrantly methylated DNA molecules. Finally, we discuss issues that remain to be addressed to fully exploit the potential of DNA-methylation-based biomarkers in the clinic, including the need for prospective trials and careful selection of control groups.
Collapse
Affiliation(s)
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, the Norwegian Radium Hospital, NO-0424 Oslo, Norway.
| | - Per Guldberg
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| | - Christina Dahl
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
44
|
Wang X, Kadarmideen HN. An Epigenome-Wide DNA Methylation Map of Testis in Pigs for Study of Complex Traits. Front Genet 2019; 10:405. [PMID: 31114612 PMCID: PMC6502962 DOI: 10.3389/fgene.2019.00405] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Epigenetic changes are important for understanding complex trait variation and inheritance in pigs that are also a valuable biomedical model for human health research. Testis is the main organ for reproduction and boar taint in pigs; however, there have been no studies to-date on adult pig testis epigenome. The main objective of this study was to establish a genome-wide DNA methylation map of pig testis that would help identify candidate epigenetic biomarkers and methylated genes for complex traits such as male reproduction, fertility or boar taint. Reduced Representation Bisulfite Sequencing (RRBS) was used to study methylation levels of cytosine in nine pig testis samples. The results showed that genome-wide methylation status of nine samples overlapped greatly and their variation among pigs were low. The methylation levels of promoter, exon, intron, cytosine and guanine dinucleotide (CpG) islands and CpG island shores regions were 0.15, 0.47, 0.55, 0.39, and 0.53, respectively. Cytosines binding to CpG islands showed different methylation levels between exon and intron regions. All methylation levels of CpG islands were lower than CpG island shores in different genic features. The distribution of 12,738 differentially methylated cytosines (DMCs) within CpG islands, CpG island shores and other regions was 36.86, 21.65, and 41.49%, respectively, and was 0.33, 1.71, 5.95, and 92.01% in promoter, exon, intron and intergenic regions, respectively. Methylation levels of DMCs in promoter, exon and intron regions were significantly different between CpG islands and CpG island shores (P < 0.05). A total of 898 genes with 2089 DMCs were enriched in 112 Gene Ontology (GO) terms. Fifteen methylated genes from our study were associated with fertility or boar taint traits. Our analysis revealed the methylation patterns in different genic features and CpG island regions of testis in pigs, and summarized several candidate genes associated with DMCs and the involved GO terms. These findings are helpful to understand the relationship between DNA methylation and genic CpG islands, to provide candidate epigenetic regions or biomarkers for pig production and welfare and for translational epigenomic studies that use pigs as an animal model for human research.
Collapse
Affiliation(s)
- Xiao Wang
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Haja N Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
45
|
Li L, Fu K, Zhou W, Snyder M. Applying circulating tumor DNA methylation in the diagnosis of lung cancer. PRECISION CLINICAL MEDICINE 2019; 2:45-56. [PMID: 35694699 PMCID: PMC8985769 DOI: 10.1093/pcmedi/pbz003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Low dose computed tomography (LDCT) is commonly used for disease screening, with identified candidate cancerous regions further diagnosed using tissue biopsy. However, existing techniques are all invasive and unavoidably cause multiple complications. In contrast, liquid biopsy is a noninvasive, ideal surrogate for tissue biopsy that can identify circulating tumor DNA (ctDNA) containing tumorigenic signatures. It has been successfully implemented to assist treatment decisions and disease outcome prediction. ctDNA methylation, a type of lipid biopsy that profiles critical epigenetic alterations occurring during carcinogenesis, has gained increasing attention. Indeed, aberrant ctDNA methylation occurs at early stages in lung malignancy and therefore can be used as an alternative for the early diagnosis of lung cancer. In this review, we give a brief synopsis of the biological basis and detecting techniques of ctDNA methylation. We then summarize the latest progress in use of ctDNA methylation as a diagnosis biomarker. Lastly, we discuss the major issues that limit application of ctDNA methylation in the clinic, and propose possible solutions to enhance its usage.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, China
| | - Kai Fu
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
46
|
Daniūnaitė K, Jarmalaitė S, Kriukienė E. Epigenomic technologies for deciphering circulating tumor DNA. Curr Opin Biotechnol 2019; 55:23-29. [DOI: 10.1016/j.copbio.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
|
47
|
Mauger F, Deleuze JF. Technological advances in studying epigenetics biomarkers of prognostic potential for clinical research. PROGNOSTIC EPIGENETICS 2019:45-83. [DOI: 10.1016/b978-0-12-814259-2.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Stewart CM, Tsui DWY. Circulating cell-free DNA for non-invasive cancer management. Cancer Genet 2018; 228-229:169-179. [PMID: 29625863 PMCID: PMC6598437 DOI: 10.1016/j.cancergen.2018.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/06/2023]
Abstract
Cell-free DNA (cfDNA) was first identified in human plasma in 1948 and is thought to be released from cells throughout the body into the circulatory system. In cancer, a portion of the cfDNA originates from tumour cells, referred to as circulating-tumour DNA (ctDNA), and can contain mutations corresponding to the patient's tumour, for instance specific TP53 alleles. Profiling of cfDNA has recently become an area of increasing clinical relevance in oncology, in particular due to advances in the sensitivity of molecular biology techniques and development of next generation sequencing technologies, as this allows tumour mutations to be identified and tracked non-invasively. This has opened up new possibilities for monitoring tumour evolution and acquisition of resistance, as well as for guiding treatment decisions when tumour biopsy tissue is insufficient or unavailable. In this review, we will discuss the biology of cell-free nucleic acids, methods of analysis, and the potential clinical uses of these techniques, as well as the on-going clinical development of ctDNA assays.
Collapse
Affiliation(s)
- Caitlin M Stewart
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana W Y Tsui
- Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
49
|
Andersen RF. Tumor-specific methylations in circulating cell-free DNA as clinically applicable markers with potential to substitute mutational analyses. Expert Rev Mol Diagn 2018; 18:1011-1019. [DOI: 10.1080/14737159.2018.1545576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Zavridou M, Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Lianidou E. Evaluation of Preanalytical Conditions and Implementation of Quality Control Steps for Reliable Gene Expression and DNA Methylation Analyses in Liquid Biopsies. Clin Chem 2018; 64:1522-1533. [DOI: 10.1373/clinchem.2018.292318] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 06/28/2018] [Indexed: 01/09/2023]
Abstract
Abstract
BACKGROUND
Liquid biopsy provides important information for the prognosis and treatment of cancer patients. In this study, we evaluated the effects of preanalytical conditions on gene expression and DNA methylation analyses in liquid biopsies.
METHODS
We tested the stability of circulating tumor cell (CTC) messenger RNA by spiking MCF-7 cells in healthy donor peripheral blood (PB) drawn into 6 collection-tube types with various storage conditions. CTCs were enriched based on epithelial cell adhesion molecule positivity, and RNA was isolated followed by cDNA synthesis. Gene expression was quantified using RT-quantitative PCR for CK19 and B2M. We evaluated the stability of DNA methylation in plasma under different storage conditions by spiking DNA isolated from MCF-7 cells in healthy donor plasma. Two commercially available sodium bisulfite (SB)-conversion kits were compared, in combination with whole genome amplification (WGA), to evaluate the stability of SB-converted DNA. SB-converted DNA samples were analyzed by real-time methylation-specific PCR (MSP) for ACTB, SOX17, and BRMS1. Quality control was assessed using Levey–Jennings graphs.
RESULTS
RNA-based analysis in CTCs is severely impeded by the preservatives used in many PB collection tubes (except for EDTA), as well as by time to analysis. Plasma and SB-converted DNA samples are stable and can be used safely for MSP when kept at −80 °C. Downstream WGA of SB-converted DNA compensated for the limited amount of available sample in liquid biopsies.
CONCLUSIONS
Standardization of preanalytical conditions and implementation of quality control steps is extremely important for reliable liquid biopsy analysis, and a prerequisite for routine applications in the clinic.
Collapse
Affiliation(s)
- Martha Zavridou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Sofia Mastoraki
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Eleni Tzanikou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Maria Chimonidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|