1
|
Li Y, Zhu Z, Camargo CA, Espinola JA, Hasegawa K, Liang L. Epigenomic and proteomic analyses provide insights into early-life immune regulation and asthma development in infants. Nat Commun 2025; 16:3556. [PMID: 40229234 PMCID: PMC11997043 DOI: 10.1038/s41467-025-57288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/17/2025] [Indexed: 04/16/2025] Open
Abstract
Infants with severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) face increased risks of respiratory diseases in childhood. We conduct epigenome-wide association studies in a multi-ethnic cohort of these infants. We identify 61 differentially methylated regions in infant blood (<1 year of age) associated with recurrent wheezing by age 3 (170 cases, 318 non-cases) and/or asthma by age 6 (112 cases, 394 non-cases). These differentially methylated regions are enriched in the enhancers of peripheral blood neutrophils. Several differentially methylated regions exhibit interaction with rhinovirus infection and/or specific blood cell types. In the same blood samples, circulating levels of 104 proteins correlate with the differentially methylated regions, and many proteins show phenotypic association with asthma. Through Mendelian randomization, we find causal evidence supporting a protective role of higher plasma ST2 (also known as IL1RL1) protein against asthma. DNA methylation is also associated with ST2 protein level in infant blood. Taken together, our findings suggest the contribution of DNA methylation to asthma development through regulating early-life systemic immune responses.
Collapse
Affiliation(s)
- Yijun Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Crine V, Papenberg G, Johansson J, Boraxbekk CJ, Wåhlin A, Lindenberger U, Lövdén M, Riklund K, Bäckman L, Nyberg L, Karalija N. Associations between inflammation and striatal dopamine D2-receptor availability in aging. J Neuroinflammation 2025; 22:24. [PMID: 39885603 PMCID: PMC11783874 DOI: 10.1186/s12974-025-03355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability. METHODS Analyses were performed in a sample of healthy adults > 60 years assessed at two measurement occasions separated by 5 years. At both occasions, DRD2 availability was estimated by 11C-raclopride PET, and white-matter lesions by MRI. Inflammation was assessed by two C-reactive protein-associated DNA methylation scores at study baseline. RESULTS Individuals with higher DNA methylation scores at baseline showed reduced striatal DRD2 availability. An interaction was found between DNA methylation scores and sex in relation to striatal DRD2 availability, such that associations were found in men but not in women. DNA methylation scores at study entrance were not significantly associated with 5-year striatal DRD2 decline rates. No significant association was found between DNA methylation scores and white-matter lesions, but higher scores as well as higher lesion burden were independently associated with reduced striatal DRD2 availability in men. CONCLUSIONS These findings suggest negative associations between one proxy of inflammation and DRD2 availability in older adults, selectively for men who had higher DNA methylation scores. Future studies should investigate other inflammatory markers in relation to dopamine integrity.
Collapse
Affiliation(s)
- Vanessa Crine
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen (ISMC), Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifeorgdivision Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany and London, UK
| | - Martin Lövdén
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden.
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
4
|
Lundin JI, Peters U, Hu Y, Ammous F, Avery CL, Benjamin EJ, Bis JC, Brody JA, Carlson C, Cushman M, Gignoux C, Guo X, Haessler J, Haiman C, Joehanes R, Kasela S, Kenny E, Lapalainien T, Levy D, Liu C, Liu Y, Loos RJ, Lu A, Matise T, North KE, Park SL, Ratliff SM, Reiner A, Rich SS, Rotter JI, Smith JA, Sotoodehnia N, Tracy R, Van den Berg D, Xu H, Ye T, Zhao W, Raffield LM, Kooperberg C. Methylation patterns associated with C-reactive protein in racially and ethnically diverse populations. Epigenetics 2024; 19:2333668. [PMID: 38571307 PMCID: PMC10996836 DOI: 10.1080/15592294.2024.2333668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.
Collapse
Affiliation(s)
- Jessica I. Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christy L. Avery
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emelia J. Benjamin
- Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston University School of Public Health, Boston, MA, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chris Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Chris Gignoux
- Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chris Haiman
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
| | | | - Eimear Kenny
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Ruth J.F. Loos
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ake Lu
- Department of Human Genetics, University of California LA, Los Angeles, CA, USA
| | - Tara Matise
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Kari E. North
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Sungshim L. Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, and Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Harborview Medical Center, Seattle, WA, USA
| | - Russell Tracy
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - David Van den Berg
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ting Ye
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - On Behalf of the PAGE Study
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston University School of Public Health, Boston, MA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
- Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
- New York Genome Center, New York, NY
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Human Genetics, University of California LA, Los Angeles, CA, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Epidemiology, School of Public Health, and Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Cardiovascular Health Research Unit, Harborview Medical Center, Seattle, WA, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Suleri A, Creasey N, Walton E, Muetzel R, Felix JF, Duijts L, Bergink V, Cecil CAM. Mapping prenatal predictors and neurobehavioral outcomes of an epigenetic marker of neonatal inflammation - A longitudinal population-based study. Brain Behav Immun 2024; 122:483-496. [PMID: 39209009 PMCID: PMC11784988 DOI: 10.1016/j.bbi.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND DNA methylation levels at specific sites can be used to proxy C-reactive protein (CRP) levels, providing a potentially more stable and accurate indicator of sustained inflammation and associated health risk. However, its use has been primarily limited to adults or preterm infants, and little is known about determinants for - or offspring outcomes of - elevated levels of this epigenetic proxy in cord blood. The aim of this study was to comprehensively map prenatal predictors and long-term neurobehavioral outcomes of neonatal inflammation, as assessed with an epigenetic proxy of inflammation in cord blood, in the general pediatric population. METHODS Our study was embedded in the prospective population-based Generation R Study (n = 2,394). We created a methylation profile score of CRP (MPS-CRP) in cord blood as a marker of neonatal inflammation and validated it against serum CRP levels in mothers during pregnancy, as well as offspring at birth and in childhood. We then examined (i) which factors (previously associated with sustained inflammation) explain variability in MPS-CRP at birth, including a wide range of prenatal lifestyle and clinical conditions, pro-inflammatory exposures, as well as child genetic liability to elevated CRP levels; and (ii) whether MPS-CRP at birth associates with child neurobehavioral outcomes, including global structural MRI and DTI measures (child mean age 10 and 14 years) as well as psychiatric symptoms over time (Child Behavioral Checklist, at mean age 1.5, 3, 6, 10 and 14 years). RESULTS MPS-CRP at birth was validated with serum CRP in cord blood (cut-off > 1 mg/L) (AUC = 0.72). Prenatal lifestyle pro-inflammatory factors explained a small part (i.e., < 5%) of the variance in the MPS-CRP at birth. No other prenatal predictor or the polygenic score of CRP in the child explained significant variance in the MPS-CRP at birth. The MPS-CRP at birth prospectively associated with a reduction in global fractional anisotropy over time on mainly a nominal threshold (β = -0.014, SE = 0.007, p = 0.032), as well as showing nominal associations with structural differences (amygdala [(β = 0.016, SE = 0.006, p = 0.010], cerebellum [(β = -0.007, SE = 0.003, p = 0.036]). However, no associations with child psychiatric symptoms were observed. CONCLUSION Prenatal exposure to lifestyle-related pro-inflammatory factors was the only prenatal predictor that accounted for some of the individual variability in MPS-CRP levels at birth. Further, while the MPS-CRP prospectively associated with white matter alterations over time, no associations were observed at the behavioral level. Thus, the relevance and potential utility of using epigenetic data as a marker of neonatal inflammation in the general population remain unclear. In the future, the use of epigenetic proxies for a wider range of immune markers may lend further insights into the relationship between neonatal inflammation and adverse neurodevelopment within the general pediatric population.
Collapse
Affiliation(s)
- Anna Suleri
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole Creasey
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Bui H, Keshawarz A, Wang M, Lee M, Ratliff SM, Lin L, Birditt KS, Faul JD, Peters A, Gieger C, Delerue T, Kardia SLR, Zhao W, Guo X, Yao J, Rotter JI, Li Y, Liu X, Liu D, Tavares JF, Pehlivan G, Breteler MMB, Karabegovic I, Ochoa-Rosales C, Voortman T, Ghanbari M, van Meurs JBJ, Nasr MK, Dörr M, Grabe HJ, London SJ, Teumer A, Waldenberger M, Weir DR, Smith JA, Levy D, Ma J, Liu C. Association analysis between an epigenetic alcohol risk score and blood pressure. Clin Epigenetics 2024; 16:149. [PMID: 39468603 PMCID: PMC11520477 DOI: 10.1186/s13148-024-01753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Epigenome-wide association studies have identified multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. This study aimed to test the hypothesis that an alcohol consumption epigenetic risk score (ERS) is associated with blood pressure (BP) traits. RESULTS We implemented an ERS based on a previously reported epigenetic signature of 144 alcohol-associated CpGs in meta-analysis of participants of European ancestry. We found a one-unit increment of ERS was associated with eleven drinks of alcohol consumed per day, on average, across several cohorts (p < 0.0001). We examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with BP levels, i.e., a one-unit increase in ERS was associated with 0.74 mm Hg (p = 0.002) higher SBP and 0.50 mm Hg (p = 0.0006) higher DBP, but not with HTN. Longitudinal analyses in FHS (n = 3260) and five independent external cohorts (n = 4021) showed that the baseline ERS was not associated with a change in BP over time or with incident HTN. CONCLUSIONS Our findings demonstrate that the ERS has potential clinical utility in assessing lifestyle factors related to cardiovascular risk, especially when self-reported behavioral data (e.g., alcohol consumption) are unreliable or unavailable.
Collapse
Affiliation(s)
- Helena Bui
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Amena Keshawarz
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA
| | - Mengyao Wang
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kira S Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Gieger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
| | - Yi Li
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA
| | - Xue Liu
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Juliana F Tavares
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Irma Karabegovic
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Centro de Vida Saludable de La Universidad de Concepción, Concepción, Chile
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mohamed Kamal Nasr
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Melanie Waldenberger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, Neuherberg, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA.
| | - Jiantao Ma
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Chunyu Liu
- Framingham Heart Study, 73 Mt. Wayte Avenue, Framingham, MA, 01702, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston University, 715 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
7
|
Wang Y, Zhang L, Lyu T, Cui L, Zhao S, Wang X, Wang M, Wang Y, Li Z. Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state. Neural Regen Res 2024; 19:2229-2239. [PMID: 38488557 PMCID: PMC11034580 DOI: 10.4103/1673-5374.392890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lu Cui
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shunying Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuechun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
8
|
Stoldt M, Ammous F, Lin L, Ratliff SM, Ware EB, Faul JD, Zhao W, Kardia SLR, Smith JA. DNA Methylation at C-Reactive Protein-Associated CpG Sites May Mediate the Pathway Between Educational Attainment and Cognition. J Gerontol A Biol Sci Med Sci 2024; 79:glae159. [PMID: 38896024 PMCID: PMC11250242 DOI: 10.1093/gerona/glae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 06/21/2024] Open
Abstract
Growing evidence has linked inflammatory processes to cognitive decline and dementia. This work examines whether an epigenetic marker of C-reactive protein (CRP), a common clinical inflammatory biomarker, may mediate the relationship between educational attainment and cognition. We first evaluated whether 53 previously reported CRP-associated DNA methylation sites (CpGs) are associated with CRP, both individually and aggregated into a methylation risk score (MRSCRP), in 3 298 participants from the Health and Retirement Study (HRS, mean age = 69.7 years). Forty-nine CpGs (92%) were associated with the natural logarithm of CRP in HRS after adjusting for age, sex, smoking, BMI, genetic ancestry, and white blood cell counts (p < .05), and each standard deviation increase in MRSCRP was associated with a 0.38 unit increase in lnCRP (p = 4.02E-99). In cross-sectional analysis, for each standard deviation increase in MRSCRP, total memory score and total cognitive score decreased, on average, by 0.28 words and 0.43 items, respectively (p < .001). Further, MRSCRP mediated 6.9% of the relationship between high school education and total memory score in a model adjusting for age, sex, and genetic ancestry (p < .05); this was attenuated to 2.4% with additional adjustment for marital status, APOE ε4 status, health behaviors, and comorbidities (p < .05). Thus, CRP-associated methylation may partially mediate the relationship between education and cognition at older ages. Further research is warranted to determine whether DNA methylation at these sites may improve current prediction models for cognitive impairment in older adults.
Collapse
Affiliation(s)
- Meike Stoldt
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Erin B Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Sánchez-Ortí JV, Correa-Ghisays P, Balanzá-Martínez V, Macías Saint-Gerons D, Berenguer-Pascual E, Romá-Mateo C, Victor VM, Forés-Martos J, San-Martin C, Selva-Vera G, Tabarés-Seisdedos R. Systemic inflammation, oxidative damage and neurocognition predict telomere length in a transdiagnostic sample stratified by global DNA methylation levels. Sci Rep 2024; 14:13159. [PMID: 38849401 PMCID: PMC11161596 DOI: 10.1038/s41598-024-62980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Epigenetic mechanisms contribute to the maintenance of both type 2 diabetes mellitus (T2DM) and psychiatric disorders. Emerging evidence suggests that molecular pathways and neurocognitive performance regulate epigenetic dynamics in these disorders. The current combined and transdiagnostic study investigated whether inflammatory, oxidative stress, adhesion molecule, neurocognitive and functional performance are significant predictors of telomere dynamics in a sample stratified by global DNA methylation levels. Peripheral blood inflammation, oxidative stress and adhesion molecule biomarkers and neurocognitive function were assessed twice over a 1-year period in 80 individuals, including 16 with schizophrenia (SZ), 16 with bipolar disorder (BD), 16 with major depressive disorder (MDD), 15 with T2DM, and 17 healthy controls (HCs). Leukocyte telomere length (LTL) was measured by qRT-PCR using deoxyribonucleic acid (DNA) extracted from peripheral blood samples. A posteriori, individuals were classified based on their global methylation score (GMS) at baseline into two groups: the below-average methylation (BM) and above-average methylation (AM) groups. Hierarchical and k-means clustering methods, mixed one-way analysis of variance and linear regression analyses were performed. Overall, the BM group showed a significantly higher leukocyte telomere length (LTL) than the AM group at both time points (p = 0.02; η2p = 0.06). Moreover, the BM group had significantly lower levels of tumor necrosis factor alpha (TNF-α) (p = 0.03; η2p = 0.06) and C-reactive protein (CRP) (p = 0.03; η2p = 0.06) than the AM group at the 1-year follow-up. Across all participants, the regression models showed that oxidative stress (reactive oxygen species [ROS]) (p = 0.04) and global cognitive score [GCS] (p = 0.02) were significantly negatively associated with LTL, whereas inflammatory (TNF-α) (p = 0.04), adhesion molecule biomarkers (inter cellular adhesion molecule [ICAM]) (p = 0.009), and intelligence quotient [IQ] (p = 0.03) were significantly positively associated with LTL. Moreover, the model predictive power was increased when tested in both groups separately, explaining 15.8% and 28.1% of the LTL variance at the 1-year follow-up for the AM and BM groups, respectively. Heterogeneous DNA methylation in individuals with T2DM and severe mental disorders seems to support the hypothesis that epigenetic dysregulation occurs in a transdiagnostic manner. Our results may help to elucidate the interplay between epigenetics, molecular processes and neurocognitive function in these disorders. DNA methylation and LTL are potential therapeutic targets for transdiagnostic interventions to decrease the risk of comorbidities.
Collapse
Affiliation(s)
- Joan Vicent Sánchez-Ortí
- INCLIVA - Health Research Institute, Valencia, Spain
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Faculty of Psychology, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain
| | - Patricia Correa-Ghisays
- INCLIVA - Health Research Institute, Valencia, Spain
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Faculty of Psychology, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain
| | - Vicent Balanzá-Martínez
- INCLIVA - Health Research Institute, Valencia, Spain.
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain.
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain.
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain.
- VALSME (VALencia Salut Mental i Estigma), University of Valencia, Valencia, Spain.
| | - Diego Macías Saint-Gerons
- INCLIVA - Health Research Institute, Valencia, Spain
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain
| | | | - Carlos Romá-Mateo
- INCLIVA - Health Research Institute, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Health Institute, Carlos III, Madrid, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Víctor M Victor
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Service of Endocrinology and Nutrition, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jaume Forés-Martos
- INCLIVA - Health Research Institute, Valencia, Spain
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain
| | - Constanza San-Martin
- INCLIVA - Health Research Institute, Valencia, Spain
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Gabriel Selva-Vera
- INCLIVA - Health Research Institute, Valencia, Spain
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | - Rafael Tabarés-Seisdedos
- INCLIVA - Health Research Institute, Valencia, Spain.
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain.
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain.
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
10
|
Bui H, Keshawarz A, Wang M, Lee M, Ratliff SM, Lin L, Birditt KS, Faul JD, Peters A, Gieger C, Delerue T, Kardia SLR, Zhao W, Guo X, Yao J, Rotter JI, Li Y, Liu X, Liu D, Tavares JF, Pehlivan G, Breteler MMB, Karabegovic I, Ochoa-Rosales C, Voortman T, Ghanbari M, van Meurs JBJ, Nasr MK, Dörr M, Grabe HJ, London SJ, Teumer A, Waldenberger M, Weir DR, Smith JA, Levy D, Ma J, Liu C. Association analysis between an epigenetic risk score and blood pressure. RESEARCH SQUARE 2024:rs.3.rs-4243866. [PMID: 38699335 PMCID: PMC11065078 DOI: 10.21203/rs.3.rs-4243866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.
Collapse
Affiliation(s)
| | | | | | - Mikyeong Lee
- National Institute of Environmental Health Sciences
| | | | | | | | | | - Annette Peters
- Helmholtz Munich, German Research Center for Environmental Health
| | - Christian Gieger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
| | - Thomas Delerue
- Helmholtz Munich, German Research Center for Environmental Health
| | | | | | - Xiuqing Guo
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | - Jie Yao
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | - Jerome I Rotter
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | - Yi Li
- Boston University School of Public Health
| | - Xue Liu
- Boston University School of Public Health
| | - Dan Liu
- German Center for Neurodegenerative Diseases
| | | | | | | | | | | | | | | | | | | | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald
| | | | | | | | - Melanie Waldenberger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance
| | | | | | | | | | | |
Collapse
|
11
|
Bui H, Keshawarz A, Wang M, Lee M, Ratliff SM, Lin L, Birditt KS, Faul JD, Peters A, Gieger C, Delerue T, Kardia SLR, Zhao W, Guo X, Yao J, Rotter JI, Li Y, Liu X, Liu D, Tavares JF, Pehlivan G, Breteler MM, Karabegovic I, Ochoa-Rosales C, Voortman T, Ghanbari M, van Meurs JB, Nasr MK, Dörr M, Grabe HJ, London SJ, Teumer A, Waldenberger M, Weir DR, Smith JA, Levy D, Ma J, Liu C. Association analysis between an epigenetic alcohol risk score and blood pressure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.29.24303545. [PMID: 38464320 PMCID: PMC10925472 DOI: 10.1101/2024.02.29.24303545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.
Collapse
Affiliation(s)
- Helena Bui
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Amena Keshawarz
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Mengyao Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Mikyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Kira S. Birditt
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, German
- Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Gieger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Bavaria, Germany
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Bavaria, Germany
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Xiuqing Guo
- The Institute for Translational Genomics and Populations, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jie Yao
- The Institute for Translational Genomics and Populations, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Populations, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yi Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Xue Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Juliana F. Tavares
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M.B. Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Irma Karabegovic
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Centro de Vida Saludable de la Universidad de Concepción, Concepción, Chile
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Joyce B.J. van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mohamed Kamal Nasr
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, site Greifswald, Germany
| | - Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Melanie Waldenberger
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Munich, German Research Center for Environmental Health, Bavaria, Germany
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Jiantao Ma
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chunyu Liu
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| |
Collapse
|
12
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
13
|
Valizadeh P, Momtazmanesh S, Plazzi G, Rezaei N. Connecting the dots: An updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med 2024; 113:378-396. [PMID: 38128432 DOI: 10.1016/j.sleep.2023.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is a chronic disorder characterized by pathological daytime sleepiness and cataplexy due to the disappearance of orexin immunoreactive neurons in the hypothalamus. Genetic and environmental factors point towards a potential role for inflammation and autoimmunity in the pathogenesis of the disease. This study aims to comprehensively review the latest evidence on the autoinflammatory mechanisms and immunomodulatory treatments aimed at suspected autoimmune pathways in NT1. METHODS Recent relevant literature in the field of narcolepsy, its autoimmune hypothesis, and purposed immunomodulatory treatments were reviewed. RESULTS Narcolepsy is strongly linked to specific HLA alleles and T-cell receptor polymorphisms. Furthermore, animal studies and autopsies have found infiltration of T cells in the hypothalamus, supporting T cell-mediated immunity. However, the role of autoantibodies has yet to be definitively established. Increased risk of NT1 after H1N1 infection and vaccination supports the autoimmune hypothesis, and the potential role of coronavirus disease 2019 and vaccination in triggering autoimmune neurodegeneration is a recent finding. Alterations in cytokine levels, gut microbiota, and microglial activation indicate a potential role for inflammation in the disease's development. Reports of using immunotherapies in NT1 patients are limited and inconsistent. Early treatment with IVIg, corticosteroids, plasmapheresis, and monoclonal antibodies has seldomly shown some potential benefits in some studies. CONCLUSION The current body of literature supports that narcolepsy is an autoimmune disorder most likely caused by T-cell involvement. However, the potential for immunomodulatory treatments to reverse the autoinflammatory process remains understudied. Further clinical controlled trials may provide valuable insights into this area.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic, and Neural Sciences, Università Degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Harbs J, Rinaldi S, Keski-Rahkonen P, Liu X, Palmqvist R, Van Guelpen B, Harlid S. An epigenome-wide analysis of sex hormone levels and DNA methylation in male blood samples. Epigenetics 2023; 18:2196759. [PMID: 36994855 PMCID: PMC10072117 DOI: 10.1080/15592294.2023.2196759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Endogenous sex hormones and DNA methylation both play important roles in various diseases. However, their interplay is largely unknown. A deeper understanding of their interrelationships could provide new insights into the pathology of disease development. We, therefore, investigated associations between circulating sex hormones, sex hormone binding globulin (SHBG), and DNA methylation in blood, using samples from 77 men (65 with repeated samples), from the population-based Northern Sweden Health and Disease Study (NSHDS). DNA methylation was measured in buffy coat using the Infinium Methylation EPIC BeadChip (Illumina). Sex hormone (oestradiol, oestrone, testosterone, androstenedione, dehydroepiandrosterone, and progesterone) and SHBG concentrations were measured in plasma using a high-performance liquid chromatography tandem mass spectrometry (LC/MS-MS) method and an enzyme-linked immunoassay, respectively. Associations between sex hormones, SHBG, and DNA methylation were estimated using both linear regression and mixed-effects models. Additionally, we used the comb-p method to identify differentially methylated regions based on nearby P values. We identified one novel CpG site (cg14319657), at which DNA methylation was associated with dehydroepiandrosterone, surpassing a genome-wide significance level. In addition, more than 40 differentially methylated regions were associated with levels of sex hormones and SHBG and several of these mapped to genes involved in hormone-related diseases. Our findings support a relationship between circulating sex hormones and DNA methylation and suggest that further investigation is warranted, both for validation, further exploration and to gain a deeper understanding of the mechanisms and potential consequences for health and disease.
Collapse
Affiliation(s)
- Justin Harbs
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Sabina Rinaldi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Xijia Liu
- Department of Statistics, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Deparment of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Yan L, Li W, Chen F, Wang J, Chen J, Chen Y, Ye W. Inflammation as a Mediator of Microbiome Dysbiosis-Associated DNA Methylation Changes in Gastric Premalignant Lesions. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:496-501. [PMID: 37881317 PMCID: PMC10593640 DOI: 10.1007/s43657-023-00118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 10/27/2023]
Abstract
Evidence for the influence of chronic inflammation induced by microbial dysbiosis on aberrant DNA methylation supports a plausible connexion between disordered microbiota and precancerous lesions of gastric cancer (PLGC). Here, a comprehensive study including multi-omics data was performed to estimate the relationships amongst the gastric microbiome, inflammatory proteins and DNA methylation alterations and their roles in PLGC development. The results demonstrated that gastric dysbacteriosis increased the risk of PLGC and DNA methylation alterations in related tumour suppressor genes. Seven inflammatory biomarkers were identified for antrum and corpus tissues, respectively, amongst which the expression levels of several biomarkers were significantly correlated with the microbial dysbiosis index (MDI) and methylation status of specific tumour suppressor genes. Notably, mediation analysis revealed that microbial dysbiosis partially contributed to DNA methylation changes in the stomach via the inflammatory cytokines C-C motif chemokine 20 (CCL20) and tumour necrosis factor receptor superfamily member 9 (TNFRSF9). Overall, these results may provide new insights into the mechanisms that might link the gastric microbiome to PLGC. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00118-w.
Collapse
Affiliation(s)
- Lingjun Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122 China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122 China
| | - Wanxin Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122 China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122 China
| | - Fenglin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, 350001 China
| | - Junzhuo Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122 China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122 China
| | - Jianshun Chen
- Changle Center for Disease Prevention and Control, Fuzhou, 350200 China
| | - Ying Chen
- Changle Institute for Cancer Research, Fuzhou, 350200 China
| | - Weimin Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122 China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122 China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
| |
Collapse
|
16
|
Keshawarz A, Bui H, Joehanes R, Ma J, Liu C, Huan T, Hwang SJ, Tejada B, Sooda M, Courchesne P, Munson PJ, Demirkale CY, Yao C, Heard-Costa NL, Pitsillides AN, Lin H, Liu CT, Wang Y, Peloso GM, Lundin J, Haessler J, Du Z, Cho M, Hersh CP, Castaldi P, Raffield LM, Wen J, Li Y, Reiner AP, Feolo M, Sharopova N, Vasan RS, DeMeo DL, Carson AP, Kooperberg C, Levy D. Expression quantitative trait methylation analysis elucidates gene regulatory effects of DNA methylation: the Framingham Heart Study. Sci Rep 2023; 13:12952. [PMID: 37563237 PMCID: PMC10415314 DOI: 10.1038/s41598-023-39936-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Expression quantitative trait methylation (eQTM) analysis identifies DNA CpG sites at which methylation is associated with gene expression. The present study describes an eQTM resource of CpG-transcript pairs derived from whole blood DNA methylation and RNA sequencing gene expression data in 2115 Framingham Heart Study participants. We identified 70,047 significant cis CpG-transcript pairs at p < 1E-7 where the top most significant eGenes (i.e., gene transcripts associated with a CpG) were enriched in biological pathways related to cell signaling, and for 1208 clinical traits (enrichment false discovery rate [FDR] ≤ 0.05). We also identified 246,667 significant trans CpG-transcript pairs at p < 1E-14 where the top most significant eGenes were enriched in biological pathways related to activation of the immune response, and for 1191 clinical traits (enrichment FDR ≤ 0.05). Independent and external replication of the top 1000 significant cis and trans CpG-transcript pairs was completed in the Women's Health Initiative and Jackson Heart Study cohorts. Using significant cis CpG-transcript pairs, we identified significant mediation of the association between CpG sites and cardiometabolic traits through gene expression and identified shared genetic regulation between CpGs and transcripts associated with cardiometabolic traits. In conclusion, we developed a robust and powerful resource of whole blood eQTM CpG-transcript pairs that can help inform future functional studies that seek to understand the molecular basis of disease.
Collapse
Affiliation(s)
- Amena Keshawarz
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Helena Bui
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roby Joehanes
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiantao Ma
- Framingham Heart Study, Framingham, MA, USA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chunyu Liu
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, MA, USA
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Tejada
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meera Sooda
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Courchesne
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Munson
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cumhur Y Demirkale
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
| | - Nancy L Heard-Costa
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Achilleas N Pitsillides
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Honghuang Lin
- Framingham Heart Study, Framingham, MA, USA
- Division of Clinical Informatics, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yuxuan Wang
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gina M Peloso
- Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | | | - Zhaohui Du
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- General Medicine and Primary Care, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mike Feolo
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Nataliya Sharopova
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA.
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023; 20:739-776. [PMID: 37198402 PMCID: PMC10189238 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
18
|
Conole ELS, Vaher K, Cabez MB, Sullivan G, Stevenson AJ, Hall J, Murphy L, Thrippleton MJ, Quigley AJ, Bastin ME, Miron VE, Whalley HC, Marioni RE, Boardman JP, Cox SR. Immuno-epigenetic signature derived in saliva associates with the encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun 2023; 110:322-338. [PMID: 36948324 DOI: 10.1016/j.bbi.2023.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/12/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Preterm birth is closely associated with a phenotype that includes brain dysmaturation and neurocognitive impairment, commonly termed Encephalopathy of Prematurity (EoP), of which systemic inflammation is considered a key driver. DNA methylation (DNAm) signatures of inflammation from peripheral blood associate with poor brain imaging outcomes in adult cohorts. However, the robustness of DNAm inflammatory scores in infancy, their relation to comorbidities of preterm birth characterised by inflammation, neonatal neuroimaging metrics of EoP, and saliva cross-tissue applicability are unknown. METHODS Using salivary DNAm from 258 neonates (n = 155 preterm, gestational age at birth 23.28 - 34.84 weeks, n = 103 term, gestational age at birth 37.00 - 42.14 weeks), we investigated the impact of a DNAm surrogate for C-reactive protein (DNAm CRP) on brain structure and other clinically defined inflammatory exposures. We assessed i) if DNAm CRP estimates varied between preterm infants at term equivalent age and term infants, ii) how DNAm CRP related to different types of inflammatory exposure (maternal, fetal and postnatal) and iii) whether elevated DNAm CRP associated with poorer measures of neonatal brain volume and white matter connectivity. RESULTS Higher DNAm CRP was linked to preterm status (-0.0107 ± 0.0008, compared with -0.0118 ± 0.0006 among term infants; p < 0.001), as well as perinatal inflammatory diseases, including histologic chorioamnionitis, sepsis, bronchopulmonary dysplasia, and necrotising enterocolitis (OR range |2.00 | to |4.71|, p < 0.01). Preterm infants with higher DNAm CRP scores had lower brain volume in deep grey matter, white matter, and hippocampi and amygdalae (β range |0.185| to |0.218|). No such associations were observed for term infants. Association magnitudes were largest for measures of white matter microstructure among preterms, where elevated epigenetic inflammation associated with poorer global measures of white matter integrity (β range |0.206| to |0.371|), independent of other confounding exposures. CONCLUSIONS Inflammatory-related DNAm captures the allostatic load of inflammatory burden in preterm infants. Such DNAm measures complement biological and clinical metrics when investigating the determinants of neurodevelopmental differences.
Collapse
Affiliation(s)
- Eleanor L S Conole
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - Kadi Vaher
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Manuel Blesa Cabez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jill Hall
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alan J Quigley
- Imaging Department, Royal Hospital for Children and Young People, Edinburgh, EH16 4TJ, UK
| | - Mark E Bastin
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - James P Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
19
|
Scholl JL, King ZR, Pearson K, Kallsen NA, Ehli EA, Fercho KA, Brown-Rice KA, Forster GL, Baugh LA. Methylation of genes and regulation of inflammatory processes on emotional response in young adults with alcoholic parents. Brain Behav Immun Health 2022; 25:100505. [PMID: 36110145 PMCID: PMC9468507 DOI: 10.1016/j.bbih.2022.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022] Open
Abstract
Many Americans are adult children of an alcoholic parent (ACoA), which can confer an increased risk of trauma and hazardous alcohol use, as well as heritable and environmental genetic influence. Psychological health and related neural activity can be influenced by inflammation responses, but it is not clear how these factors interact regarding risk or resilience to hazardous alcohol use. The goals of this study were to better understand the relationships between current alcohol use and inflammation, how these are modified by single nucleotide polymorphisms (SNPs) and/or epigenetic modifications of inflammation-associated genes; and how these alter neural reactivity to emotionally-salient stimuli. To do so, ACoA participants were dichotomized as resilient (not engaged in hazardous alcohol use) or vulnerable (currently engaged in hazardous alcohol use). Measures of blood-oxygen-level-dependent (BOLD) activity within regions of interest (ROIs), SNPs and DNA methylation of specific inflammation regulatory genes, and biological markers of inflammation were compared between these groups. Vulnerable ACoAs exhibited higher plasma C-reactive protein (CRP) and greater BOLD activity in the right hippocampus and ventral anterior cingulate cortex in response to emotional cues as well as reduced methylation of CRP and glucocorticoid-related genes. Path analysis revealed significant relationships between alcohol use, SNPs, DNA methylation of inflammatory-related genes, CRP levels, and BOLD activity to emotional stimuli. Taken together, these findings suggest a complex association related to hazardous alcohol use in ACoAs that may predict current inflammation and neural reactivity to emotional stimuli. A better understanding of these associations could direct the future of individual treatment options.
Collapse
Affiliation(s)
- Jamie L. Scholl
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, USA
| | - Zach R. King
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, USA
| | - Kami Pearson
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, USA
| | | | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, USA
| | | | - Kathleen A. Brown-Rice
- Department of Counselor Education, College of Education, Sam Houston State University, Huntsville, TX, USA
| | - Gina L. Forster
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Lee A. Baugh
- Basic Biomedical Sciences & Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, USA
| |
Collapse
|
20
|
Bain CR, Myles PS, Taylor R, Trahair H, Lee YP, Croft L, Peyton PJ, Painter T, Chan MTV, Wallace S, Corcoran T, Shaw AD, Paul E, Ziemann M, Bozaoglu K. Methylomic and transcriptomic characterization of postoperative systemic inflammatory dysregulation. Transl Res 2022; 247:79-98. [PMID: 35470009 DOI: 10.1016/j.trsl.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
In this study, we define and validate a state of postoperative systemic inflammatory dysregulation (PSID) based on postoperative phenotypic extremes of plasma C-reactive protein concentration following major abdominal surgery. PSID manifested clinically with significantly higher rates of sepsis, complications, longer hospital stays and poorer short, and long-term outcomes. We hypothesized that PSID will be associated with, and potentially predicted by, altered patterns of genome-wide peripheral blood mononuclear cell differential DNA methylation and gene expression. We identified altered DNA methylation and differential gene expression in specific immune and metabolic pathways during PSID. Our findings suggest that dysregulation results in, or from, dramatic changes in differential DNA methylation and highlights potential targets for early detection and treatment. The combination of altered DNA methylation and gene expression suggests that dysregulation is mediated at multiple levels within specific gene sets and hence, nonspecific anti-inflammatory treatments such as corticosteroids alone are unlikely to represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Chris R Bain
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.
| | - Paul S Myles
- Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rachael Taylor
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hugh Trahair
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yin Peng Lee
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Larry Croft
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Philip J Peyton
- Department of Anesthesia, The Austin Hospital and Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Painter
- Department of Anesthesia, Royal Adelaide Hospital, Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese Universtiy of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sophie Wallace
- Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Tomás Corcoran
- Department of Anesthesia and Pain Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Andrew D Shaw
- Department of Anesthesiology and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina; Department of Intensive Care and Resuscitation, Cleveland Clinic, Cleveland, Ohio
| | - Eldho Paul
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Mark Ziemann
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia; Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Kiymet Bozaoglu
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Lee M, Huan T, McCartney DL, Chittoor G, de Vries M, Lahousse L, Nguyen JN, Brody JA, Castillo-Fernandez J, Terzikhan N, Qi C, Joehanes R, Min JL, Smilnak GJ, Shaw JR, Yang CX, Colicino E, Hoang TT, Bermingham ML, Xu H, Justice AE, Xu CJ, Rich SS, Cox SR, Vonk JM, Prokić I, Sotoodehnia N, Tsai PC, Schwartz JD, Leung JM, Sikdar S, Walker RM, Harris SE, van der Plaat DA, Van Den Berg DJ, Bartz TM, Spector TD, Vokonas PS, Marioni RE, Taylor AM, Liu Y, Barr RG, Lange LA, Baccarelli AA, Obeidat M, Fornage M, Wang T, Ward JM, Motsinger-Reif AA, Hemani G, Koppelman GH, Bell JT, Gharib SA, Brusselle G, Boezen HM, North KE, Levy D, Evans KL, Dupuis J, Breeze CE, Manichaikul A, London SJ. Pulmonary Function and Blood DNA Methylation: A Multiancestry Epigenome-Wide Association Meta-analysis. Am J Respir Crit Care Med 2022; 206:321-336. [PMID: 35536696 PMCID: PMC9890261 DOI: 10.1164/rccm.202108-1907oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.
Collapse
Affiliation(s)
| | - Tianxiao Huan
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services, Framingham, Massachusetts
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer and
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Maaike de Vries
- Department of Epidemiology
- Groningen Research Institute for Asthma and COPD, and
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, Ghent, Belgium
- Department of Epidemiology and
| | - Jennifer N. Nguyen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine
| | - Juan Castillo-Fernandez
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | | | - Cancan Qi
- Groningen Research Institute for Asthma and COPD, and
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roby Joehanes
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services, Framingham, Massachusetts
| | - Josine L. Min
- Medical Research Council Integrative Epidemiology Unit and
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | | | - Jessica R. Shaw
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, and
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Anne E. Justice
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Research Group Bioinformatics and Computational Genomics, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Simon R. Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Judith M. Vonk
- Department of Epidemiology
- Groningen Research Institute for Asthma and COPD, and
| | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Epidemiology
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Joel D. Schwartz
- Department of Environmental Health and
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
- Channing Laboratory, Harvard Medical School, Boston, Massachusetts
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sinjini Sikdar
- Epidemiology Branch
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia
| | - Rosie M. Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer and
| | - Sarah E. Harris
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Diana A. van der Plaat
- Department of Epidemiology
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David J. Van Den Berg
- Department of Preventive Medicine and
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Department of Biostatistics
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Pantel S. Vokonas
- Veterans Affairs Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston, Massachusetts
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer and
| | - Adele M. Taylor
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University Medical Center, New York, New York
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, and
- Department of Epidemiology, University of Colorado, Aurora, Colorado
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Ma’en Obeidat
- Centre for Heart Lung Innovation, The University of British Columbia, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, and
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, Texas
| | | | | | - Alison A. Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit and
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gerard H. Koppelman
- Groningen Research Institute for Asthma and COPD, and
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Sina A. Gharib
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine
- Computational Medicine Core, Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| | - Guy Brusselle
- Department of Epidemiology and
- Department of Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; and
| | - H. Marike Boezen
- Department of Epidemiology
- Groningen Research Institute for Asthma and COPD, and
| | - Kari E. North
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services, Framingham, Massachusetts
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer and
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | | | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | |
Collapse
|
22
|
Zhao N, Ruan M, Koestler DC, Lu J, Salas LA, Kelsey KT, Platz EA, Michaud DS. Methylation-derived inflammatory measures and lung cancer risk and survival. Clin Epigenetics 2021; 13:222. [PMID: 34915912 PMCID: PMC8680033 DOI: 10.1186/s13148-021-01214-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Examining immunity-related DNA methylation alterations in blood could help elucidate the role of the immune response in lung cancer etiology and aid in discovering factors that are key to lung cancer development and progression. In a nested, matched case-control study, we estimated methylation-derived NLR (mdNLR) and quantified DNA methylation levels at loci previously linked with circulating concentrations of C-reactive protein (CRP). We examined associations between these measures and lung cancer risk and survival. RESULTS Using conditional logistic regression and further adjusting for BMI, batch effects, and a smoking-based methylation score, we observed a 47% increased risk of non-small cell lung cancer (NSCLC) for one standard deviation (SD) increase in mdNLR (n = 150 pairs; OR: 1.47, 95% CI 1.08, 2.02). Using a similar model, the estimated CRP Scores were inversely associated with risk of NSCLC (e.g., Score 1 OR: 0.57, 95% CI: 0.40, 0.81). Using Cox proportional hazards models adjusting for age, sex, smoking status, methylation-predicted pack-years, BMI, batch effect, and stage, we observed a 28% increased risk of dying from lung cancer (n = 145 deaths in 205 cases; HR: 1.28, 95% CI: 1.09, 1.50) for one SD increase in mdNLR. CONCLUSIONS Our study demonstrates that immunity status measured with DNA methylation markers is associated with lung cancer a decade or more prior to cancer diagnosis. A better understanding of immunity-associated methylation-based biomarkers in lung cancer development could provide insight into critical pathways.
Collapse
Affiliation(s)
- Naisi Zhao
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Mengyuan Ruan
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, Medical Center, University of Kansas, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dominique S Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Tufts University, 136 Harrison Avenue, Boston, MA, 02111, USA.
- Department of Epidemiology, Brown University, Providence, RI, USA.
| |
Collapse
|
23
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Campisi M, Liviero F, Maestrelli P, Guarnieri G, Pavanello S. DNA Methylation-Based Age Prediction and Telomere Length Reveal an Accelerated Aging in Induced Sputum Cells Compared to Blood Leukocytes: A Pilot Study in COPD Patients. Front Med (Lausanne) 2021; 8:690312. [PMID: 34368190 PMCID: PMC8342924 DOI: 10.3389/fmed.2021.690312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is the predominant risk factor for most degenerative diseases, including chronic obstructive pulmonary disease (COPD). This process is however very heterogeneous. Defining the biological aging of individual tissues may contribute to better assess this risky process. In this study, we examined the biological age of induced sputum (IS) cells, and peripheral blood leukocytes in the same subject, and compared these to assess whether biological aging of blood leukocytes mirrors that of IS cells. Biological aging was assessed in 18 COPD patients (72.4 ± 7.7 years; 50% males). We explored mitotic and non-mitotic aging pathways, using telomere length (TL) and DNA methylation-based age prediction (DNAmAge) and age acceleration (AgeAcc) (i.e., difference between DNAmAge and chronological age). Data on demographics, life style and occupational exposure, lung function, and clinical and blood parameters were collected. DNAmAge (67.4 ± 5.80 vs. 61.6 ± 5.40 years; p = 0.0003), AgeAcc (-4.5 ± 5.02 vs. -10.8 ± 3.50 years; p = 0.0003), and TL attrition (1.05 ± 0.35 vs. 1.48 ± 0.21 T/S; p = 0.0341) are higher in IS cells than in blood leukocytes in the same patients. Blood leukocytes DNAmAge (r = 0.927245; p = 0.0026) and AgeAcc (r = 0.916445; p = 0.0037), but not TL, highly correlate with that of IS cells. Multiple regression analysis shows that both blood leukocytes DNAmAge and AgeAcc decrease (i.e., younger) in patients with FEV1% enhancement (p = 0.0254 and p = 0.0296) and combined inhaled corticosteroid (ICS) therapy (p = 0.0494 and p = 0.0553). In conclusion, new findings from our work reveal a differential aging in the context of COPD, by a direct quantitative comparison of cell aging in the airway with that in the more accessible peripheral blood leukocytes, providing additional knowledge which could offer a potential translation into the disease management.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Filippo Liviero
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Piero Maestrelli
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Gabriella Guarnieri
- Respiratory Pathophysiology Unit, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
25
|
You YA, Kwon EJ, Hwang HS, Choi SJ, Choi SK, Kim YJ. Elevated methylation of the vault RNA2-1 promoter in maternal blood is associated with preterm birth. BMC Genomics 2021; 22:528. [PMID: 34246240 PMCID: PMC8272312 DOI: 10.1186/s12864-021-07865-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Preterm birth, defined as parturition before 37 completed weeks of gestation, is associated with an increased risk of neonatal complications and death, as well as poor health and disease later in life. Epigenetics could contribute to the mechanism underlying preterm birth. Results Genome-wide DNA methylation analysis of whole blood cells from 10 women (5 term and 5 preterm deliveries) was performed using an Illumina Infinium HumanMethylation450 BeadChips array. We identified 1,581 differentially methylated CpG sites in promoter regions between term and preterm birth. Although the differences were not significant after correcting for multiple tests, seven CpGs on the genomically imprinted vault RNA2-1 (VTRNA2-1; also known as non-coding RNA, nc886 or miR-886) showed the largest differences (range: 26–39 %). Pyrosequencing verification was performed with blood samples from pregnant women recruited additionally (39 term and 43 preterm deliveries). In total, 28 (34.1 %) samples showed hypomethylation of the VTRNA2-1 promoter (< 13 % methylation), while 54 (65.9 %) samples showed elevated methylation levels between 30 and 60 %. Elevated methylation of VTRNA2-1 promoter was associated with an increased risk of preterm birth after adjusting for maternal age, season of delivery, parity and white blood cell count. The mRNA expression of VTRNA2-1 was 0.51-fold lower in women with preterm deliveries (n = 20) compared with women with term deliveries (n = 20). Conclusions VTRNA2-1 is a noncoding transcript to environmentally responsive epialleles. Our results suggest that elevated methylation of the VTRNA2-1 promoter may result in increased risk of PTB caused by the pro-inflammatory cytokines. Further studies are needed to confirm the association of VTRNA2-1 methylation with preterm birth in a large population, and to elucidate the underlying mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07865-y.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University Medical School, 07985, Seoul, Korea
| | - Eun Jin Kwon
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 03760, Seoul, Korea
| | - Han-Sung Hwang
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, 143-729, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710, Seoul, Korea
| | - Sae Kyung Choi
- College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, 137-040, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University Medical School, 07985, Seoul, Korea. .,Graduate Program in System Health Science and Engineering, Ewha Womans University, 03760, Seoul, Korea. .,Department of Obstetrics and Gynecology, Ewha Womans University Mok Dong Hospital, 158-051, Seoul, South Korea.
| |
Collapse
|
26
|
Harlid S, Harbs J, Myte R, Brunius C, Gunter MJ, Palmqvist R, Liu X, Van Guelpen B. A two-tiered targeted proteomics approach to identify pre-diagnostic biomarkers of colorectal cancer risk. Sci Rep 2021; 11:5151. [PMID: 33664295 PMCID: PMC7933352 DOI: 10.1038/s41598-021-83968-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer prognosis is dependent on stage, and measures to improve early detection are urgently needed. Using prospectively collected plasma samples from the population-based Northern Sweden Health and Disease Study, we evaluated protein biomarkers in relation to colorectal cancer risk. Applying a two-tiered approach, we analyzed 160 proteins in matched sequential samples from 58 incident colorectal cancer case-control pairs. Twenty-one proteins selected from both this discovery phase and the literature were then analyzed in a validation set of 450 case-control pairs. Odds ratios were estimated by conditional logistic regression. LASSO regression and ROC analysis were used for multi-marker analyses. In the main validation analysis, no proteins retained statistical significance. However, exploratory subgroup analyses showed associations between FGF-21 and colon cancer risk (multivariable OR per 1 SD: 1.23 95% CI 1.03-1.47) as well as between PPY and rectal cancer risk (multivariable OR per 1 SD: 1.47 95% CI 1.12-1.92). Adding protein markers to basic risk predictive models increased performance modestly. Our results highlight the challenge of developing biomarkers that are effective in the asymptomatic, prediagnostic window of opportunity for early detection of colorectal cancer. Distinguishing between cancer subtypes may improve prediction accuracy. However, single biomarkers or small panels may not be sufficient for effective precision screening.
Collapse
Affiliation(s)
- Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden.
| | - Justin Harbs
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg, Sweden
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research On Cancer, World Health Organization, Lyon, France
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xijia Liu
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Stevenson AJ, Gadd DA, Hillary RF, McCartney DL, Campbell A, Walker RM, Evans KL, Harris SE, Spires-Jones TL, McRae AF, Visscher PM, McIntosh AM, Deary IJ, Marioni RE. Creating and validating a DNA methylation-based proxy for interleukin-6. J Gerontol A Biol Sci Med Sci 2021; 76:2284-2292. [PMID: 33595649 PMCID: PMC8599002 DOI: 10.1093/gerona/glab046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 01/28/2023] Open
Abstract
Background Studies evaluating the relationship between chronic inflammation and cognitive functioning have produced heterogeneous results. A potential reason for this is the variability of inflammatory mediators which could lead to misclassifications of individuals’ persisting levels of inflammation. DNA methylation (DNAm) has shown utility in indexing environmental exposures and could be leveraged to provide proxy signatures of chronic inflammation. Method We conducted an elastic net regression of interleukin-6 (IL-6) in a cohort of 875 older adults (Lothian Birth Cohort 1936; mean age: 70 years) to develop a DNAm-based predictor. The predictor was tested in an independent cohort (Generation Scotland; N = 7028 [417 with measured IL-6], mean age: 51 years). Results A weighted score from 35 CpG sites optimally predicted IL-6 in the independent test set (Generation Scotland; R2 = 4.4%, p = 2.1 × 10−5). In the independent test cohort, both measured IL-6 and the DNAm proxy increased with age (serum IL-6: n = 417, β = 0.02, SE = 0.004, p = 1.3 × 10−7; DNAm IL-6 score: N = 7028, β = 0.02, SE = 0.0009, p < 2 × 10−16). Serum IL-6 did not associate with cognitive ability (n = 417, β = −0.06, SE = 0.05, p = .19); however, an inverse association was identified between the DNAm score and cognitive functioning (N = 7028, β = −0.16, SE = 0.02, pFDR < 2 × 10−16). Conclusions These results suggest methylation-based predictors can be used as proxies for inflammatory markers, potentially allowing for further insight into the relationship between inflammation and pertinent health outcomes.
Collapse
Affiliation(s)
- Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, Little France Crescent, Edinburgh BioQuarter, Edinburgh
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Zhang P, Zhang Q, Zhu B, Xia S, Tai X, Tai X, Li B. Chinese Tuina Protects against Neonatal Hypoxia-Ischemia through Inhibiting the Neuroinflammatory Reaction. Neural Plast 2020; 2020:8828826. [PMID: 33488693 PMCID: PMC7790570 DOI: 10.1155/2020/8828826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Aim. Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of perinatal morbidity and mortality. Chinese Tuina is an effective treatment for HIE, but the molecular mechanisms are yet unknown. This study investigated the effect and mechanisms of Chinese Tuina on the inflammatory response in neonatal HIE rats. Main Methods. 30 male neonatal rats were divided randomly into 3 groups: sham, HIE, and HIE with Chinese Tuina (CHT) groups. The HIE and CHT groups were subjected to left common carotid occlusion and hypoxia at 3 days postnatal (P3). The pups in the CHT group received Chinese Tuina treatment on the next day for 28 days. The weight was measured at P4, P9, P13, P21, and P31. The behavioral functions were determined at P21. The protein expression and the methylation level in promoter regions of TNF-α and IL-10 were determined by Western blotting, immunohistochemistry, and pyrosequencing, respectively, at P33. Key Findings. The weight gain in the HIE group was slow compared with that of the CHT group. The rats in the CHT group performed better both in the balance beam and hang plate experiment. Chinese Tuina inhibited the expression of TNF-α and upregulated the expression of IL-10. Neonatal hypoxic-ischemic injury downregulated the methylation level in promoter regions of TNF-α at all CpG points but not IL-10. However, Chinese Tuina did not change the methylation level in promoter regions of TNF-α and IL-10. Significance. Chinese Tuina protected against HIE through inhibiting the neuroinflammatory reaction. While HIE markedly downregulated the methylation level of TNF-α, the protective effects of Chinese Tuina were independent of the regulation of the methylation level of TNF-α and IL-10.
Collapse
Affiliation(s)
- Pengyue Zhang
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Qian Zhang
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Bowen Zhu
- Zhejiang Provincial Hospital of TCM, Zhejiang Hangzhou 310006, China
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xianyan Tai
- Department of Prevention and Health Care, The First Hospital Affiliated to Kunming Medical University, Kunming 650032, China
| | - Xiantao Tai
- Key Laboratory of Acupuncture and Tuina for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Bing Li
- Jinshan Hospital of Fudan University, Shanghai 200054, China
| |
Collapse
|
29
|
Vats S, Sundquist K, Wang X, Zarrouk M, Ågren-Witteschus S, Sundquist J, Gottsäter A, Memon AA. Associations of global DNA methylation and homocysteine levels with abdominal aortic aneurysm: A cohort study from a population-based screening program in Sweden. Int J Cardiol 2020; 321:137-142. [PMID: 32593727 DOI: 10.1016/j.ijcard.2020.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening condition with a mortality rate of over 80%. Persistent smoking, which is a risk factor for AAA, has lasting effects on DNA methylation. Moreover, a plasma-amino acid, homocysteine, previously implicated in vascular diseases, including aneurysms, has well-established biological association with methylation. In the present study, we aimed to determine the global DNA methylation, homocysteine levels and their association with AAA and its growth. Enzyme-linked immunosorbent assay (ELISA) was used to quantify global DNA methylation in whole blood-DNA samples and diagnostic enzymatic assay quantified plasma homocysteine, from 65-year old men with (n = 116) and without AAA (n = 230) diagnosed at ultrasound screening. We found significantly higher global DNA methylation (p < .001) and homocysteine levels (p < .001) in men with AAA compared to those without AAA, and direct linear associations with baseline aortic diameter. On multivariable regression analysis, global DNA methylation (odds ratio [OR]: 1.8; 95% confidence interval [CI]: 1.1-2.9) and homocysteine levels (OR: 1.1; 95% CI:1.0-1.1) were positively associated with AAA, independent of smoking, medication use, and major co-morbidities. However, we did not find any significant association between DNA methylation or homocysteine levels with AAA growth during follow-up. We found that global DNA methylation and homocysteine levels are higher in men with AAA but are not associated with AAA growth. This indicates that different pathways and mechanisms may be involved in initiation and progression of AAA. More studies are needed to understand the precise role of DNA methylation, homocysteine and their interplay in AAA pathophysiology.
Collapse
Affiliation(s)
- Sakshi Vats
- Center for Primary Health Care Research, Lund University, Sweden.
| | | | - Xiao Wang
- Center for Primary Health Care Research, Lund University, Sweden
| | - Moncef Zarrouk
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, S-205 02 Malmö, Sweden
| | - Sophia Ågren-Witteschus
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, S-205 02 Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Sweden
| | - Anders Gottsäter
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, S-205 02 Malmö, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University, Sweden
| |
Collapse
|
30
|
Beacon TH, Su RC, Lakowski TM, Delcuve GP, Davie JR. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life 2020; 72:2331-2354. [PMID: 32936531 DOI: 10.1002/iub.2379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 makes its way into the cell via the ACE2 receptor and the proteolytic action of TMPRSS2. In response to the SARS-CoV-2 infection, the innate immune response is the first line of defense, triggering multiple signaling pathways to produce interferons, pro-inflammatory cytokines and chemokines, and initiating the adaptive immune response against the virus. Unsurprisingly, the virus has developed strategies to evade detection, which can result in delayed, excessive activation of the innate immune system. The response elicited by the host depends on multiple factors, including health status, age, and sex. An overactive innate immune response can lead to a cytokine storm, inflammation, and vascular disruption, leading to the vast array of symptoms exhibited by COVID-19 patients. What is known about the expression and epigenetic regulation of the ACE2 gene and the various players in the host response are explored in this review.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
de la Rocha C, Zaina S, Lund G. Is Any Cardiovascular Disease-Specific DNA Methylation Biomarker Within Reach? Curr Atheroscler Rep 2020; 22:62. [DOI: 10.1007/s11883-020-00875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Michaud DS, Ruan M, Koestler DC, Alonso L, Molina-Montes E, Pei D, Marsit CJ, De Vivo I, Malats N, Kelsey KT. DNA Methylation-Derived Immune Cell Profiles, CpG Markers of Inflammation, and Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2020; 29:1577-1585. [PMID: 32430337 DOI: 10.1158/1055-9965.epi-20-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer is projected to become the second most common cause of cancer-related death over the next 5 years. Because inflammation is thought to be a common trajectory for disease initiation, we sought to prospectively characterize immune profiles using DNA methylation markers and examine DNA methylation levels previously linked to inflammation biomarkers to evaluate whether these immune markers play a key role in pancreatic cancer. METHODS In a nested case-control study pooling three U.S. prospective cohort studies, DNA methylation was measured in prediagnostic leukocytes of incident pancreatic cancer cases and matched controls using the Illumina MethylationEPIC array. Differentially methylated regions were used to predict immune cell types, and CpGs previously associated with inflammatory biomarkers were selected for the analysis. DNA methylation data from a retrospective case-control study conducted in Spain (PanGenEU) was used for independent replication. RESULTS Immune cell proportions and ratio of cell proportions were not associated with pancreatic cancer risk in the nested case-control study. Methylation extent of CpGs residing in or near gene MNDA was significantly associated with pancreatic cancer risk in the nested case-control study and replicated in PanGenEU. Methylation level of a promoter CpG of gene PIM-1 was associated with survival in both studies. CONCLUSIONS Using a targeted approach, we identified several CpGs that may play a role in pancreatic carcinogenesis in two large, independent studies with distinct study designs. IMPACT These findings could provide insight into critical pathways that may help identify new markers of early disease and survival.
Collapse
Affiliation(s)
- Dominique S Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts.
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Mengyuan Ruan
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, Massachusetts
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Esther Molina-Montes
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Carmen J Marsit
- Department of Environmental Health and Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) and CIBERONC, Madrid, Spain
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| |
Collapse
|
33
|
Yeung EH, Guan W, Zeng X, Salas LA, Mumford SL, de Prado Bert P, van Meel ER, Malmberg A, Sunyer J, Duijts L, Felix JF, Czamara D, Hämäläinen E, Binder EB, Räikkönen K, Lahti J, London SJ, Silver RM, Schisterman EF. Cord blood DNA methylation reflects cord blood C-reactive protein levels but not maternal levels: a longitudinal study and meta-analysis. Clin Epigenetics 2020; 12:60. [PMID: 32354366 PMCID: PMC7193358 DOI: 10.1186/s13148-020-00852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 02/22/2023] Open
Abstract
Background Prenatal inflammation has been proposed as an important mediating factor in several adverse pregnancy outcomes. C-reactive protein (CRP) is an inflammatory cytokine easily measured in blood. It has clinical value due to its reliability as a biomarker for systemic inflammation and can indicate cellular injury and disease severity. Elevated levels of CRP in adulthood are associated with alterations in DNA methylation. However, no studies have prospectively investigated the relationship between maternal CRP levels and newborn DNA methylation measured by microarray in cord blood with reasonable epigenome-wide coverage. Importantly, the timing of inflammation exposure during pregnancy may also result in different effects. Thus, our objective was to evaluate this prospective association of CRP levels measured during multiple periods of pregnancy and in cord blood at delivery which was available in one cohort (i.e., Effects of Aspirin in Gestation and Reproduction trial), and also to conduct a meta-analysis with available data at one point in pregnancy from three other cohorts from the Pregnancy And Childhood Epigenetics consortium (PACE). Secondarily, the impact of maternal randomization to low dose aspirin prior to pregnancy on methylation was assessed. Results Maternal CRP levels were not associated with newborn DNA methylation regardless of gestational age of measurement (i.e., CRP at approximately 8, 20, and 36 weeks among 358 newborns in EAGeR). There also was no association in the meta-analyses (all p > 0.5) with a larger sample size (n = 1603) from all participating PACE cohorts with available CRP data from first trimester (< 18 weeks gestation). Randomization to aspirin was not associated with DNA methylation. On the other hand, newborn CRP levels were significantly associated with DNA methylation in the EAGeR trial, with 33 CpGs identified (FDR corrected p < 0.05) when both CRP and methylation were measured at the same time point in cord blood. The top 7 CpGs most strongly associated with CRP resided in inflammation and vascular-related genes. Conclusions Maternal CRP levels measured during each trimester were not associated with cord blood DNA methylation. Rather, DNA methylation was associated with CRP levels measured in cord blood, particularly in gene regions predominately associated with angiogenic and inflammatory pathways. Trial registration Clinicaltrials.gov, NCT00467363, Registered April 30, 2007, http://www.clinicaltrials.gov/ct2/show/NCT00467363
Collapse
Affiliation(s)
- Edwina H Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA.
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN, 55455, USA
| | | | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, 03766, USA
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Paula de Prado Bert
- ISGlobal, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Evelien R van Meel
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anni Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jordi Sunyer
- ISGlobal, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, 27709, USA
| | - Robert M Silver
- University of Utah, Salt Lake City, 50 N Medical Dr, Salt Lake City, UT, 84132, USA
| | - Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| |
Collapse
|
34
|
Bodén S, Myte R, Harbs J, Sundkvist A, Zingmark C, Löfgren Burström A, Palmqvist R, Harlid S, Van Guelpen B. C-reactive Protein and Future Risk of Clinical and Molecular Subtypes of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1482-1491. [PMID: 32317300 DOI: 10.1158/1055-9965.epi-19-1339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammation has been implicated in colorectal cancer etiology, but the relationship between C-reactive protein (CRP) and colorectal cancer risk is unclear. We aimed to investigate the association between prediagnostic plasma CRP concentrations and the risk of clinical and molecular colorectal cancer subtypes. METHODS We used prospectively collected samples from 1,010 matched colorectal cancer case-control pairs from two population-based cohorts in Northern Sweden, including 259 with repeated samples. Conditional logistic regression and linear mixed models were used to estimate relative risks of colorectal cancer, including subtypes based on BRAF and KRAS mutations, microsatellite instability status, tumor location, stage, lag time, and (using unconditional logistic regression) body mass index. RESULTS CRP was not associated with colorectal cancer risk, regardless of clinical or molecular colorectal cancer subtype. For participants with advanced tumors and blood samples <5 years before diagnosis, CRP was associated with higher risk [OR per 1 unit increase in natural logarithm (ln) transformed CRP, 1.32; 95% confidence interval (CI), 1.01-1.73]. CRP levels increased over time, but average time trajectories were similar for cases and controls (P interaction = 0.19). CONCLUSIONS Our results do not support intertumoral heterogeneity as an explanation for previous inconsistent findings regarding the role of CRP in colorectal cancer etiology. The possible association in the subgroup with advanced tumors and shorter follow-up likely reflects undiagnosed cancer at baseline. IMPACT Future efforts to establish the putative role of chronic, low-grade inflammation in colorectal cancer development will need to address the complex relationship between systemic inflammatory factors and tumor microenvironment, and might consider larger biomarker panels than CRP alone.
Collapse
Affiliation(s)
- Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Justin Harbs
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Anneli Sundkvist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|