1
|
Barchetta I, Zampieri M, Cimini FA, Dule S, Sentinelli F, Passarella G, Oldani A, Karpach K, Bacalini MG, Baroni MG, Reale A, Cavallo MG. Association Between Active DNA Demethylation and Liver Fibrosis in Individuals with Metabolic-Associated Steatotic Liver Disease (MASLD). Int J Mol Sci 2025; 26:1271. [PMID: 39941038 PMCID: PMC11818491 DOI: 10.3390/ijms26031271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) represents the most common chronic hepatopathy worldwide and an independent risk factor for cardiovascular disease and mortality, particularly when liver fibrosis occurs. Epigenetic alterations, such as DNA methylation, may influence MASLD susceptibility and progression; yet mechanisms underlying this process are limited. This study aimed to investigate whether active DNA demethylation in peripheral blood mononuclear cells (PBMCs) from individuals with MASLD, alongside the methylation and mRNA levels of inflammation- and fibrosis-related candidate genes, is associated with liver fibrosis. For this study, global demethylation intermediates (5-hydroxymethylcytosine [5hmC], 5-formylcytosine [5fC]) were quantified in PBMCs from 89 individuals with/without MASLD using ELISA. Site-specific DNA methylation of SOCS3, SREBF1, and TXNIP was analyzed by mass spectrometry-based bisulfite sequencing; mRNA expression was assessed via RT-PCR. Individuals with MASLD and moderate-to-high fibrosis risk (estimated by the fibrosis non-alcoholic steatohepatitis (NASH) index, FNI) progressively exhibited greater global 5hmC and 5fC levels. Higher FNI was associated with reduced methylation of the SOCS3 gene and increased mRNA expression of the SOCS3, TXNIP, IL-6, and MCP-1 genes. In conclusion, elevated fibrosis risk in MASLD is associated with active global DNA demethylation, as well as differential methylation and expression patterns of genes, which are key regulators of inflammation and fibrosis. These epigenetic alterations in PBMCs may mirror DNA methylation changes in the liver, which may potentially contribute to liver fibrogenesis and represent novel biomarkers for MASLD progression toward fibrosis.
Collapse
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Sara Dule
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Federica Sentinelli
- Endocrinology and Diabetes, Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.G.B.)
| | - Giulia Passarella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Alessandro Oldani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Katsiaryna Karpach
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | | | - Marco Giorgio Baroni
- Endocrinology and Diabetes, Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L’Aquila, 67100 L’Aquila, Italy; (F.S.); (M.G.B.)
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| | - Maria Gisella Cavallo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (I.B.); (M.Z.); (F.A.C.); (S.D.); (G.P.); (A.O.); (K.K.); (A.R.)
| |
Collapse
|
2
|
Pedersen K, Poojari A, Colberg SF, Mechernsee SM, Iversen JF, Barrès R, Lykkesfeldt J, Tveden-Nyborg P. A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease. Nutrients 2025; 17:291. [PMID: 39861421 PMCID: PMC11767659 DOI: 10.3390/nu17020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels. Methods: Sixty-two juvenile guinea pigs were exposed to a high-fat diet for 16 weeks. Results: Juvenile guinea pigs exhibited hepatic histopathology representative of pediatric MASH, confirmed by portal inflammation and fibrosis. Consistent with pediatric MASH, juvenile guinea pigs displayed increased lobular and portal inflammation (p < 0.05 and p < 0.0001, respectively) but less steatosis (p < 0.001) compared to adults. Compared to the controls, the guinea pigs deprived in VitC showed lower body weight (p < 0.01), higher expression of hepatic inflammatory genes (p < 0.05), and a lower global hydroxymethylcytosine to methylcytosine ratio in the high-fat groups (p < 0.05). Conclusions: Our study validates guinea pigs as a model of pediatric MASH and suggests that VitC contributes to an altered gene expression signature through the regulation of DNA hydroxymethylation. We postulate that nutritional co-deficiencies in MASH, such as low VitC, may accelerate disease progression and deserve further attention.
Collapse
Affiliation(s)
- Kamilla Pedersen
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.P.); (S.F.C.); (S.M.M.); (J.L.)
| | - Ankita Poojari
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA;
| | - Simone Frederikke Colberg
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.P.); (S.F.C.); (S.M.M.); (J.L.)
| | - Stine Marguerite Mechernsee
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.P.); (S.F.C.); (S.M.M.); (J.L.)
| | - Jo Frøkjær Iversen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (J.F.I.); (R.B.)
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (J.F.I.); (R.B.)
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Côte d’Azur, 06560 Valbonne, France
| | - Jens Lykkesfeldt
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.P.); (S.F.C.); (S.M.M.); (J.L.)
| | - Pernille Tveden-Nyborg
- Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (K.P.); (S.F.C.); (S.M.M.); (J.L.)
| |
Collapse
|
3
|
Theys C, Vanderhaeghen T, Van Dijck E, Peleman C, Scheepers A, Ibrahim J, Mateiu L, Timmermans S, Vanden Berghe T, Francque SM, Van Hul W, Libert C, Vanden Berghe W. Loss of PPARα function promotes epigenetic dysregulation of lipid homeostasis driving ferroptosis and pyroptosis lipotoxicity in metabolic dysfunction associated Steatotic liver disease (MASLD). FRONTIERS IN MOLECULAR MEDICINE 2024; 3:1283170. [PMID: 39086681 PMCID: PMC11285560 DOI: 10.3389/fmmed.2023.1283170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/14/2023] [Indexed: 08/02/2024]
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is a growing epidemic with an estimated prevalence of 20%-30% in Europe and the most common cause of chronic liver disease worldwide. The onset and progression of MASLD are orchestrated by an interplay of the metabolic environment with genetic and epigenetic factors. Emerging evidence suggests altered DNA methylation pattern as a major determinant of MASLD pathogenesis coinciding with progressive DNA hypermethylation and gene silencing of the liver-specific nuclear receptor PPARα, a key regulator of lipid metabolism. To investigate how PPARα loss of function contributes to epigenetic dysregulation in MASLD pathology, we studied DNA methylation changes in liver biopsies of WT and hepatocyte-specific PPARα KO mice, following a 6-week CDAHFD (choline-deficient, L-amino acid-defined, high-fat diet) or chow diet. Interestingly, genetic loss of PPARα function in hepatocyte-specific KO mice could be phenocopied by a 6-week CDAHFD diet in WT mice which promotes epigenetic silencing of PPARα function via DNA hypermethylation, similar to MASLD pathology. Remarkably, genetic and lipid diet-induced loss of PPARα function triggers compensatory activation of multiple lipid sensing transcription factors and epigenetic writer-eraser-reader proteins, which promotes the epigenetic transition from lipid metabolic stress towards ferroptosis and pyroptosis lipid hepatoxicity pathways associated with advanced MASLD. In conclusion, we show that PPARα function is essential to support lipid homeostasis and to suppress the epigenetic progression of ferroptosis-pyroptosis lipid damage associated pathways towards MASLD fibrosis.
Collapse
Affiliation(s)
- Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Cedric Peleman
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne Scheepers
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Ligia Mateiu
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Pathophysiology Lab, Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sven M. Francque
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Hatano M, Akiyama Y, Shimada S, Yagi K, Akahoshi K, Itoh M, Tanabe M, Ogawa Y, Tanaka S. Loss of KDM6B epigenetically confers resistance to lipotoxicity in nonalcoholic fatty liver disease-related HCC. Hepatol Commun 2023; 7:e0277. [PMID: 37782459 PMCID: PMC10545410 DOI: 10.1097/hc9.0000000000000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND NAFLD caused by abnormalities in hepatic lipid metabolism is associated with an increased risk of developing HCC. The molecular mechanisms underlying the progression of NAFLD-related HCC are not fully understood. We investigated the molecular mechanism and role of KDM6B downregulation in NAFLD-related HCC after the KDM6B gene was identified using microarray analysis as commonly downregulated in mouse NAFLD-related HCC and human nonhepatitis B and nonhepatitis C viral-HCC. METHODS The 5-hydroxymethylcytosine levels of KDM6B in HCC cells were determined using glycosylated hydroxymethyl-sensitive PCR. Microarray and chromatin immunoprecipitation analyses using KDM6B-knockout (KO) cells were used to identify KDM6B target genes. Lipotoxicity was assessed using a palmitate-treated cell proliferation assay. Immunohistochemistry was used to evaluate KDM6B expression in human HCC tissues. RESULTS KDM6B expression levels in HCC cells correlated with the 5-hydroxymethylcytosine levels in the KDM6B gene body region. Gene set enrichment analysis revealed that the lipid metabolism pathway was suppressed in KDM6B-KO cells. KDM6B-KO cells acquired resistance to lipotoxicity (p < 0.01) and downregulated the expression of G0S2, an adipose triglyceride lipase/patatin like phospholipase domain containing 2 (ATGL/PNPLA2) inhibitor, through increased histone H3 lysine-27 trimethylation levels. G0S2 knockdown in KDM6B-expressed HCC cells conferred lipotoxicity resistance, whereas ATGL/PNPLA2 inhibition in the KDM6B-KO cells reduced these effects. Immunohistochemistry revealed that KDM6B expression was decreased in human NAFLD-related HCC tissues (p < 0.001), which was significantly associated with decreased G0S2 expression (p = 0.032). CONCLUSIONS KDM6B-disrupted HCC acquires resistance to lipotoxicity via ATGL/PNPLA2 activation caused by epigenetic downregulation of G0S2 expression. Reduced KDM6B and G0S2 expression levels are common in NAFLD-related HCC. Targeting the KDM6B-G0S2-ATGL/PNPLA2 pathway may be a useful therapeutic strategy for NAFLD-related HCC.
Collapse
Affiliation(s)
- Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Yagi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Itoh
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Epigenetic Regulation in Lean Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:12864. [PMID: 37629043 PMCID: PMC10454848 DOI: 10.3390/ijms241612864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most prominent cause of chronic liver disease worldwide, is a rapidly growing epidemic. It consists of a wide range of liver diseases, from steatosis to nonalcoholic steatohepatitis, and predisposes patients to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD is strongly correlated with obesity; however, it has been extensively reported among lean/nonobese individuals in recent years. Although lean patients demonstrate a lower prevalence of diabetes mellitus, central obesity, dyslipidemia, hypertension, and metabolic syndrome, a percentage of these patients may develop steatohepatitis, advanced liver fibrosis, and cardiovascular disease, and have increased all-cause mortality. The pathophysiological mechanisms of lean NAFLD remain vague. Studies have reported that lean NAFLD demonstrates a close association with environmental factors, genetic predisposition, and epigenetic modifications. In this review, we aim to discuss and summarize the epigenetic mechanisms involved in lean NAFLD and to introduce the interaction between epigenetic patterns and genetic or non genetic factors. Several epigenetic mechanisms have been implicated in the regulation of lean NAFLD. These include DNA methylation, histone modifications, and noncoding-RNA-mediated gene regulation. Epigenetics is an area of special interest in the setting of lean NAFLD as it could provide new insights into the therapeutic options and noninvasive biomarkers that target this under-recognized and challenging disorder.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece;
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
6
|
Glasstetter LM, Oderinde TS, Mirchandani M, Rajagopalan KS, Barsom SH, Thaler R, Siddiqi S, Zhu XY, Tang H, Jordan KL, Saadiq IM, van Wijnen AJ, Eirin A, Lerman LO. Obesity and dyslipidemia are associated with partially reversible modifications to DNA hydroxymethylation of apoptosis- and senescence-related genes in swine adipose-derived mesenchymal stem/stromal cells. Stem Cell Res Ther 2023; 14:143. [PMID: 37231414 PMCID: PMC10214739 DOI: 10.1186/s13287-023-03372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Obesity dysregulates key biological processes underlying the functional homeostasis, fate decisions, and reparative potential of mesenchymal stem/stromal cells (MSCs). Mechanisms directing obesity-induced phenotypic alterations in MSCs remain unclear, but emerging drivers include dynamic modification of epigenetic marks, like 5-hydroxymethylcytosine (5hmC). We hypothesized that obesity and cardiovascular risk factors induce functionally relevant, locus-specific changes in 5hmC of swine adipose-derived MSCs and evaluated their reversibility using an epigenetic modulator, vitamin-C. METHODS Female domestic pigs were fed a 16-week Lean or Obese diet (n = 6 each). MSCs were harvested from subcutaneous adipose tissue, and 5hmC profiles were examined through hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq) followed by an integrative (hMeDIP and mRNA sequencing) gene set enrichment analysis. For clinical context, we compared 5hmC profiles of adipose tissue-derived human MSCs harvested from patients with obesity and healthy controls. RESULTS hMeDIP-seq revealed 467 hyper- (fold change ≥ 1.4; p-value ≤ 0.05) and 591 hypo- (fold change ≤ 0.7; p-value ≤ 0.05) hydroxymethylated loci in swine Obese- versus Lean-MSCs. Integrative hMeDIP-seq/mRNA-seq analysis identified overlapping dysregulated gene sets and discrete differentially hydroxymethylated loci with functions related to apoptosis, cell proliferation, and senescence. These 5hmC changes were associated with increased senescence in cultured MSCs (p16/CDKN2A immunoreactivity, senescence-associated β-galactosidase [SA-β-Gal] staining), were partly reversed in swine Obese-MSCs treated with vitamin-C, and shared common pathways with 5hmC changes in human Obese-MSCs. CONCLUSIONS Obesity and dyslipidemia are associated with dysregulated DNA hydroxymethylation of apoptosis- and senescence-related genes in swine and human MSCs, potentially affecting cell vitality and regenerative functions. Vitamin-C may mediate reprogramming of this altered epigenomic landscape, providing a potential strategy to improve the success of autologous MSC transplantation in obese patients.
Collapse
Affiliation(s)
- Logan M Glasstetter
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tomiwa S Oderinde
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mohit Mirchandani
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Samer H Barsom
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sarosh Siddiqi
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Rajagopalan KS, Kazeminia S, Glasstetter LM, Farahani RA, Zhu XY, Tang H, Jordan KL, Chade AR, Lerman A, Lerman LO, Eirin A. Metabolic Syndrome Induces Epigenetic Alterations in Mitochondria-Related Genes in Swine Mesenchymal Stem Cells. Cells 2023; 12:1274. [PMID: 37174674 PMCID: PMC10177475 DOI: 10.3390/cells12091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Autologous mesenchymal stem/stromal cells (MSCs) have demonstrated important therapeutic effects in several diseases. Cardiovascular risk factors may impair MSC mitochondrial structure and function, but the underlying mechanisms remain unknown. We hypothesized that metabolic syndrome (MetS) induces epigenetic alterations in mitochondria-related genes in swine MSCs. Pigs were fed a Lean or MetS diet (n = 6 each) for 16 weeks. MSCs were collected from subcutaneous abdominal fat, and DNA hydroxymethylation (5 hmC) profiles of mitochondria-related genes (MitoCarta-2.0) were analyzed by hydroxymethylated DNA immunoprecipitation and next-generation sequencing (hMeDIP-seq) in Lean- and MetS-MSCs untreated or treated with the epigenetic modulator vitamin (Vit)-C (n = 3 each). Functional analysis of genes with differential 5 hmC regions was performed using DAVID6.8. Mitochondrial structure (electron microscopy), oxidative stress, and membrane potential were assessed. hMeDIP-seq identified 172 peaks (associated with 103 mitochondrial genes) with higher and 416 peaks (associated with 165 mitochondrial genes) with lower 5 hmC levels in MetS-MSCs versus Lean-MSCs (≥2-fold, p < 0.05). Genes with higher 5 hmC levels in MetS + MSCs were primarily implicated in fatty acid metabolism, whereas those with lower 5 hmC levels were associated with electron transport chain activity. Vit-C increased 5 hmC levels in mitochondrial antioxidant genes, improved mitochondrial structure and membrane potential, and decreased oxidative stress. MetS alters 5 hmC levels of mitochondria-related genes in swine MSCs. Vit-C modulated 5 hmC levels in these genes and preserved mitochondrial structure and function in MetS-MSCs. These observations may contribute to development of strategies to overcome the deleterious effects of MetS on MSCs.
Collapse
Affiliation(s)
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rahele A. Farahani
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Alejandro R. Chade
- Department of Medical Pharmacology and Physiology and Department of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Konstantinidis I, Sætrom P, Fernandes JMO. Genome-wide hydroxymethylation profiles in liver of female Nile tilapia with distinct growth performance. Sci Data 2023; 10:114. [PMID: 36859394 PMCID: PMC9977925 DOI: 10.1038/s41597-023-01996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
The mechanisms underlying the fast genome evolution that occurs during animal domestication are poorly understood. Here, we present a genome-wide epigenetic dataset that quantifies DNA hydroxymethylation at single nucleotide resolution among full-sib Nile tilapia (Oreochromis niloticus) with distinct growth performance. In total, we obtained 355 million, 75 bp reads from 5 large- and 5 small-sized fish on an Illumina NextSeq500 platform. We identified several growth-related genes to be differentially hydroxymethylated, especially within gene bodies and promoters. Previously, we proposed that DNA hydroxymethylation greatly affects the earliest responses to adaptation and potentially drives genome evolution through its targeted enrichment and elevated nucleotide transversion rates. This dataset can be analysed in various contexts (e.g., epigenetics, evolution and growth) and compared to other epigenomic datasets in the future, namely DNA methylation and histone modifications. With forthcoming advancements in genome research, this hydroxymethylation dataset will also contribute to better understand the epigenetic regulation of key genomic features, such as cis-regulatory and transposable elements.
Collapse
Affiliation(s)
| | - Pål Sætrom
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | |
Collapse
|
9
|
Melton PE, Burton MA, Lillycrop KA, Godfrey KM, Rauschert S, Anderson D, Burdge GC, Mori TA, Beilin LJ, Ayonrinde OT, Craig JM, Olynyk JK, Holbrook JD, Pennell CE, Oddy WH, Moses EK, Adams LA, Huang RC. Differential DNA methylation of steatosis and non-alcoholic fatty liver disease in adolescence. Hepatol Int 2023; 17:584-594. [PMID: 36737504 PMCID: PMC9897882 DOI: 10.1007/s12072-022-10469-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Epigenetic modifications are associated with hepatic fat accumulation and non-alcoholic fatty liver disease (NAFLD). However, few epigenetic modifications directly implicated in such processes have been identified during adolescence, a critical developmental window where physiological changes could influence future disease trajectory. To investigate the association between DNA methylation and NAFLD in adolescence, we undertook discovery and validation of novel methylation marks, alongside replication of previously reported marks. APPROACH AND RESULTS We performed a DNA methylation epigenome-wide association study (EWAS) on DNA from whole blood from 707 Raine Study adolescents phenotyped for steatosis score and NAFLD by ultrasound at age 17. Next, we performed pyrosequencing validation of loci within the most 100 strongly associated differentially methylated CpG sites (dmCpGs) for which ≥ 2 probes per gene remained significant across four statistical models with a nominal p value < 0.007. EWAS identified dmCpGs related to three genes (ANK1, MIR10a, PTPRN2) that met our criteria for pyrosequencing. Of the dmCpGs and surrounding loci that were pyrosequenced (ANK1 n = 6, MIR10a n = 7, PTPRN2 n = 3), three dmCpGs in ANK1 and two in MIR10a were significantly associated with NAFLD in adolescence. After adjustment for waist circumference only dmCpGs in ANK1 remained significant. These ANK1 CpGs were also associated with γ-glutamyl transferase and alanine aminotransferase concentrations. Three of twenty-two differentially methylated dmCpGs previously associated with adult NAFLD were associated with NAFLD in adolescence (all adjusted p < 2.3 × 10-3). CONCLUSIONS We identified novel DNA methylation loci associated with NAFLD and serum liver biochemistry markers during adolescence, implicating putative dmCpG/gene regulatory pathways and providing insights for future mechanistic studies.
Collapse
Affiliation(s)
- Phillip E. Melton
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, TAS 7000 Australia ,grid.1012.20000 0004 1936 7910School of Global and Population Health, The University of Western Australia, Crawley, WA Australia
| | - M. A. Burton
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - K. A. Lillycrop
- grid.5491.90000 0004 1936 9297Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK ,grid.430506.40000 0004 0465 4079NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - K. M. Godfrey
- grid.430506.40000 0004 0465 4079NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK ,grid.5491.90000 0004 1936 9297MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - S. Rauschert
- grid.1012.20000 0004 1936 7910Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - D. Anderson
- grid.1012.20000 0004 1936 7910Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - G. C. Burdge
- grid.5491.90000 0004 1936 9297School of Human Health and Development, Faculty of Medicine, University of Southampton, Southampton, UK
| | - T. A. Mori
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia
| | - L. J. Beilin
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia
| | - O. T. Ayonrinde
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia ,Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, Murdoch, WA Australia
| | - J. M. Craig
- grid.416107.50000 0004 0614 0346MCRI, Royal Children’s Hospital, Flemington Road, Parkville, VIC Australia ,grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC Australia
| | - J. K. Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, Murdoch, WA Australia ,grid.1038.a0000 0004 0389 4302School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA Australia
| | - J. D. Holbrook
- grid.5491.90000 0004 1936 9297MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - C. E. Pennell
- grid.266842.c0000 0000 8831 109XUniversity of Newcastle, Newcastle, NSW Australia
| | - W. H. Oddy
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, TAS 7000 Australia
| | - E. K. Moses
- grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Private Bag 23, Hobart, TAS 7000 Australia ,grid.1012.20000 0004 1936 7910School of Biomedical Sciences, University of Western Australia, Crawley, WA Australia
| | - L. A. Adams
- grid.1012.20000 0004 1936 7910Medical School, The University of Western Australia, Perth, Australia
| | - R. C. Huang
- grid.1012.20000 0004 1936 7910Telethon Kids Institute, The University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Dnmt1/Tet2-mediated changes in Cmip methylation regulate the development of nonalcoholic fatty liver disease by controlling the Gbp2-Pparγ-CD36 axis. Exp Mol Med 2023; 55:143-157. [PMID: 36609599 PMCID: PMC9898513 DOI: 10.1038/s12276-022-00919-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 01/07/2023] Open
Abstract
Dynamic alteration of DNA methylation leads to various human diseases, including nonalcoholic fatty liver disease (NAFLD). Although C-Maf-inducing protein (Cmip) has been reported to be associated with NAFLD, its exact underlying mechanism remains unclear. Here, we aimed to elucidate this mechanism in NAFLD in vitro and in vivo. We first identified alterations in the methylation status of the Cmip intron 1 region in mouse liver tissues with high-fat high-sucrose diet-induced NAFLD. Knockdown of DNA methyltransferase (Dnmt) 1 significantly increased Cmip expression. Chromatin immunoprecipitation assays of AML12 cells treated with oleic and palmitic acid (OPA) revealed that Dnmt1 was dissociated and that methylation of H3K27me3 was significantly decreased in the Cmip intron 1 region. Conversely, the knockdown of Tet methylcytosine dioxygenase 2 (Tet2) decreased Cmip expression. Following OPA treatment, the CCCTC-binding factor (Ctcf) was recruited, and H3K4me3 was significantly hypermethylated. Intravenous Cmip siRNA injection ameliorated NAFLD pathogenic features in ob/ob mice. Additionally, Pparγ and Cd36 expression levels were dramatically decreased in the livers of ob/ob mice administered siCmip, and RNA sequencing revealed that Gbp2 was involved. Gbp2 knockdown also induced a decrease in Pparγ and Cd36 expression, resulting in the abrogation of fatty acid uptake into cells. Our data demonstrate that Cmip and Gbp2 expression levels are enhanced in human liver tissues bearing NAFLD features. We also show that Dnmt1-Trt2/Ctcf-mediated reversible modulation of Cmip methylation regulates the Gbp2-Pparγ-Cd36 signaling pathway, indicating the potential of Cmip as a novel therapeutic target for NAFLD.
Collapse
|
11
|
Sharma V, Sharma S, Akarshit, Kumar R, Sharma P, Mittal A, Kumar R, Sharma M. Effect of curcumin and zingiberone on non alcoholic fatty liver disease (NAFLD). AIP CONFERENCE PROCEEDINGS 2023; 2804:020254. [DOI: 10.1063/5.0162870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Metabolic regulation of cholestatic liver injury by D-2-hydroxyglutarate with the modulation of hepatic microenvironment and the mammalian target of rapamycin signaling. Cell Death Dis 2022; 13:1001. [PMID: 36435860 PMCID: PMC9701230 DOI: 10.1038/s41419-022-05450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Biliary atresia (BA) is a cholestatic liver disease in neonates with devastating obstructive intrahepatic and extrahepatic biliary ducts. Owing to the lack of an early diagnostic marker and limited understanding of its pathogenesis, BA often leads to death within 2 years. Therefore, this study aimed to develop early diagnostic methods and investigate the underlying pathogenesis of liver injury in BA using metabolomics. Metabolomics and organoid combined energy metabolism analysis was used to obtain new insights into BA diagnosis and pathobiology using patient samples, mice liver organoids, and a zebrafish model. Metabolomics revealed that D-2-hydroxyglutarate (D-2-HG) levels were significantly elevated in the plasma and liver of patients with BA and closely correlated with liver injuries and impaired liver regeneration. D-2-HG suppressed the growth and expansion of liver organoids derived from the intrahepatic biliary ducts. The energy metabolism analysis demonstrated that D-2-HG inhibited mitochondrial respiration and ATP synthase; however, it increased aerobic glycolysis in organoids. In addition, D-2-HG exposure caused liver degeneration in zebrafish larvae. Mechanistically, D-2-HG inhibited the activation of protein kinase B and the mammalian target of rapamycin signaling. These findings reveal that D-2-HG may represent a novel noninvasive diagnostic biomarker and a potential therapeutic target for infants with BA.
Collapse
|
13
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
14
|
Mulberry Leaf Flavonoids Inhibit Liver Inflammation in Type 2 Diabetes Rats by Regulating TLR4/MyD88/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3354062. [PMID: 35845591 PMCID: PMC9279020 DOI: 10.1155/2022/3354062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
The incidence of liver-related complications in type 2 diabetes mellitus (T2DM) is rapidly increasing, which affects the physical and mental health of T2DM patients. Mulberry leaf flavonoids (MLF) were confirmed to have certain effects on lowering blood glucose and anti-inflammation. In this study, the high-fat diet (HFD) + STZ method was used to establish T2DM rat model and the MLF was administered by gavage for eight weeks. During the experiment, body weight and blood glucose level were measured at different time points. The pathological changes of rat liver were observed by H&E staining. The serum glucolipid metabolic indicators of serum, fasting insulin (FINS), and inflammatory factors levels were detected by ELISA. The expression levels of toll-like receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα, and nuclear factor kappa-B (NF-κB)/p65 protein in liver tissue were measured by Western Blot. After 8 weeks' MLF treatment, the blood glucose of rats showed a downward trend; glycolipid metabolism level and insulin resistance were improved, which suggested that MLF could improve the disorder of glucose and lipid metabolism. The pathological damage and inflammation of the liver in T2DM rats were significantly improved, the levels of related serum inflammatory factors were reduced, and the expression of liver tissue-related proteins was downregulated. Our results indicated that MLF could reduce blood glucose and inhibit the development of liver inflammation. The mechanisms may be associated with the activation of TLR4/MyD88/NF-κB signal pathway to reduce the levels of inflammatory factors in serum.
Collapse
|
15
|
Siddeek B, Simeoni U. Epigenetics provides a bridge between early nutrition and long-term health and a target for disease prevention. Acta Paediatr 2022; 111:927-934. [PMID: 35038770 PMCID: PMC9305224 DOI: 10.1111/apa.16258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Exposure to nutritional imbalance during early life can influence disease risk lifelong and across generations. In this long‐term conditioning, epigenetics constitutes a key mechanism. They bridge environmental cues and the expression of genes involved in the setting of long‐standing biological regulations in numerous organs and species. Epigenetic marks are proposed as innovative diagnostic biomarkers and potential targets in the prevention of diseases. However, a number of uncertainties make them difficult to use in clinical approaches in the context of early exposure to nutritional challenge. In conclusion, active investigations in this field are still needed before clinical applications are considered.
Collapse
Affiliation(s)
- Benazir Siddeek
- DOHaD Laboratory Division of Pediatrics Woman‐Mother‐Child‐Department Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne Switzerland
| | - Umberto Simeoni
- DOHaD Laboratory Division of Pediatrics Woman‐Mother‐Child‐Department Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne Switzerland
| |
Collapse
|
16
|
Ko YK, Kim H, Lee Y, Lee YS, Gim JA. DNA Methylation Patterns According to Fatty Liver Index and Longitudinal Changes from the Korean Genome and Epidemiology Study (KoGES). Curr Issues Mol Biol 2022; 44:1149-1168. [PMID: 35723298 PMCID: PMC8947460 DOI: 10.3390/cimb44030075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The role of differentially methylated regions (DMRs) in nonalcoholic fatty liver disease (NAFLD) is unclear. This study aimed to identify the role of DMR in NAFLD development and progression using the Korean Genome and Epidemiology Study (KoGES) cohort. We used laboratory evaluations and Illumina Methylation 450 k DNA methylation microarray data from KoGES. The correlation between fatty liver index (FLI) and genomic CpG sites was analyzed in 322 subjects. Longitudinal changes over 8 years were confirmed in 33 subjects. To identify CpG sites and genes related to FLI, we obtained enrichment terms for 6765 genes. DMRs were identified for both high (n = 128) and low (n = 194) groups on the basis of FLI 30 in 142 men and 180 women. To confirm longitudinal changes in 33 subjects, the ratio of follow-up and baseline investigation values was obtained. Correlations and group comparisons were performed for the 8 year change values. PITPNM3, RXFP3, and THRB were hypermethylated in the increased FLI groups, whereas SLC9A2 and FOXI3 were hypermethylated in the decreased FLI groups. DMRs describing NAFLD were determined, and functions related to inflammation were identified. Factors related to longitudinal changes are suggested, and blood circulation-related functions appear to be important in the management of NAFLD.
Collapse
Affiliation(s)
- Young Kyung Ko
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Hayeon Kim
- Department of Pathology, Korea University College of Medicine, Seoul 08308, Korea;
| | - Yoonseok Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea;
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Korea;
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
17
|
Liu J, Heraud C, Véron V, Laithier J, Burel C, Prézelin A, Panserat S, Marandel L. Hepatic Global DNA Hypomethylation Phenotype in Rainbow Trout Fed Diets Varying in Carbohydrate to Protein Ratio. J Nutr 2022; 152:29-39. [PMID: 34550380 DOI: 10.1093/jn/nxab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A high carbohydrate-low protein diet can induce hepatic global DNA hypomethylation in trout. The mechanisms remain unclear. OBJECTIVES We aimed to investigate whether an increase in dietary carbohydrates (dHCs) or a decrease in dietary proteins (dLPs) can cause hepatic global DNA hypomethylation, as well as explore the underlying mechanisms in trout. METHODS Two feeding trials were conducted on juvenile males, both of which involved a 4-d fasting and 4-d refeeding protocol. In trial 1, trout were fed either a high protein-no carbohydrate [HP-NC, protein 60% dry matter (DM), carbohydrates 0% DM] or a moderate protein-high carbohydrate (MP-HC, protein 40% DM, carbohydrates 30% DM) diet. In trial 2, fish were fed either a moderate protein-no carbohydrate (MP-NC, protein 40% DM, carbohydrates 0% DM), an MP-HC (protein 40% DM, carbohydrates 30% DM), or a low protein-no carbohydrate (LP-NC, protein 20% DM, carbohydrates 0% DM) diet to separate the effects of dHCs and dLPs on the hepatic methylome. Global CmCGG methylation, DNA demethylation derivative concentrations, and mRNA expression of DNA (de)methylation-related genes were measured. Differences were tested by 1-factor ANOVA when data were normally distributed or by Kruskal-Wallis nonparametric test if not. RESULTS In both trials, global CmCGG methylation concentrations remained unaffected, but the hepatic 5-mdC content decreased after refeeding (1-3%). The MP-HC group had 3.4-fold higher hepatic 5-hmdC and a similar 5-mdC concentration compared with the HP-NC group in trial 1. Both MP-HC and LP-NC diets lowered the hepatic 5-mdC content (1-2%), but only the LP-NC group had a significantly lower 5-hmdC concentration (P < 0.01) compared with MP-NC group in trial 2. CONCLUSIONS dHC and dLP independently induced hepatic global DNA demethylation in trout. The alterations in other methylation derivative concentrations indicated the demethylation process was achieved through an active demethylation pathway and probably occurred at non-CmCGG sites.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Jésabel Laithier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Christine Burel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Audrey Prézelin
- Université Paris Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
18
|
Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021; 9:1256. [PMID: 34572442 PMCID: PMC8468830 DOI: 10.3390/biomedicines9091256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to the pathologic buildup of extra fat in the form of triglycerides in liver cells without excessive alcohol intake. NAFLD became the most common cause of chronic liver disease that is tightly associated with key aspects of metabolic disorders, including insulin resistance, obesity, diabetes, and metabolic syndrome. It is generally accepted that multiple mechanisms and pathways are involved in the pathogenesis of NAFLD. Heredity, sedentary lifestyle, westernized high sugar saturated fat diet, metabolic derangements, and gut microbiota, all may interact on a on genetically susceptible individual to cause the disease initiation and progression. While there is an unquestionable role for gene-diet interaction in the etiopathogenesis of NAFLD, it is increasingly apparent that epigenetic processes can orchestrate many aspects of this interaction and provide additional mechanistic insight. Exciting research demonstrated that epigenetic alterations in chromatin can influence gene expression chiefly at the transcriptional level in response to unbalanced diet, and therefore predispose an individual to NAFLD. Thus, further discoveries into molecular epigenetic mechanisms underlying the link between nutrition and aberrant hepatic gene expression can yield new insights into the pathogenesis of NAFLD, and allow innovative epigenetic-based strategies for its early prevention and targeted therapies. Herein, we outline the current knowledge of the interactive role of a high-fat high-calories diet and gene expression through DNA methylation and histone modifications on the pathogenesis of NAFLD. We also provide perspectives on the advancement of the epigenomics in the field and possible shortcomings and limitations ahead.
Collapse
Affiliation(s)
- Mohamed Zaiou
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Rim Amrani
- Department of Neonatology, University Mohammed First, Oujda 60000, Morocco;
| | - Bertrand Rihn
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Tahar Hajri
- Department of Human Ecology, Delaware State University, Dover, DE 1191, USA;
| |
Collapse
|
19
|
Li F, Ou Q, Lai Z, Pu L, Chen X, Wang L, Sun L, Liang X, Wang Y, Xu H, Wei J, Wu F, Zhu H, Wang L. The Co-occurrence of Chronic Hepatitis B and Fibrosis Is Associated With a Decrease in Hepatic Global DNA Methylation Levels in Patients With Non-alcoholic Fatty Liver Disease. Front Genet 2021; 12:671552. [PMID: 34335686 PMCID: PMC8318039 DOI: 10.3389/fgene.2021.671552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/01/2021] [Indexed: 01/23/2023] Open
Abstract
Global DNA hypomethylation has been reported in patients with chronic hepatitis B (CHB) and non-alcoholic fatty-liver disease (NAFLD). However, the global DNA methylation profile of patients with concurrent NAFLD and CHB (NAFLD + CHB) is still unclear. We aimed to detect the hepatic global DNA methylation levels of NAFLD + CHB patients and assess the associated risk factors. Liver biopsies were collected from 55 NAFLD patients with or without CHB. The histological characteristics of the biopsy were then assessed. Hepatic global DNA methylation levels were quantified by fluorometric method. The hepatic global DNA methylation levels in NAFLD + CHB group were significantly lower than that in NAFLD group. Participants with fibrosis showed lower levels of hepatic global DNA methylation than those without fibrosis. Participants with both CHB and fibrosis had lower levels of hepatic global DNA methylation than those without either CHB or fibrosis. The co-occurrence of CHB and fibrosis was significantly associated with a reduction in global DNA methylation levels compared to the absence of both CHB and fibrosis. Our study suggests that patients with NAFLD + CHB exhibited lower levels of global DNA methylation than patients who had NAFLD alone. The co-occurrence of CHB and liver fibrosis in NAFLD patients was associated with a decrease in global DNA methylation levels.
Collapse
Affiliation(s)
- FangYuan Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Ou
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - ZhiWei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - LiuZhen Pu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - XingYi Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - LiRong Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - LiuQiao Sun
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - XiaoPing Liang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - YaoYao Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Hang Xu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou, China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou, China
| | - HuiLian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - LiJun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Zhang X, Asllanaj E, Amiri M, Portilla-Fernandez E, Bramer WM, Nano J, Voortman T, Pan Q, Ghanbari M. Deciphering the role of epigenetic modifications in fatty liver disease: A systematic review. Eur J Clin Invest 2021; 51:e13479. [PMID: 33350463 PMCID: PMC8243926 DOI: 10.1111/eci.13479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fatty liver disease (FLD), primarily nonalcoholic fatty liver disease (NAFLD), is the most common liver disorder that affects a quarter of the global population. NAFLD is a spectrum of disease ranging from simple steatosis to nonalcoholic steatohepatitis, which is associated with increased risk of developing liver cancer. Given that the pathogenic mechanisms of fatty liver remain largely elusive, it is important to further investigate potential underlying mechanisms including epigenetic modifications. Here, we performed a systematic review of human epigenetic studies on FLD presence. METHODS Five bibliographic databases were screened until 28 August 2020. We included cross-sectional, case-control and cohort studies in humans that examined the association of epigenetic modifications including global, candidate or epigenome-wide methylation of DNA, noncoding RNAs and histone modifications with FLD. RESULTS In total 36 articles, based on 33 unique studies, consisting of 12 112 participants met the inclusion criteria. Among these, two recent epigenome-wide association studies conducted among large population-based cohorts have reported the association between cg06690548 (SLC7A11) and FLD. Moreover, several studies have demonstrated the association between microRNAs (miRNAs) and FLD, in which miR-122, miR-34a and miR-192 were recognized as the most relevant miRNAs as biomarkers for FLD. We did not find any studies examining histone modifications in relation to FLD. CONCLUSIONS Cumulative evidence suggests a link between epigenetic mechanisms, specifically DNA methylation and miRNAs, and FLD. Further efforts should investigate the molecular pathways by which these epigenetic markers may regulate FLD and also the potential role of histone modifications in FLD.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands.,Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Masoud Amiri
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eliana Portilla-Fernandez
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wichor M Bramer
- Medical Library, Erasmus MC, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Diabetes Center, München-Neuherberg, Germany
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
21
|
Reavey JJ, Walker C, Murray AA, Brito-Mutunayagam S, Sweeney S, Nicol M, Cambursano A, Critchley HOD, Maybin JA. Obesity is associated with heavy menstruation that may be due to delayed endometrial repair. J Endocrinol 2021; 249:71-82. [PMID: 33836495 PMCID: PMC8052524 DOI: 10.1530/joe-20-0446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Heavy menstrual bleeding is common and debilitating but the causes remain ill defined. Rates of obesity in women are increasing and its impact on menstrual blood loss (MBL) is unknown. Therefore, we quantified BMI and MBL in women not taking hormones and with regular menstrual cycles and revealed a positive correlation. In a mouse model of simulated menstruation, diet-induced obesity also resulted in delayed endometrial repair, a surrogate marker for MBL. BrdU staining of mouse uterine tissue revealed decreased proliferation during menstruation in the luminal epithelium of mice on a high-fat diet. Menstruation is known to initiate local endometrial inflammation and endometrial hypoxia; hence, the impact of body weight on these processes was investigated. A panel of hypoxia-regulated genes (VEGF, ADM, LDHA, SLC2A1) showed consistently higher mean values in the endometrium of women with obesity and in uteri of mice with increased weight vs normal controls, although statistical significance was not reached. The inflammatory mediators, Tnf and Il6 were significantly increased in the uterus of mice on a high-fat diet, consistent with a pro-inflammatory local endometrial environment in these mice. In conclusion, obesity was associated with increased MBL in women. Mice given a high-fat diet had delayed endometrial repair at menstruation and provided a model in which to study the influence of obesity on menstrual physiology. Our results indicate that obesity results in a more pro-inflammatory local endometrial environment at menstruation, which may delay endometrial repair and increase menstrual blood loss.
Collapse
Affiliation(s)
- Jane J Reavey
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Catherine Walker
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Alison A Murray
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | | | - Sheona Sweeney
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Moira Nicol
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Ana Cambursano
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
22
|
Nonalcoholic Fatty Liver Disease: Focus on New Biomarkers and Lifestyle Interventions. Int J Mol Sci 2021; 22:ijms22083899. [PMID: 33918878 PMCID: PMC8069944 DOI: 10.3390/ijms22083899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, characterized from pathological changes in lipid and carbohydrate metabolism. Its main characteristics are excessive lipid accumulation and oxidative stress, which create a lipotoxic environment in hepatocytes leading to liver injury. Recently, many studies have focused on the identification of the genetic and epigenetic modifications that also contribute to NAFLD pathogenesis and their prognostic implications. The present review is aimed to discuss on cellular and metabolic alterations associated with NAFLD, which can be helpful to identify new noninvasive biomarkers. The identification of accumulated lipids in the cell membranes, as well as circulating cytokeratins and exosomes, provides new insights in understanding of NAFLD. This review also suggests that lifestyle modifications remain the main prevention and/or treatment for NAFLD.
Collapse
|
23
|
Moustakas II, Katsarou A, Legaki AI, Pyrina I, Ntostoglou K, Papatheodoridi AM, Gercken B, Pateras IS, Gorgoulis VG, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Hepatic Senescence Accompanies the Development of NAFLD in Non-Aged Mice Independently of Obesity. Int J Mol Sci 2021; 22:3446. [PMID: 33810566 PMCID: PMC8037476 DOI: 10.3390/ijms22073446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
Senescence is considered to be a cardinal player in several chronic inflammatory and metabolic pathologies. The two dominant mechanisms of senescence include replicative senescence, predominantly depending on age-induced telomere shortening, and stress-induced senescence, triggered by external or intracellular harmful stimuli. Recent data indicate that hepatocyte senescence is involved in the development of nonalcoholic fatty liver disease (NAFLD). However, previous studies have mainly focused on age-related senescence during NAFLD, in the presence or absence of obesity, while information about whether the phenomenon is characterized by replicative or stress-induced senescence, especially in non-aged organisms, is scarce. Herein, we subjected young mice to two different diet-induced NAFLD models which differed in the presence of obesity. In both models, liver fat accumulation and increased hepatic mRNA expression of steatosis-related genes were accompanied by hepatic senescence, indicated by the increased expression of senescence-associated genes and the presence of a robust hybrid histo-/immunochemical senescence-specific staining in the liver. Surprisingly, telomere length and global DNA methylation did not differ between the steatotic and the control livers, while malondialdehyde, a marker of oxidative stress, was upregulated in the mouse NAFLD livers. These findings suggest that senescence accompanies NAFLD emergence, even in non-aged organisms, and highlight the role of stress-induced senescence during steatosis development independently of obesity.
Collapse
Affiliation(s)
- Ioannis I. Moustakas
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.I.M.); (A.K.); (A.-I.L.); (A.-M.P.); (M.K.)
| | - Angeliki Katsarou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.I.M.); (A.K.); (A.-I.L.); (A.-M.P.); (M.K.)
| | - Aigli-Ioanna Legaki
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.I.M.); (A.K.); (A.-I.L.); (A.-M.P.); (M.K.)
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (I.P.); (B.G.); (T.C.)
| | - Konstantinos Ntostoglou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.N.); (I.S.P.); (V.G.G.)
| | - Alkistis-Maria Papatheodoridi
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.I.M.); (A.K.); (A.-I.L.); (A.-M.P.); (M.K.)
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (I.P.); (B.G.); (T.C.)
| | - Ioannis S. Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.N.); (I.S.P.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.N.); (I.S.P.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.I.M.); (A.K.); (A.-I.L.); (A.-M.P.); (M.K.)
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (I.P.); (B.G.); (T.C.)
| | - Antonios Chatzigeorgiou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.I.M.); (A.K.); (A.-I.L.); (A.-M.P.); (M.K.)
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (I.P.); (B.G.); (T.C.)
| |
Collapse
|
24
|
Moszak M, Szulińska M, Walczak-Gałęzewska M, Bogdański P. Nutritional Approach Targeting Gut Microbiota in NAFLD-To Date. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1616. [PMID: 33567710 PMCID: PMC7916007 DOI: 10.3390/ijerph18041616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant clinical and epidemiological problem that affects around 25% of the adult global population. A large body of clinical evidence highlights that NAFLD is associated with increased liver-related morbidity and mortality and an increased risk of cardiovascular disease, extrahepatic cancers, type 2 diabetes, and chronic kidney disease. Recently, a series of studies revealed the pivotal role of gut microbiota (GM) dysbiosis in NAFLD's pathogenesis. The GM plays an essential role in different metabolic pathways, including the fermentation of diet polysaccharides, energy harvest, choline regulation, and bile acid metabolism. One of the most critical factors in GM stabilization is the diet; therefore, nutritional therapyappearsto be a promising tool in NAFLD therapy. This paper aims to review the current knowledge regardingthe nutritional approach and its implications with GM and NAFLD treatment. We discuss the positive impact of probiotics, prebiotics, and symbiotics in a reverse dysbiosis state in NAFLD and show the potential beneficial effects of bioactive substances from the diet. The full description of the mechanism of action and comprehensive examination of the impact of nutritional interventions on GM modulation may, in the future, be a simple but essential tool supporting NAFLD therapy.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.S.); (P.B.)
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.S.); (P.B.)
| | - Marta Walczak-Gałęzewska
- Department of Internal Medicine, Metabolic Disorders, and Hypertension, Poznań University of Medical Sciences, 61-701 Poznań, Poland;
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.S.); (P.B.)
| |
Collapse
|
25
|
Sinton MC, Meseguer-Ripolles J, Lucendo-Villarin B, Wernig-Zorc S, Thomson JP, Carter RN, Lyall MJ, Walker PD, Thakker A, Meehan RR, Lavery GG, Morton NM, Ludwig C, Tennant DA, Hay DC, Drake AJ. A human pluripotent stem cell model for the analysis of metabolic dysfunction in hepatic steatosis. iScience 2021; 24:101931. [PMID: 33409477 PMCID: PMC7773967 DOI: 10.1016/j.isci.2020.101931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.
Collapse
Affiliation(s)
- Matthew C. Sinton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jose Meseguer-Ripolles
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Baltasar Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Sara Wernig-Zorc
- Department of Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - John P. Thomson
- Human Genetics Unit, University of Edinburgh, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4, 2XU, UK
| | - Roderick N. Carter
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Marcus J. Lyall
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul D. Walker
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Richard R. Meehan
- Human Genetics Unit, University of Edinburgh, MRC Institute for Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4, 2XU, UK
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Nicholas M. Morton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, IBR Tower, College of Medical and Dental Sciences, Edgbaston, University of Birmingham, Birmingham, B15 2TT,, UK
| | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh BioQuarter, 5 Little France Crescent, Edinburgh, EH16 4UU, UK
| | - Amanda J. Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
26
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:8138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
27
|
Afarideh M, Thaler R, Khani F, Tang H, Jordan KL, Conley SM, Saadiq IM, Obeidat Y, Pawar AS, Eirin A, Zhu XY, Lerman A, van Wijnen AJ, Lerman LO. Global epigenetic alterations of mesenchymal stem cells in obesity: the role of vitamin C reprogramming. Epigenetics 2020; 16:705-717. [PMID: 32893712 DOI: 10.1080/15592294.2020.1819663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity promotes dysfunction and impairs the reparative capacity of mesenchymal stem/stromal cells (MSCs), and alters their transcription, protein content, and paracrine function. Whether these adverse effects are mediated by chromatin-modifying epigenetic changes remains unclear. We tested the hypothesis that obesity imposes global DNA hydroxymethylation and histone tri-methylation alterations in obese swine abdominal adipose tissue-derived MSCs compared to lean pig MSCs. MSCs from female lean (n = 7) and high-fat-diet fed obese (n = 7) domestic pigs were assessed using global epigenetic assays, before and after in-vitro co-incubation with the epigenetic modulator vitamin-C (VIT-C) (50 μg/ml). Dot blotting was used to measure across the whole genome 5-hydroxyemthycytosine (5hmC) residues, and Western blotting to quantify in genomic histone-3 protein tri-methylated lysine-4 (H3K4me3), lysine-9 (H3K9me3), and lysine-27 (H3K27me3) residues. MSC migration and proliferation were studied in-vitro. Obese MSCs displayed reduced global 5hmC and H3K4m3 levels, but comparable H3K9me3 and H3K27me3, compared to lean MSCs. Global 5hmC, H3K4me3, and HK9me3 marks correlated with MSC migration and reduced proliferation, as well as clinical and metabolic characteristics of obesity. Co-incubation of obese MSCs with VIT-C enhanced 5hmC marks, and reduced their global levels of H3K9me3 and H3K27me3. Contrarily, VIT-C did not affect 5hmC, and decreased H3K4me3 in lean MSCs. Obesity induces global genomic epigenetic alterations in swine MSCs, involving primarily genomic transcriptional repression, which are associated with MSC function and clinical features of obesity. Some of these alterations might be reversible using the epigenetic modulator VIT-C, suggesting epigenetic modifications as therapeutic targets in obesity.
Collapse
Affiliation(s)
- Mohsen Afarideh
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Farzaneh Khani
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Yasin Obeidat
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Aditya S Pawar
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
28
|
Bayoumi A, Grønbæk H, George J, Eslam M. The Epigenetic Drug Discovery Landscape for Metabolic-associated Fatty Liver Disease. Trends Genet 2020; 36:429-441. [PMID: 32396836 DOI: 10.1016/j.tig.2020.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Despite decades of research, effective therapies for metabolic (dysfunction)-associated fatty liver disease (MAFLD) are lacking. An increasing body of evidence suggests that epigenetic dysregulation is frequent in MAFLD, and orchestrates many aspects of its development and progression. Furthermore, the high plasticity of epigenetic modifications in response to environmental cues renders epigenetics a novel area for therapeutic drug discovery. Over recent years, several epigenetics-based drugs and diagnostic biomarkers have entered clinical development and/or obtained regulatory approval. Here, we review recent advances in our understanding of epigenetic regulation and programming during MAFLD, including DNA methylation, histone modifications, chromatin remodelling, transcriptional control, and noncoding (nc)RNAs. We also discuss the potential translational implications and challenges of epigenetics in the context of MAFLD.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
29
|
Rodríguez-Aguilera JR, Ecsedi S, Goldsmith C, Cros MP, Domínguez-López M, Guerrero-Celis N, Pérez-Cabeza de Vaca R, Chemin I, Recillas-Targa F, Chagoya de Sánchez V, Hernández-Vargas H. Genome-wide 5-hydroxymethylcytosine (5hmC) emerges at early stage of in vitro differentiation of a putative hepatocyte progenitor. Sci Rep 2020; 10:7822. [PMID: 32385352 PMCID: PMC7210258 DOI: 10.1038/s41598-020-64700-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
A basic question linked to differential patterns of gene expression is how cells reach different fates despite using the same DNA template. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome, including a role in establishing such tissue-specific patterns of expression. Recently we described TET1-mediated enrichment of 5hmC on the promoter region of the master regulator of hepatocyte identity, HNF4A, which precedes differentiation of liver adult progenitor cells in vitro. Here, we studied the genome-wide distribution of 5hmC at early in vitro differentiation of human hepatocyte-like cells. We found a global increase in 5hmC as well as a drop in 5-methylcytosine after one week of in vitro differentiation from bipotent progenitors, at a time when the liver transcript program is already established. 5hmC was overall higher at the bodies of overexpressed genes. Furthermore, by modifying the metabolic environment, an adenosine derivative prevents 5hmC enrichment and impairs the acquisition of hepatic identity markers. These results suggest that 5hmC could be a marker of cell identity, as well as a useful biomarker in conditions associated with cell de-differentiation such as liver malignancies.
Collapse
Affiliation(s)
- Jesús Rafael Rodríguez-Aguilera
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Szilvia Ecsedi
- Institute of Biology Valrose (iBV), The National Center for Scientific Research (CNRS) - National Institute of Health and Medical Research (Inserm), Université Côte d'Azur, Nice, France
| | - Chloe Goldsmith
- Department of Immunity, Virus and Inflammation. Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, CEDEX 08, France
| | - Marie-Pierre Cros
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France
| | - Mariana Domínguez-López
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Nuria Guerrero-Celis
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Rebeca Pérez-Cabeza de Vaca
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
- Division of Biomedical Research, Centro Médico Nacional "20 de noviembre", ISSSTE, San Lorenzo 502, Benito Juárez, 03100, Cd. Mx., Mexico
| | - Isabelle Chemin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon Université Claude Bernard, Lyon, France
| | - Félix Recillas-Targa
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico
| | - Victoria Chagoya de Sánchez
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., Mexico.
| | - Héctor Hernández-Vargas
- Department of Immunity, Virus and Inflammation. Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, CEDEX 08, France.
- Department of Translational Research and Innovation. Centre Léon Bérard, 28 rue Laennec, 69373, Lyon, CEDEX 08, France.
| |
Collapse
|