1
|
Barbosa O, Freitas AT, Silvestre MP, Moreira-Rosário A, Aguiar P, Régua AI, Madaleno T, Almeida M, Cruz D. Effects of Maternal Vitamin D Levels on Prematurity: Feasibility Study in a Multicenter Observational Pilot. Nutrients 2025; 17:1160. [PMID: 40218918 PMCID: PMC11990355 DOI: 10.3390/nu17071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Numerous studies have shown that hypovitaminosis D is linked to adverse maternal and infant health outcomes, such as intrauterine growth restriction, preeclampsia, cholestasis, hypertension, and gestational diabetes, all of which are potential causes of prematurity. Recognizing the significance of this issue and its impact on maternal-infant health, the VitDTracking research project was designed and registered on 4 March 2024, in the ClinicalTrials.gov database (Identifier: NCT06292195). The project includes a large-scale multicenter observational study, targeting a minimum initial sample size of 1800 participants. This paper describes the pilot study aimed at assessing the feasibility of the full-scale study. Methods: A multicenter observational pilot study was conducted in public health organizations in the Alentejo region, adhering to the research protocol. Data collection included 67 parameters: 37 obtained from a questionnaire and 30 from clinical records, with particular focus on maternal 25(OH)D levels and maternal-infant health outcomes. Feasibility was assessed through predefined outcome indicators and success criteria. Results: The pilot study enrolled 30 pregnant women and successfully met all feasibility criteria. The global recruitment rate was 73.17%, with an eligible recruitment rate of 88.2%. The refusal rate was low (11%), and adherence, retention, and completion rates were all 100%, indicating strong participant engagement. The questionnaire comprehension rate was 86.6%. Participating centers demonstrated the capacity to implement the study, adhering to the protocol with a compliance rate exceeding 90%. The study also highlighted a concerning prevalence of hypovitaminosis D and identified cases of premature birth and miscarriage. Conclusions: The pilot study confirmed the feasibility of recruitment methodologies and procedures, supporting the implementation of the large-scale observational study. The planned study will recruit approximately 1800 pregnant women to achieve an eligible cohort of 1000 samples, and a statistically significant final sample of 100 cases meeting the prematurity criterion.
Collapse
Affiliation(s)
- Olivia Barbosa
- Comprehensive Health Research Centre (CHRC), 1150-082 Lisboa, Portugal;
- Escola Superior de Enfermagem São João de Deus, Universidade de Évora, 7000-811 Évora, Portugal
- Neonatal Intensive Care Unit, Unidade Local de Saúde do Alentejo Central (ULSAC), 7000-811 Évora, Portugal
| | - Ana Teresa Freitas
- Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa (INESC-ID), 1000-029 Lisboa, Portugal;
- Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marta P. Silvestre
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (M.P.S.); (A.M.-R.)
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - André Moreira-Rosário
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (M.P.S.); (A.M.-R.)
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Pedro Aguiar
- NOVA National School of Public Health, Universidade NOVA de Lisboa, 1600-560 Lisboa, Portugal;
| | - Ana Isabel Régua
- Unidade Local de Saúde do Baixo Alentejo (ULSBA), 7801-849 Beja, Portugal;
| | - Tatiana Madaleno
- Unidade Local de Saúde do Norte Alentejo (ULSNA), 7301-853 Portalegre, Portugal;
| | - Manuela Almeida
- Outpatient Consultation Service, Unidade Local de Saúde do Alentejo Central (ULSAC), 7005-169 Évora, Portugal;
| | - Dulce Cruz
- Comprehensive Health Research Centre (CHRC), 1150-082 Lisboa, Portugal;
- Escola Superior de Enfermagem São João de Deus, Universidade de Évora, 7000-811 Évora, Portugal
| |
Collapse
|
2
|
Kawai T, Jwa SC, Ogawa K, Tanaka H, Aoto S, Kamura H, Morisaki N, Fujiwara T, Hata K. Maternal Vitamin D Deficiency Is a Risk Factor for Infants' Epigenetic Gestational Age Acceleration at Birth in Japan: A Cohort Study. Nutrients 2025; 17:368. [PMID: 39861498 PMCID: PMC11769275 DOI: 10.3390/nu17020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development. Maternal vitamin D deficiency is common in Japan. The aim of this study was to investigate the associations between maternal serum vitamin D levels and epigenetic gestational age acceleration at birth in Japan. METHODS The data were obtained from the hospital-based birth cohort study conducted at the National Center for Child Health and Development in Tokyo, Japan. Maternal blood was collected in the second trimester to measure the serum vitamin D concentration. Cord blood was collected at birth to measure serum vitamin D and to extract DNA. DNA methylation was assessed using an Illumina methylation EPIC array. Epigenetic gestational age was calculated using the "methylclock" R package. Linear regression analysis was performed to see associations. RESULTS Maternal serum vitamin D levels in the second trimester were negatively associated with epigenetic gestational age acceleration at birth when calculated by Bohlin's method (regression coefficient [95% CI]: -0.022 [-0.039, -0.005], n = 157), which was still significant after considering infants' sex (-0.022 [-0.039, -0.005]). Cord blood serum vitamin D levels were not associated with epigenetic age acceleration. Maternal age at delivery and birth height were associated in positive and negative ways with epigenetic gestational age acceleration, respectively (0.048 [0.012, 0.085] and -0.075 [-0.146, -0.003]). CONCLUSIONS Maternal vitamin D deficiency was related to an infant's epigenetic gestational age acceleration at birth. These findings suggest that the association between fetal development and maternal vitamin D levels may involve the fetal epigenetic regulation of the fetus.
Collapse
Affiliation(s)
- Tomoko Kawai
- Division of Fetal Development, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Seung Chik Jwa
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimono 329-0498, Japan;
| | - Kohei Ogawa
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan;
| | - Hisako Tanaka
- Department of Social Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan; (H.T.); (N.M.)
| | - Saki Aoto
- Medical Genome Center, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan (K.H.)
| | - Naho Morisaki
- Department of Social Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan; (H.T.); (N.M.)
| | - Takeo Fujiwara
- Department of Public Health, Institute of Science Tokyo, Tokyo 113-8510, Japan;
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan (K.H.)
- Department of Human Molecular Genetics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| |
Collapse
|
3
|
Parenti M, Melough MM, Lapehn S, MacDonald J, Bammler T, Firsick EJ, Choi HY, Derefinko KJ, Enquobahrie DA, Carroll KN, LeWinn KZ, Bush NR, Zhao Q, Sathyanarayana S, Paquette AG. Associations Between Prenatal Vitamin D and Placental Gene Expression. J Nutr 2024; 154:3603-3614. [PMID: 39401684 DOI: 10.1016/j.tjnut.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Vitamin D is a hormone that regulates gene transcription. Prenatal vitamin D has been linked to immune and vascular function in the placenta, a key organ of pregnancy. Transcriptome-wide RNA sequencing can provide a more complete representation of the placental effects of vitamin D. OBJECTIVES We investigated the association between prenatal vitamin D concentrations and placental gene expression in a large, prospective pregnancy cohort. METHODS Participants were recruited from Shelby County, TN, United States, in the Conditions Affecting Neurocognitive Development and Learning in Early childhood (CANDLE) study. Vitamin D (plasma total 25-hydroxyvitatmin D, [25(OH)D]) was measured at midpregnancy (16-28 wk) and delivery. RNA was sequenced from placental samples collected at birth. We identified differentially expressed genes (DEGs) using adjusted linear regression models. We also conducted weighted gene coexpression network analysis. RESULTS The median 25(OH)D of participants was 21.8 ng/mL at midpregnancy (N = 774; IQR: 15.4-26.5 ng/mL) and 23.6 ng/mL at delivery (n = 753; IQR: 16.8-29.1 ng/mL). Placental expression of 17 DEGs was associated with 25(OH)D at midpregnancy, but only 1 DEG was associated with 25(OH)D at delivery. DEGs were related to energy metabolism, cytoskeletal function, and transcriptional regulation. We identified 2 weighted gene coexpression network analysis gene modules whose expression was associated with 25(OH)D at midpregnancy and 1 module associated with 25(OH)D at delivery. These modules were enriched for genes related to mitochondrial and cytoskeletal function and were regulated by transcription factors including ARNT2 and FOSL2. We also identified 12 modules associated with 25(OH)D in females and 1 module in males. CONCLUSIONS 25(OH)D during midpregnancy, but not at delivery, is associated with placental gene expression at birth. Future research is needed to investigate a potential role of vitamin D in modulating placental mitochondrial metabolism, intracellular transport, and transcriptional regulation during pregnancy.
Collapse
Affiliation(s)
- Mariana Parenti
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.
| | - Melissa M Melough
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, United States
| | - Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Evan J Firsick
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States
| | - Hyo Young Choi
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Karen J Derefinko
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States; Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Daniel A Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Kecia N Carroll
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Yaskolka Meir A, Wang G, Hong X, Hu FB, Wang X, Liang L. Newborn DNA methylation age differentiates long-term weight trajectories: the Boston Birth Cohort. BMC Med 2024; 22:373. [PMID: 39256781 PMCID: PMC11389437 DOI: 10.1186/s12916-024-03568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be determined. METHODS GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth cohort based on cord blood DNA methylation profile using Illumina EPIC array. Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term weight trajectories from birth to 18 years. RESULTS GAmAge was associated with BMIPCT trajectories, defined by 4 groups: stable (consistent OWO: "early OWO"; constant normal weight: "NW") or non-stable (OWO by year 1 of follow-up: "late OWO"; OWO by year 6 of follow-up: "NW to very late OWO"). GAmAge differentiated between the group with consistently normal BMIPCT pattern and the non-stable groups with late and very late OWO development. Such differentiation was observed in the age periods of birth to 1year, 3years, 6years, 10years, and 14years (p < 0.05 for all). The findings persisted after adjusting for GEAA, maternal smoking, delivery method, and child's sex in multivariate models. Birth weight was a mediator for the GAmAge effect on OWO status for specific groups at multiple age periods. CONCLUSIONS GAmAge is associated with BMIPCT trajectories from birth to age 18 years, independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early biomarker for predicting BMI trajectory to inform early risk assessment and prevention of OWO. TRIAL REGISTRATION ClinicalTrials.gov (NCT03228875).
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Guoying Wang
- Center On Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Xiumei Hong
- Center On Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospitaland, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaobin Wang
- Center On Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Zhou QL, Ye D, Ren PC, Pang WB, Lin XM, Cao RH, Ye XS, Xiang W, Xiao L. A multi-omics analysis reveals vitamin D supplementation since childhood modulates molecules for signal transductions in the mouse striatum. Biomed Pharmacother 2024; 178:117145. [PMID: 39038374 DOI: 10.1016/j.biopha.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Vitamin D is a critical fat-soluble vitamin for the nervous system. Research suggests a potential link between vitamin D deficiency and attention-deficit hyperactivity disorder (ADHD), particularly in children and adolescents. The core symptoms of ADHD are associated with deficits in striatal functions, and maintaining sufficient levels of vitamin D may help prevent or alleviate ADHD symptoms. However, the molecular changes in the striatum caused by vitamin D supplementation that may contribute to the brain processes linked to ADHD symptoms remain unclear. In this study, we established a mouse model fed diets with three different dose gradients of vitamin D3 (0, 500, and 2000 IU/kg·day) from postnatal day 21 (P21) to 14 weeks of age. Striatal tissues from mice with gradient vitamin D3 intake were subjected to reduced representation bisulfite sequencing (RRBS), RNA-sequencing, and neurotransmitter profiling by liquid chromatography-mass spectrometry (LC-MS). Our findings indicate that vitamin D supplementation since childhood influenced the overall landscape of DNA methylations and the expression of many genes involved in critical neurological functions in a dose-dependent manner. Additionally, our data demonstrate how vitamin D modulated neuropeptide signaling pathways, as well as cholinergic and dopaminergic synapses in the striatum, through an orchestrated mechanism involving epigenetic and transcriptional regulations. Furthermore, we observed a synergistic effect of vitamin D on dopamine release following acute methylphenidate injection into our mouse model. In summary, this study provides mechanistic insights into how dietary vitamin D supplementation since childhood can modulate specific signal transductions among striatal cells, underscoring the importance of vitamin D supplementation for ADHD management.
Collapse
Affiliation(s)
- Q L Zhou
- Hainan Women and Children's Medical Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China; School of Basic Medicine and Life Science, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - D Ye
- Hainan Women and Children's Medical Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China; School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - P C Ren
- Hainan Women and Children's Medical Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China; School of Basic Medicine and Life Science, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - W B Pang
- School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - X M Lin
- Hainan Women and Children's Medical Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China; School of Basic Medicine and Life Science, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - R H Cao
- Hainan Women and Children's Medical Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China; School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - X S Ye
- School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China
| | - W Xiang
- Hainan Women and Children's Medical Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China; School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China.
| | - L Xiao
- Hainan Women and Children's Medical Center, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China; School of Pediatrics, Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, China.
| |
Collapse
|
6
|
Palacios C, Kostiuk LL, Cuthbert A, Weeks J. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev 2024; 7:CD008873. [PMID: 39077939 PMCID: PMC11287789 DOI: 10.1002/14651858.cd008873.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
BACKGROUND Vitamin D supplementation during pregnancy may help improve maternal and neonatal health outcomes (such as fewer preterm birth and low birthweight babies) and reduce the risk of adverse pregnancy outcomes (such as severe postpartum haemorrhage). OBJECTIVES To examine whether vitamin D supplementation alone or in combination with calcium or other vitamins and minerals given to women during pregnancy can safely improve certain maternal and neonatal outcomes. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Trials Register (which includes results of comprehensive searches of CENTRAL, MEDLINE, Embase, CINAHL, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, and relevant conference proceedings) (3 December 2022). We also searched the reference lists of retrieved studies. SELECTION CRITERIA Randomised and quasi-randomised trials evaluating the effect of supplementation with vitamin D alone or in combination with other micronutrients for women during pregnancy in comparison to placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently i) assessed the eligibility of studies against the inclusion criteria, ii) assessed trustworthiness based on pre-defined criteria of scientific integrity, iii) extracted data from included studies, and iv) assessed the risk of bias of the included studies. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS The previous version of this review included 30 studies; in this update, we have removed 20 of these studies to 'awaiting classification' following assessments of trustworthiness, one study has been excluded, and one new study included. This current review has a total of 10 included studies, 117 excluded studies, 34 studies in awaiting assessment, and seven ongoing studies. We used the GRADE approach to assess the certainty of the evidence. This removal of the studies resulted in evidence that was downgraded to low-certainty or very low-certainty due to study design limitations, inconsistency between studies, and imprecision. Supplementation with vitamin D compared to no intervention or a placebo A total of eight studies involving 2313 pregnant women were included in this comparison. We assessed four studies as having a low risk of bias for most domains and four studies as having high risk or unclear risk of bias for most domains. The evidence is very uncertain about the effect of supplementation with vitamin D during pregnancy compared to placebo or no intervention on pre-eclampsia (risk ratio (RR) 0.53, 95% confidence interval (CI) 0.21 to 1.33; 1 study, 165 women), gestational diabetes (RR 0.53, 95% CI 0.03 to 8.28; 1 study, 165 women), preterm birth (< 37 weeks) (RR 0.76, 95% CI 0.25 to 2.33; 3 studies, 1368 women), nephritic syndrome (RR 0.17, 95% CI 0.01 to 4.06; 1 study, 135 women), or hypercalcaemia (1 study; no cases reported). Supplementation with vitamin D during pregnancy may reduce the risk of severe postpartum haemorrhage; however, only one study reported this outcome (RR 0.68, 95% CI 0.51 to 0.91; 1 study, 1134 women; low-certainty evidence) and may reduce the risk of low birthweight; however, the upper CI suggests that an increase in risk cannot be ruled out (RR 0.69, 95% CI 0.44 to 1.08; 3 studies, 371 infants; low-certainty evidence). Supplementation with vitamin D + calcium compared to no intervention or a placebo One study involving 84 pregnant women was included in this comparison. Overall, this study was at moderate to high risk of bias. Pre-eclampsia, gestational diabetes, and maternal adverse events were not reported. The evidence is very uncertain about the effect of supplementation with vitamin D and calcium on preterm birth (RR not estimable; very low-certainty evidence) or for low birthweight (RR 1.45, 95% CI 0.14 to 14.94; very low-certainty evidence) compared to women who received placebo or no intervention. Supplementation with vitamin D + calcium + other vitamins and minerals versus calcium + other vitamins and minerals (but no vitamin D) One study involving 1298 pregnant women was included in this comparison. We assessed this study as having a low risk of bias in all domains. Pre-eclampsia was not reported. The evidence is very uncertain about the effect of supplementation with vitamin D, calcium, and other vitamins and minerals during pregnancy compared to no vitamin D on gestational diabetes (RR 0.42, 95% CI 0.10 to 1.73; very low-certainty evidence), maternal adverse events (hypercalcaemia no events and hypercalciuria RR 0.25, 95% CI 0.02 to 3.97; very low-certainty evidence), preterm birth (RR 1.04, 95% CI 0.68 to 1.59; low-certainty evidence), or low birthweight (RR 1.12, 95% CI 0.82 to 1.51; low-certainty evidence). AUTHORS' CONCLUSIONS This updated review using the trustworthy assessment tool removed 21 studies from the previous update and added one new study for a total of 10 included studies. In this setting, supplementation with vitamin D alone compared to no intervention or a placebo resulted in very uncertain evidence on pre-eclampsia, gestational diabetes, preterm birth, or nephritic syndrome. It may reduce the risk of severe postpartum haemorrhage; however, only one study reported this outcome. It may also reduce the risk of low birthweight; however, the upper CI suggests that an increase in risk cannot be ruled out. Supplementation with vitamin D and calcium versus placebo or no intervention resulted in very uncertain evidence on preterm birth and low birthweight. Pre-eclampsia, gestational diabetes, and maternal adverse events were not reported in the only study included in this comparison. Supplementation with vitamin D + calcium + other vitamins and minerals versus calcium + other vitamins and minerals (but no vitamin D) resulted in very uncertain evidence on gestational diabetes and maternal adverse events (hypercalciuria) and uncertain evidence on preterm birth and low birthweight. Pre-eclampsia was not reported in the only study included in this comparison. All findings warrant further research. Additional rigorous, high-quality, and larger randomised trials are required to evaluate the effects of vitamin D supplementation in pregnancy, particularly in relation to the risk of maternal adverse events.
Collapse
Affiliation(s)
- Cristina Palacios
- Department of Dietetics and Nutrition, Florida International University, Miami, Florida, USA
| | - Lia L Kostiuk
- Clinical Safety, Daiichi Sankyo, Basking Ridge, New Jersey, USA
| | - Anna Cuthbert
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Jo Weeks
- Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
8
|
Barbosa O, Sim-Sim M, Silvestre MP, Pedro C, Cruz D. Effects of vitamin D levels during pregnancy on prematurity: a systematic review protocol. BMJ Open 2024; 14:e076702. [PMID: 38418231 PMCID: PMC10910675 DOI: 10.1136/bmjopen-2023-076702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/22/2023] [Indexed: 03/01/2024] Open
Abstract
INTRODUCTION Prematurity is an urgent public health problem worldwide. Recent studies associate maternal hypovitaminosis D during pregnancy with an increased risk of prematurity. However, the evidence on this association remains inconclusive, and there is lack of consensus in the literature. The exact mechanism by which low vitamin D levels may increase the risk of preterm birth is not yet fully understood. Nevertheless, it is known that vitamin D may play a role in maintaining a healthy pregnancy by regulating inflammation and immunomodulation by acting on the maternal and fetal immune systems. Inflammation and immune dysregulation are both associated with preterm birth, and low vitamin D levels may exacerbate these processes. The results of this review may have important implications for clinical practice and public health policy, particularly regarding vitamin D supplementation during pregnancy. METHODS AND ANALYSIS A systematic review of the literature will be conducted. The search will be performed in electronic databases: CINAHL; MEDLINE; Cochrane Central Register of Controlled Trials; Cochrane Library; Academic Search Complete; Information Science and Technology Abstracts; MedicLatina; SCOPUS; PubMed; and Google Scholar, with the chronological range of January 2018 to November 2022. The search strategy will include the following Medical Subject Headings or similar terms: 'Vitamin D'; '25-hydroxyvitamin D'; 'Hypovitaminosis D'; 'Pregnancy'; 'Pregnant women'; 'Expectant mother'; 'Prematurity'; 'Premature birth'; 'Premature delivery'; 'Preterm birth'; and 'Preterm labour'. This review will include quantitative primary studies, both experimental (clinical trials) and observational (cohort, cross-sectional, and case-control). The quality of each selected study and the results obtained will be assessed by two reviewers separately, using the Cochrane risk of bias tool for evaluating randomised clinical trials or the Newcastle Ottawa Scale for non-randomised studies, following the respective checklist. In case of disagreement, a third reviewer will be consulted. ETHICS AND DISSEMINATION This study does not involve human subjects and therefore does not require ethics approval. The results will be disseminated through publication in a peer-reviewed scientific journal and through conference presentations. All changes made to the protocol will be registered in PROSPERO, with information on the nature and justification for the changes made. PROSPERO REGISTRATION NUMBER CRD42022303901.
Collapse
Affiliation(s)
- Olívia Barbosa
- University of Évora, Évora, Portugal
- Comprehensive Health Research Centre, Lisboa, Portugal
- Neonatal Intensive Care Unit, Hospital do Espírito Santo de Évora EPE, Évora, Portugal
| | | | - Marta Pereira Silvestre
- Nutrition & Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cristina Pedro
- Neonatal Intensive Care Unit, Hospital do Espírito Santo de Évora EPE, Évora, Portugal
| | - Dulce Cruz
- University of Évora, Évora, Portugal
- Comprehensive Health Research Centre, Lisboa, Portugal
| |
Collapse
|
9
|
Marques I, Santos S, Monasso GS, Fossati S, Vrijheid M, Nieuwenhuijsen M, Jaddoe VWV, Felix JF. Associations of green and blue space exposure in pregnancy with epigenetic gestational age acceleration. Epigenetics 2023; 18:2165321. [PMID: 36628941 PMCID: PMC9980449 DOI: 10.1080/15592294.2023.2165321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Early life is seen as a particularly sensitive period for environmental exposures. Natural space exposure during pregnancy has been associated with offspring health. Epigenetic gestational age acceleration, a discrepancy between clinical and DNA methylation-based gestational age, may underlie these associations. In 1359 mother-newborn pairs from the population-based Generation R Study, we examined the associations of natural space exposure, defined as surrounding greenness, distance to major green and blue (water) space, and size of the blue space during pregnancy with offspring epigenetic gestational age acceleration. Natural space exposure was based on participants' geocoded addresses, and epigenetic gestational age acceleration was calculated from cord blood DNA methylation using Bohlin's and Knight's epigenetic clocks. Sensitivity analyses were conducted in a subgroup of newborns with optimal pregnancy dating, based on last menstrual period. Surrounding greenness, measured in normalized difference vegetation index values, was intermediate (median 0.4, IQR 0.2), and 84% and 56% of the participants had a major green or blue space near their home address, respectively. We did not observe associations of natural space availability during pregnancy with offspring epigenetic gestational age acceleration. This could imply that epigenetic gestational age acceleration in cord blood does not underlie the effects of residential natural space availability in pregnancy on offspring health. Future studies could investigate whether residential natural space availability during pregnancy is associated with offspring differential DNA methylation at other CpGs than those included in the epigenetic gestational clocks.
Collapse
Affiliation(s)
- Irene Marques
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Giulietta S Monasso
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Serena Fossati
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBER), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBER), Madrid, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Spanish Consortium for Research on Epidemiology and Public Health (CIBER), Madrid, Spain
| | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Meir AY, Wang G, Hong X, Wang X, Liang L. Newborn DNA methylation age differentiates long-term weight trajectory: The Boston Birth Cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.02.23297965. [PMID: 37961472 PMCID: PMC10635264 DOI: 10.1101/2023.11.02.23297965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be determined. Methods GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth cohort using Illumina EPIC array and cord-blood DNA samples. Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term weight trajectories from birth to 18 years. Results Four BMIPCT trajectory groups described the long-term weight trajectories: stable (consistent OWO: "early OWO"; constant normal weight: "NW") or non-stable (OWO by year 1 of follow-up: "late OWO"; OWO by year 6 of follow-up: "NW to very late OWO") BMIPCT. were used GAmAge was a predictor of long-term obesity, differentiating between group with consistently high BMIPCT and group with normal BMIPCT patterns and groups with late OWO development. Such differentiation can be observed in the age periods of birth to 1year, 3years, 6years, 10years, and 14years (p<0.05 for all; multivariate models adjusted for GEAA, maternal smoking, delivery method, and child's sex). Birth weight was a mediator for the GAmAge effect on OWO status for specific groups at multiple age periods. Conclusions GAmAge is associated with BMI trajectories from birth to age 18 years, independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early biomarker for future OWO risk.
Collapse
|
11
|
Oh J, Riek AE, Bauerle KT, Dusso A, McNerney KP, Barve RA, Darwech I, Sprague JE, Moynihan C, Zhang RM, Kutz G, Wang T, Xing X, Li D, Mrad M, Wigge NM, Castelblanco E, Collin A, Bambouskova M, Head RD, Sands MS, Bernal-Mizrachi C. Embryonic vitamin D deficiency programs hematopoietic stem cells to induce type 2 diabetes. Nat Commun 2023; 14:3278. [PMID: 37311757 PMCID: PMC10264405 DOI: 10.1038/s41467-023-38849-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Environmental factors may alter the fetal genome to cause metabolic diseases. It is unknown whether embryonic immune cell programming impacts the risk of type 2 diabetes in later life. We demonstrate that transplantation of fetal hematopoietic stem cells (HSCs) made vitamin D deficient in utero induce diabetes in vitamin D-sufficient mice. Vitamin D deficiency epigenetically suppresses Jarid2 expression and activates the Mef2/PGC1a pathway in HSCs, which persists in recipient bone marrow, resulting in adipose macrophage infiltration. These macrophages secrete miR106-5p, which promotes adipose insulin resistance by repressing PIK3 catalytic and regulatory subunits and down-regulating AKT signaling. Vitamin D-deficient monocytes from human cord blood have comparable Jarid2/Mef2/PGC1a expression changes and secrete miR-106b-5p, causing adipocyte insulin resistance. These findings suggest that vitamin D deficiency during development has epigenetic consequences impacting the systemic metabolic milieu.
Collapse
Affiliation(s)
- Jisu Oh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy E Riek
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin T Bauerle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, VA Medical Center, St. Louis, MO, USA
| | - Adriana Dusso
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle P McNerney
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Isra Darwech
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Clare Moynihan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rong M Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Greta Kutz
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marguerite Mrad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas M Wigge
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Alejandro Collin
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Monika Bambouskova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Bernal-Mizrachi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, VA Medical Center, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Daredia S, Huen K, Van Der Laan L, Collender PA, Nwanaji-Enwerem JC, Harley K, Deardorff J, Eskenazi B, Holland N, Cardenas A. Prenatal and birth associations of epigenetic gestational age acceleration in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort. Epigenetics 2022; 17:2006-2021. [PMID: 35912433 PMCID: PMC9665122 DOI: 10.1080/15592294.2022.2102846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022] Open
Abstract
Gestational age (GA) is an important determinant of child health and disease risk. Two epigenetic GA clocks have been developed using DNA methylation (DNAm) patterns in cord blood. We investigate the accuracy of GA clocks and determinants of epigenetic GA acceleration (GAA), a biomarker of biological ageing. We hypothesize that prenatal and birth characteristics are associated with altered GAA, thereby disrupting foetal biological ageing. We examined 372 mother-child pairs from the Center for the Health Assessment of Mothers and Children of Salinas study of primarily Latino farmworkers in California. Chronological GA was robustly correlated with epigenetic GA (DNAm GA) estimated by the Knight (r = 0.48, p < 2.2x10-16) and Bohlin clocks (r = 0.67, p < 2.2x10-16) using the Illumina 450K array in cord blood samples collected at birth. GA clock performance was robust, though slightly lower, using DNAm profiles from the Illumina EPIC array in a smaller subsample (Knight: r = 0.39, p < 3.5x10-5; Bohlin: r = 0.60, p < 7.7x10-12). After adjusting for confounders, high maternal serum triglyceride levels (Bohlin: β = -0.01 days per mg/dL, p = 0.03), high maternal serum lipid levels (Bohlin: β = -4.31x10-3 days per mg/dL, p = 0.04), preterm delivery (Bohlin: β = -4.03 days, p = 9.64x10-4), greater maternal parity (Knight: β = -4.07 days, p = 0.01; Bohlin: β = -2.43 days, p = 0.01), and male infant sex (Knight: β = -3.15 days, p = 3.10x10-3) were associated with decreased GAA.Prenatal and birth characteristics affect GAA in newborns. Understanding factors that accelerate or delay biological ageing at birth may identify early-life targets for disease prevention and improve ageing across the life-course. Future research should test the impact of altered GAA on the long-term burden of age-related diseases.
Collapse
Affiliation(s)
- Saher Daredia
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Karen Huen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Lars Van Der Laan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Philip A. Collender
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Jamaji C. Nwanaji-Enwerem
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kim Harley
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Andres Cardenas
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
13
|
Monasso GS, Voortman T, Felix JF. Maternal plasma fatty acid patterns in mid-pregnancy and offspring epigenetic gestational age at birth. Epigenetics 2022; 17:1562-1572. [PMID: 35581922 PMCID: PMC9586633 DOI: 10.1080/15592294.2022.2076051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022] Open
Abstract
Maternal pregnancy fatty acid status is associated with child health. Epigenetic gestational age acceleration, referring to a discrepancy between chronological and epigenetic gestational age, may underlie these associations. Previous research suggests that analysing fatty acid patterns rather than individual fatty acids may overcome the caveat of missing synergistic or additive effects. Among 1226 mother-newborn pairs from the population-based Generation R Study, we examined the associations of three maternal plasma mid-pregnancy fatty acid patterns, identified by principal component analysis, with offspring epigenetic gestational age acceleration. This was estimated from cord blood DNA methylation data using the method developed by Bohlin. As a secondary analysis, we used the method developed by Knight to estimate epigenetic gestational age. The identified 'high n-6 polyunsaturated fatty acid,' 'monounsaturated and saturated fatty acid' and 'high n-3 polyunsaturated fatty acid' patterns were not associated with epigenetic gestational age acceleration in the main analyses. In sensitivity analyses restricted to 337 children born to mothers with more accurate pregnancy dating based on a regular menstrual cycle, a one standard-deviation-score higher maternal plasma 'high n-3 polyunsaturated fatty acid' pattern was associated with an epigenetic gestational age acceleration of 0.20 weeks (95% CI 0.06, 0.33), but only when using the Knight method. Thus, we found some evidence that a maternal plasma fatty acid pattern characterized by higher concentrations of n-3 polyunsaturated fatty acids may be associated with accelerated epigenetic gestational ageing. These findings depended on the method used and the accuracy of pregnancy dating and therefore need confirmation.
Collapse
Affiliation(s)
- Giulietta S. Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Luo T, Lin Y, Lu J, Lian X, Guo Y, Han L, Guo Y. Effects of vitamin D supplementation during pregnancy on bone health and offspring growth: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2022; 17:e0276016. [PMID: 36227906 PMCID: PMC9560143 DOI: 10.1371/journal.pone.0276016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Whether vitamin D supplementation during pregnancy is beneficial to bone health and offspring growth remains controversial. Moreover, there is no universal agreement regarding the appropriate dose and the time of commencement of vitamin D supplementation during pregnancy. OBJECTIVE We aimed to systematically review the effects of vitamin D supplementation during pregnancy on bone development and offspring growth. METHODS A literature search for randomized controlled trials (RCTs) was performed in 7 electronic databases to identify relevant studies about the effects of vitamin D supplementation during pregnancy on bone development and offspring growth from inception to May 22, 2022. A Cochrane Risk Assessment Tool was used for quality assessment. Vitamin D supplementation was compared with placebo or standard supplements. The effects are presented as the mean differences (MDs) with 95% CIs. The outcomes include bone mineral content (BMC), bone mineral density (BMD), bone area (BA), femur length (FL) and humeral length (HL); measurement indicators of growth, including length, weight and head circumference; and secondary outcome measures, including biochemical indicators of bone health, such as the serum 25(OH)D concentration. Additionally, subgroup analyses were carried out to evaluate the impact of different doses and different initiation times of supplementation with vitamin D. RESULTS Twenty-three studies with 5390 participants met our inclusion criteria. Vitamin D supplementation during pregnancy was associated with increased humeral length (HL) (MD 0.13, 95% CI 0.06, 0.21, I2 = 0, P = 0.0007) during the fetal period (third trimester). Vitamin D supplementation during pregnancy was associated with a significantly increased length at birth (MD 0.14, 95% CI 0.04, 0.24, I2 = 24%, P = 0.005) and was associated with a higher cord blood 25(OH)D concentration (MD 48.74, 95% CI 8.47, 89.01, I2 = 100%, P = 0.02). Additionally, subgroup analysis revealed that birth length was significantly higher in the vitamin D intervention groups of ≤1000 IU/day and ≥4001 IU/day compared with the control group. Prenatal (third trimester) vitamin D supplementation was associated with a significant increase in birth length, while prenatal (second trimester) vitamin D supplementation was associated with a significant increase in birth weight. CONCLUSION Vitamin D supplementation during pregnancy may be associated with increased humeral length (HL) in the uterus, increased body length at birth and higher cord blood 25(OH)D concentration. Evidence of its effect on long-term growth in children is lacking. Additional rigorous high-quality, long-term and larger randomized trials are required to more fully investigate the effects of vitamin D supplementation during pregnancy.
Collapse
Affiliation(s)
- Ting Luo
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Yunzhu Lin
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
- * E-mail:
| | - Jiayue Lu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Xianghong Lian
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Yuanchao Guo
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Lu Han
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| | - Yixin Guo
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
15
|
Lu Y, Zhang X, Wu S, Zhang S, Tan J. A bibliometric analysis of global research on vitamin D and reproductive health between 2012 and 2021: Learning from the past, planning for the future. Front Nutr 2022; 9:973332. [PMID: 36159484 PMCID: PMC9493010 DOI: 10.3389/fnut.2022.973332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background Vitamin D plays an invaluable role in reproductive health, but vitamin D insufficiency and deficiency are generally common among couples of childbearing age and pregnant women. This study aimed to evaluate the evolution, development trend, and research hotspot of publications on vitamin D and reproductive health. Methods The literature on vitamin D and reproductive health between 2012 and 2021 was retrieved from the Web of Science Core Collection (WoSCC). We used VOSviewer and CiteSpace to analyze publication years, countries, institutions, journals, highly cited authors and publications, and co-occurrence and citation bursts of keywords. Results A total of 1,828 articles and reviews on vitamin D and reproductive health published between 2012 and 2021 were identified. The annual publication outputs showed steady growth, with the most publications (272) and citations (7,097) in 2021. The United States contributed the most publications (458) and had the highest h-index (58). In terms of the number of publications and h-index, the journal named Nutrients ranked first. Nutrition dietetics, obstetrics gynecology, and endocrinology metabolism were three well-represented disciplines in research on vitamin D and reproductive health. Hollis BW, Wagner CL, and Litonjua AA were the top three most productive authors in this field during the last decade. Apart from vitamin D, the five keywords with the most frequent occurrence were vitamin D deficiency, pregnancy, risk, vitamin D supplementation, and 25-hydroxyvitamin D. Keyword citation burst analysis revealed that low birth weight, adipose tissue, marker, and embryo had a citation burst lasting until 2021. Conclusion In conclusion, vitamin D has received continuous attention in the field of reproductive health, and there appears to have a higher level of research in North America. Multidisciplinary intersection contributed to the in-depth exploration in this field. And the effect of maternal vitamin D levels on fetal lipid metabolism and the prediction of fertility by vitamin D-related markers might be hotspots for the research.
Collapse
Affiliation(s)
- Yimeng Lu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
16
|
Koemel NA, Skilton MR. Epigenetic Aging in Early Life: Role of Maternal and Early Childhood Nutrition. Curr Nutr Rep 2022; 11:318-328. [PMID: 35192186 PMCID: PMC9174131 DOI: 10.1007/s13668-022-00402-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Early life presents a pivotal period during which nutritional exposures are more likely to cause epigenetic modifications, which may impact an individual's health during adulthood. This article reviews the current evidence regarding maternal and early childhood nutritional exposures and their role in epigenetic aging. RECENT FINDINGS Maternal and early life consumption of diets higher in fiber, antioxidants, polyphenols, B vitamins, vitamin D, and ω-3 fatty acids is associated with slower epigenetic aging. Conversely, diets higher in glycemic load, fat, saturated fat, and ω-6 fatty acids demonstrate a positive association with epigenetic aging. Maternal and early life nutrition directly and indirectly influences epigenetic aging via changes in one-carbon metabolism, cardiometabolic health, and the microbiome. Clinical trials are warranted to determine the specific foods, dietary patterns, and dietary supplements that will normalize or lower epigenetic aging across the life course.
Collapse
Affiliation(s)
- Nicholas A. Koemel
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael R. Skilton
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Sydney Institute for Women, Children and Their Families, Sydney Local Health District, Sydney, Australia
| |
Collapse
|
17
|
Abstract
The placenta plays an important role in how vitamin D is metabolized and supplied to the fetus.
Collapse
Affiliation(s)
- Carol L Wagner
- Division of Neonatology, Shawn Jenkins Children's Hospital, Charleston, United States.,Darby Children's Research Institute, Medical University of South Carolina, Charleston, United States
| | - Bruce W Hollis
- Division of Neonatology, Shawn Jenkins Children's Hospital, Charleston, United States.,Darby Children's Research Institute, Medical University of South Carolina, Charleston, United States
| |
Collapse
|
18
|
Monasso GS, Jaddoe VWV, Küpers LK, Felix JF. Epigenetic age acceleration and cardiovascular outcomes in school-age children: The Generation R Study. Clin Epigenetics 2021; 13:205. [PMID: 34784966 PMCID: PMC8597298 DOI: 10.1186/s13148-021-01193-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hypertension and atherosclerosis may partly originate in early life. Altered epigenetic aging may be a mechanism underlying associations of early-life exposures and the development of cardiovascular risk factors in childhood. A discrepancy between chronological age and age predicted from neonatal DNA methylation data is referred to as age acceleration. It may either be positive, if DNA methylation age is older than clinical age, or negative, if DNA methylation age is younger than chronological age. We examined associations of age acceleration at birth ('gestational age acceleration'), and of age acceleration at school-age, with blood pressure and with intima-media thickness and distensibility of the common carotid artery, as markers of vascular structure and function, respectively, measured at age 10 years. RESULTS This study was embedded in the Generation R Study, a population-based prospective cohort study. We included 1115 children with information on cord blood DNA methylation and blood pressure, carotid intima-media thickness or carotid distensibility. Gestational age acceleration was calculated using the Bohlin epigenetic clock, which was developed specifically for cord blood DNA methylation data. It predicts gestational age based on methylation levels of 96 CpGs from HumanMethylation450 BeadChip. We observed no associations of gestational age acceleration with blood pressure, carotid intima-media thickness or carotid distensibility at age 10 years. In analyses among children with peripheral blood DNA methylation measured at age 6 (n = 470) and 10 (n = 449) years, we also observed no associations of age acceleration at these ages with the same cardiovascular outcomes, using the 'skin and blood clock,' which predicts age based on methylation levels at 391 CpGs from HumanMethylation450 BeadChip. CONCLUSIONS Our findings do not provide support for the hypothesis that altered epigenetic aging during the earliest phase of life is involved in the development of cardiovascular risk factors in childhood.
Collapse
Affiliation(s)
- Giulietta S Monasso
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leanne K Küpers
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Janine F Felix
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Abstract
ABSTRACT Recent research efforts have provided compelling evidence of genome-wide DNA methylation alterations in pediatrics. It is currently well established that epigenetic clocks, composed of DNA methylation sites, can estimate the gestational and chronological age of cells and tissues from different ages. Also, extensive research is aimed at their correlation with early life exposure and pediatric diseases. This review aimed to systematically summarize the epigenetic clocks in the pediatric population. Publications were collected from PubMed and Web of Science databases up to Apr 2021. Epigenetic clocks, DNA methylation clocks, epigenetic age acceleration or deceleration, pediatric and the pediatric population were used as search criteria. Here, we first review the currently applicative pediatric epigenetic clocks. We then highlight the interpretation for epigenetic age deviations in the pediatric population and their association with external factors, developmental trajectories, and pediatric diseases. Considering the remaining unknown of pediatric clocks, research strategies into them are also discussed. In all, pediatric epigenetic clocks may act as potent tools to understand development, growth and diseases in early life.
Collapse
|
20
|
Monasso GS, Küpers LK, Jaddoe VWV, Heil SG, Felix JF. Associations of circulating folate, vitamin B12 and homocysteine concentrations in early pregnancy and cord blood with epigenetic gestational age: the Generation R Study. Clin Epigenetics 2021; 13:95. [PMID: 33926538 PMCID: PMC8082638 DOI: 10.1186/s13148-021-01065-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Circulating folate, vitamin B12 and homocysteine concentrations during fetal development have been associated with health outcomes in childhood. Changes in fetal DNA methylation may be an underlying mechanism. This may be reflected in altered epigenetic aging of the fetus, as compared to chronological aging. The difference between gestational age derived in clinical practice and gestational age predicted from neonatal DNA methylation data is referred to as gestational age acceleration. Differences in circulating folate, vitamin B12 and homocysteine concentrations during fetal development may be associated with gestational age acceleration. RESULTS Up to 1346 newborns participating in the Generation R Study, a population-based prospective cohort study, had both cord blood DNA methylation data available and information on plasma folate, serum total and active B12 and plasma homocysteine concentrations, measured in early pregnancy and/or in cord blood. A subgroup of 380 newborns had mothers with optimal pregnancy dating based on a regular menstrual cycle and a known date of last menstrual period. For comparison, gestational age acceleration was calculated based the method of both Bohlin and Knight. In the total study population, which was more similar to Bohlin's training population, one standard deviation score (SDS) higher maternal plasma homocysteine concentrations was nominally associated with positive gestational age acceleration [0.07 weeks, 95% confidence interval (CI) 0.02, 0.13] by Bohlin's method. In the subgroup with pregnancy dating based on last menstrual period, the method that was also used in Knight's training population, one SDS higher cord serum total and active B12 concentrations were nominally associated with negative gestational age acceleration [(- 0.16 weeks, 95% CI - 0.30, - 0.02) and (- 0.15 weeks, 95% CI - 0.29, - 0.01), respectively] by Knight's method. CONCLUSIONS We found some evidence to support associations of higher maternal plasma homocysteine concentrations with positive gestational age acceleration, suggesting faster epigenetic than clinical gestational aging. Cord serum vitamin B12 concentrations may be associated with negative gestational age acceleration, indicating slower epigenetic than clinical gestational aging. Future studies could examine whether altered fetal epigenetic aging underlies the associations of circulating homocysteine and vitamin B12 blood concentrations during fetal development with long-term health outcomes.
Collapse
Affiliation(s)
- Giulietta S Monasso
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leanne K Küpers
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Kassem Z, Sitarik A, Levin AM, Lynch SV, Havstad S, Fujimura K, Kozyrskyj A, Ownby DR, Johnson CC, Yong GJM, Wegienka G, Cassidy-Bushrow AE. Maternal and cord blood vitamin D level and the infant gut microbiota in a birth cohort study. Matern Health Neonatol Perinatol 2020; 6:5. [PMID: 33101701 PMCID: PMC7576815 DOI: 10.1186/s40748-020-00119-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mounting evidence suggests both vitamin D and the early life gut microbiome influence childhood health outcomes. However, little is known about how these two important exposures are related. We aimed to examine associations between plasma 25-hydroxyvitamin D (25[OH]D) levels during pregnancy or at delivery (cord blood) and infant gut microbiota. METHODS Maternal and cord blood 25[OH]D levels were assessed in a sample of pregnant women. Compositional analyses adjusted for race were run on the gut microbiota of their offspring at 1 and 6 months of age. RESULTS Mean prenatal 25(OH)D level was 25.04 ± 11.62 ng/mL and mean cord blood 25(OH)D level was 10.88 ± 6.77 ng/mL. Increasing prenatal 25(OH)D level was significantly associated with decreased richness (p = 0.028) and diversity (p = 0.012) of the gut microbiota at 1 month of age. Both prenatal and cord 25(OH)D were significantly associated with 1 month microbiota composition. A total of 6 operational taxonomic units (OTUs) were significantly associated with prenatal 25(OH)D level (four positively and two negatively) while 11 OTUs were significantly associated with cord 25(OH)D (10 positively and one negatively). Of these, OTU 93 (Acinetobacter) and OTU 210 (Corynebacterium), were consistently positively associated with maternal and cord 25(OH)D; OTU 64 (Ruminococcus gnavus) was positively associated with prenatal 25(OH)D but negatively associated with cord 25(OH)D. CONCLUSIONS Prenatal maternal and cord blood 25(OH)D levels are associated with the early life gut microbiota. Future studies are needed to understand how vitamin D and the microbiome may interact to influence child health.
Collapse
Affiliation(s)
- Zeinab Kassem
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, 5C, Detroit, MI 48202 USA
| | - Alexandra Sitarik
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, 5C, Detroit, MI 48202 USA
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, 5C, Detroit, MI 48202 USA
| | - Susan V. Lynch
- Department of Medicine, University of California, San Francisco, CA USA
| | - Suzanne Havstad
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, 5C, Detroit, MI 48202 USA
| | - Kei Fujimura
- Department of Medicine, University of California, San Francisco, CA USA
| | - Anita Kozyrskyj
- Department of Pediatrics, University of Alberta, Alberta, Canada
| | - Dennis R. Ownby
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Georgia Regents University, Augusta, GA USA
| | - Christine Cole Johnson
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, 5C, Detroit, MI 48202 USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI USA
| | | | - Ganesa Wegienka
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, 5C, Detroit, MI 48202 USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI USA
| | - Andrea E. Cassidy-Bushrow
- Department of Public Health Sciences, Henry Ford Hospital, 1 Ford Place, 5C, Detroit, MI 48202 USA
- Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI USA
| |
Collapse
|