1
|
Christofidou P, Bell CG. The predictive power of profiling the DNA methylome in human health and disease. Epigenomics 2025:1-12. [PMID: 40346834 DOI: 10.1080/17501911.2025.2500907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025] Open
Abstract
Early and accurate diagnosis significantly improves the chances of disease survival. DNA methylation (5mC), the major DNA modification in the human genome, is now recognized as a biomarker of immense clinical potential. This is due to its ability to delineate precisely cell-type, quantitate both internal and external exposures, as well as tracking chronological and biological components of the aging process. Here, we survey the current state of DNA methylation as a biomarker and predictor of traits and disease. This includes Epigenome-wide association study (EWAS) findings that inform Methylation Risk Scores (MRS), EpiScore long-term estimators of plasma protein levels, and machine learning (ML) derived DNA methylation clocks. These all highlight the significant benefits of accessible peripheral blood DNA methylation as a surrogate measure. However, detailed DNA methylation biopsy analysis in real-time is also empowering pathological diagnosis. Furthermore, moving forward, in this multi-omic and biobank scale era, novel insights will be enabled by the amplified power of increasing sample sizes and data integration.
Collapse
Affiliation(s)
- Paraskevi Christofidou
- William Harvey Research Institute, Barts & The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Karlsson L, Öhrnberg I, Sayyab S, Martínez-Enguita D, Gustafsson M, Espinoza P, Méndez-Aranda M, Ugarte-Gil C, Diero L, Tonui R, Paues J, Lerm M. A DNA Methylation Signature From Buccal Swabs to Identify Tuberculosis Infection. J Infect Dis 2025; 231:e47-e58. [PMID: 38962817 PMCID: PMC11793033 DOI: 10.1093/infdis/jiae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/29/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is among the largest infectious causes of death worldwide, and there is a need for a time- and resource-effective diagnostic methods. In this novel and exploratory study, we show the potential of using buccal swabs to collect human DNA and investigate the DNA methylation (DNAm) signatures as a diagnostic tool for TB. METHODS Buccal swabs were collected from patients with pulmonary TB (n = 7), TB-exposed persons (n = 7), and controls (n = 9) in Sweden. Using Illumina MethylationEPIC array, the DNAm status was determined. RESULTS We identified 5644 significant differentially methylated CpG sites between the patients and controls. Performing the analysis on a validation cohort of samples collected in Kenya and Peru (patients, n = 26; exposed, n = 9; control, n = 10) confirmed the DNAm signature. We identified a TB consensus disease module, significantly enriched in TB-associated genes. Last, we used machine learning to identify a panel of 7 CpG sites discriminative for TB and developed a TB classifier. In the validation cohort, the classifier performed with an area under the curve of 0.94, sensitivity of 0.92, and specificity of 1. CONCLUSIONS In summary, the result from this study shows clinical implications of using DNAm signatures from buccal swabs to explore new diagnostic strategies for TB.
Collapse
Affiliation(s)
- Lovisa Karlsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| | - Isabelle Öhrnberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| | - Shumaila Sayyab
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| | - David Martínez-Enguita
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | | - Cesar Ugarte-Gil
- Facultad de Medicina
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ronald Tonui
- AMPATH Kenya
- Department of Pathology, Moi University, Eldoret, Kenya
| | - Jakob Paues
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| |
Collapse
|
3
|
Sutter C, Marti Y, Haas C, Neubauer J. Methylation-based forensic age estimation in blood, buccal cells, saliva and semen: A comparison of two technologies. Forensic Sci Int 2025; 367:112325. [PMID: 39667189 DOI: 10.1016/j.forsciint.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Forensic age estimation of stain donors through DNA methylation has been intensively studied in recent years. To date, there are many published age estimation tools which are based on technologies including pyrosequencing, minisequencing, or MPS. With the implementation of such tools into routine forensic casework in many laboratories worldwide, there is a need for thorough evaluation and performance comparison. In this study, we tested published age estimation tools that are based on either minisequencing or MPS on four body fluids (blood, saliva, buccal cells and semen). All samples were analyzed with both technologies and the age estimates were compared. Biological replicates were taken from ten (blood, saliva, buccal cells) or 12 individuals (semen) to assess the reproducibility of each tool. Our study demonstrates high accuracy in estimating chronological age for various body fluids using both technologies, except for semen. The mean absolute errors (MAEs) ranged from three to five years for blood, saliva and buccal cells, while semen exhibited a higher MAE of seven to eight years. Despite the overall good performance for blood, saliva, and buccal cells, significant discrepancies were observed for some individuals both between the two technologies or when compared to their chronological age. Conclusively, we demonstrated that forensic age estimation tools based on two different technologies are similarly accurate for blood, saliva and buccal cells, while the semen tools need some adjustments before implementation into forensic casework. Our results could be helpful in the decision-making process for laboratories seeking to newly establish an age estimation workflow.
Collapse
Affiliation(s)
- Charlotte Sutter
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| | - Yael Marti
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| | - Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| |
Collapse
|
4
|
Onofri M, Alessandrini F, Aneli S, Buscemi L, Chierto E, Fabbri M, Fattorini P, Garofano P, Gentile F, Presciuttini S, Previderè C, Robino C, Severini S, Tommolini F, Tozzo P, Verzeletti A, Carnevali E. A Ge.F.I. Collaborative Study: Evaluating Reproducibility and Accuracy of a DNA-Methylation-Based Age-Predictive Assay for Routine Implementation in Forensic Casework. Electrophoresis 2025; 46:76-91. [PMID: 39763091 PMCID: PMC11773317 DOI: 10.1002/elps.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
The increasing interest in DNA methylation (DNAm) analysis within the forensic scientific community prompted a collaborative project by Ge.F.I. (Genetisti Forensi Italiani). The study evaluated a standardized bisulfite conversion-based Single Base Extension (SBE) protocol for the analysis of the methylation levels at five age-predictive loci (ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59). The study encompassed three phases: (1) setting up and validating the protocol to ensure consistency and reproducibility; (2) comparing fresh peripheral blood with blood spots; and (3) evaluating sources of intra- and inter-laboratory variability. Samples from 22 Italian volunteers were analyzed by 6 laboratories in replicates for a total of 528 records. From phase I emerged that the choice of genetic sequencer significantly contributed to inter-laboratory data variation, resulting in separate regression analyses performed for each laboratory. In phase II, blood spots were found to be a reliable source for DNAm analysis, despite exhibiting increased experimental variation compared to fresh peripheral blood. In phase III, a strong correlation between the individual's predicted and true ages was observed across different laboratories. Analysis of variance (ANOVA) of the residuals indicated that one-third of the total variance could be attributed to laboratory-specific factors, whereas two-thirds could be attributed to inter-individual biological differences. The leave-one-out cross-validation (LOO-CV) method yielded an overall mean absolute deviation (MAD) value of 4.41 years, with an average 95% confidence interval of 5.24 years. Stepwise regression analysis proved that a restricted model (ELOVL2, C1orf132/MIR29B2C, and TRIM59) produced results virtually indistinguishable from the five-loci model. Additionally, the analysis of samples in replicates greatly improved the fit of the regression model, balancing the slight effects of intra-laboratory variability. In conclusion, the bisulfite conversion-based SBE protocol, combined with replicate analysis and in-lab calibration of a regression-prediction model, proves to be a reliable and easily implementable method for age prediction in forensic laboratories.
Collapse
Affiliation(s)
- Martina Onofri
- Section of Legal MedicineDepartment of Medicine and SurgeryUniversity of PerugiaTerniItaly
| | - Federica Alessandrini
- Department of Biomedical Sciences and Public HealthPolytechnic University of MarcheAnconaItaly
| | - Serena Aneli
- Department of Public Health Sciences and PediatricsUniversity of TurinTurinItaly
| | - Loredana Buscemi
- Department of Biomedical Sciences and Public HealthPolytechnic University of MarcheAnconaItaly
| | - Elena Chierto
- Department of Public Health Sciences and PediatricsUniversity of TurinTurinItaly
| | - Matteo Fabbri
- Section of Legal MedicineDepartment of Translational MedicineUniversity of FerraraFerraraItaly
| | - Paolo Fattorini
- Department of MedicineSurgery and HealthUniversity of TriesteTriesteItaly
| | - Paolo Garofano
- Forensic Genetics Laboratory – Regional Antidoping Centre “A. Bertinaria”OrbassanoItaly
| | - Fabiano Gentile
- Reparto Carabinieri Investigazioni Scientifiche di ParmaBiology SectionParmaItaly
| | - Silvano Presciuttini
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Carlo Previderè
- Department of Public HealthExperimental and Forensic MedicineUniversity of PaviaPaviaItaly
| | - Carlo Robino
- Department of Public Health Sciences and PediatricsUniversity of TurinTurinItaly
| | - Simona Severini
- Forensic Sciences Laboratory, Section of Legal MedicineDepartment of Medicine and SurgerySanta Maria HospitalUniversity of PerugiaTerniItaly
| | - Federica Tommolini
- Forensic Sciences Laboratory, Section of Legal MedicineDepartment of Medicine and SurgerySanta Maria HospitalUniversity of PerugiaTerniItaly
| | - Pamela Tozzo
- Department of CardiacThoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Andrea Verzeletti
- Institute of Legal Medicine of BresciaUniversity of BresciaBresciaItaly
| | - Eugenia Carnevali
- Forensic Sciences Laboratory, Section of Legal MedicineDepartment of Medicine and SurgerySanta Maria HospitalUniversity of PerugiaTerniItaly
| |
Collapse
|
5
|
Pollard CA, Saito ER, Burns JM, Hill JT, Jenkins TG. Considering Biomarkers of Neurodegeneration in Alzheimer's Disease: The Potential of Circulating Cell-Free DNA in Precision Neurology. J Pers Med 2024; 14:1104. [PMID: 39590596 PMCID: PMC11595805 DOI: 10.3390/jpm14111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are a growing public health crisis, exacerbated by an aging global population and the lack of effective early disease-modifying therapies. Early detection of neurodegenerative disorders is critical to delaying symptom onset and mitigating disease progression, but current diagnostic tools often rely on detecting pathology once clinical symptoms have emerged and significant neuronal damage has already occurred. While disease-specific biomarkers, such as amyloid-beta and tau in AD, offer precise insights, they are too limited in scope for broader neurodegeneration screening for these conditions. Conversely, general biomarkers like neurofilament light chain (NfL) provide valuable staging information but lack targeted insights. Circulating cell-free DNA (cfDNA), released during cell death, is emerging as a promising biomarker for early detection. Derived from dying cells, cfDNA can capture both general neurodegenerative signals and disease-specific insights, offering multi-layered genomic and epigenomic information. Though its clinical potential remains under investigation, advances in cfDNA detection sensitivity, standardized protocols, and reference ranges could establish cfDNA as a valuable tool for early screening. cfDNA methylation signatures, in particular, show great promise for identifying tissue-of-origin and disease-specific changes, offering a minimally invasive biomarker that could transform precision neurology. However, further research is required to address technological challenges and validate cfDNA's utility in clinical settings. Here, we review recent work assessing cfDNA as a potential early biomarker in AD. With continued advances, cfDNA could play a pivotal role in shifting care from reactive to proactive, improving diagnostic timelines and patient outcomes.
Collapse
Affiliation(s)
- Chad A. Pollard
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Resonant, Heber, UT 84032, USA
| | | | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205, USA
| | - Jonathon T. Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Timothy G. Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Resonant, Heber, UT 84032, USA
| |
Collapse
|
6
|
Poggiali B, Dupont ME, Jacobsen SB, Smerup MH, Christiansen SNN, Tfelt-Hansen J, Vidaki A, Morling N, Andersen JD. DNA methylation stability in cardiac tissues kept at different temperatures and time intervals. Sci Rep 2024; 14:25170. [PMID: 39448773 PMCID: PMC11502879 DOI: 10.1038/s41598-024-76027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Investigating DNA methylation (DNAm) in cardiac tissues is vital for epigenetic research in cardiovascular diseases (CVDs). During cardiac surgery, biopsies may not be immediately stored due to a lack of human or technical resources at the collection site. Assessing DNAm stability in cardiac samples left in suboptimal conditions is crucial for applying DNAm analysis. We investigated the stability of DNAm in human cardiac tissues kept at 4 °C and 22 °C for periods of 1, 7, 14, and 28 days (exposed samples) using the Illumina Infinium MethylationEPIC v1.0 BeadChip Array. We observed high correlations between samples analysed immediately after tissue collection and exposed ones (R2 > 0.992). Methylation levels were measured as β-values and median absolute β-value differences (|∆β|) ranged from 0.0093 to 0.0119 in all exposed samples. Pairwise differentially methylated position (DMP) analysis revealed no DMPs under 4 °C (fridge temperature) exposure for up to 28 days and 22 °C (room temperature) exposure for one day, while 3,437, 6,918, and 3,824 DMPs were observed for 22 °C samples at 7, 14, and 28 days, respectively. This study provides insights into the stability of genome-wide DNAm, showing that cardiac tissue can be used for reliable DNAm analysis even when stored suboptimally after surgery.
Collapse
Affiliation(s)
- Brando Poggiali
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mikkel Eriksen Dupont
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Bøttcher Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Holdgaard Smerup
- Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steffan Noe Niikanoff Christiansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Athina Vidaki
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Genetics & Cell Biology, GROW and CARIM Institutes, Maastricht University, Maastricht, The Netherlands
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Yen EC, Gilbert JD, Balard A, Afonso IO, Fairweather K, Newlands D, Lopes A, Correia SM, Taxonera A, Rossiter SJ, Martín-Durán JM, Eizaguirre C. DNA Methylation Carries Signatures of Sublethal Effects Under Thermal Stress in Loggerhead Sea Turtles. Evol Appl 2024; 17:e70013. [PMID: 39286762 PMCID: PMC11403127 DOI: 10.1111/eva.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
To date, studies of the impacts of climate warming on individuals and populations have mostly focused on mortality and thermal tolerance. In contrast, much less is known about the consequences of sublethal effects, which are more challenging to detect, particularly in wild species with cryptic life histories. This necessitates the development of molecular tools to identify their signatures. In a split-clutch field experiment, we relocated clutches of wild, nesting loggerhead sea turtles (Caretta caretta) to an in situ hatchery. Eggs were then split into two sub-clutches and incubated under shallow or deep conditions, with those in the shallow treatment experiencing significantly higher temperatures in otherwise natural conditions. Although no difference in hatching success was observed between treatments, hatchlings from the shallow, warmer treatment had different length-mass relationships and were weaker at locomotion tests than their siblings incubated in the deep, cooler treatment. To characterise the molecular signatures of these thermal effects, we performed whole genome bisulfite sequencing on blood samples collected upon emergence. We identified 287 differentially methylated sites between hatchlings from different treatments, including on genes with neurodevelopmental, cytoskeletal, and lipid metabolism functions. Taken together, our results show that higher incubation temperatures induce sublethal effects in hatchlings, which are reflected in their DNA methylation status at identified sites. These sites could be used as biomarkers of thermal stress, especially if they are retained across life stages. Overall, this study suggests that global warming reduces hatchling fitness, which has implications for dispersal capacity and ultimately a population's adaptive potential. Conservation efforts for these endangered species and similar climate-threatened taxa will therefore benefit from strategies for monitoring and mitigating exposure to temperatures that induce sublethal effects.
Collapse
Affiliation(s)
- Eugenie C Yen
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - James D Gilbert
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Inês O Afonso
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Débora Newlands
- Project Biodiversity, Mercado Municipal Santa Maria Ilha do Sal Cabo Verde
| | - Artur Lopes
- Project Biodiversity, Mercado Municipal Santa Maria Ilha do Sal Cabo Verde
| | - Sandra M Correia
- Instituto do Mar (IMar), Cova d'Ínglesa Mindelo Ilha do São Vicente Cabo Verde
| | - Albert Taxonera
- Project Biodiversity, Mercado Municipal Santa Maria Ilha do Sal Cabo Verde
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| |
Collapse
|
8
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
9
|
Kopfnagel V, Klopp N, Bernemann I, Nizhegorodtseva N, Wilson R, Gronauer R, Seifert M, Illig T. Effects of Repeated Freeze and Thaw Cycles on the Genome-Wide DNA Methylation Profile of Isolated Genomic DNA. Biopreserv Biobank 2024; 22:110-114. [PMID: 37074140 DOI: 10.1089/bio.2022.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
The characterization of DNA methylation patterns to identify epigenetic markers for complex human diseases is an important and rapidly evolving part in biomedical research. DNA samples collected and stored in clinical biobanks over the past years are an important source for future epigenetic studies. Isolated gDNA is considered stable when stored at low temperatures for several years. However, the effect of multiple use and the associated repeated thawing of long-term stored DNA samples on DNA methylation patterns has not yet been investigated. In this study, we examined the influence of up to 10 freeze and thaw cycles on global DNA methylation by comparing genome-wide methylation profiles. DNA samples from 19 healthy volunteers were either frozen at -80°C or subjected to up to 10 freeze and thaw cycles. Genome-wide DNA methylation was analyzed after 0, 1, 3, 5, or 10 thaw cycles using the Illumina Infinium MethylationEPIC BeadChip. Evaluation of the global DNA methylation profile by beta-value density plots and multidimensional scaling plots revealed an expected clear participant-dependent variability, but a very low variability depending on the freeze and thaw cycles. In accordance, no significant difference in any of the methylated cytosine/guanine sites studied could be detected in the performed statistical analyses. Our results suggest that long-term frozen DNA samples are still suitable for epigenetic studies after multiple thaw cycles.
Collapse
Affiliation(s)
- Verena Kopfnagel
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Inga Bernemann
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | | | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Brzychczy-Sroka B, Talaga-Ćwiertnia K, Sroka-Oleksiak A, Gurgul A, Zarzecka-Francica E, Ostrowski W, Kąkol J, Drożdż K, Brzychczy-Włoch M, Zarzecka J. Standardization of the protocol for oral cavity examination and collecting of the biological samples for microbiome research using the next-generation sequencing (NGS): own experience with the COVID-19 patients. Sci Rep 2024; 14:3717. [PMID: 38355866 PMCID: PMC10867075 DOI: 10.1038/s41598-024-53992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
To date, publications have shown that compositions of oral microbiota differ depending on their habitats (e.g. tongue, tonsils, pharynx). The absence of set standards for the choice of the areas and conditions of material collection makes the oral microbiome one of the most difficult environments for a comparative analysis with other researchers, which is a meaningful limitation during an assessment of the potential effects of microorganisms as biomarkers in the courses of various human diseases. Therefore, standardisation of basic conditions of a dental examination and collection of material for the next generation sequencing (NGS) is worth attempting. The standardisation of the dental exam and collection of the clinical materials: saliva, swab from the tongue ridge, hard palate, palatine tonsils and oropharynx, supragingival plaque and subgingival plaque. Protocol involved the patients (n = 60), assigned to 3 groups: I-COVID-19 convalescents who received antibiotics, n = 17, II-COVID-19 convalescents, n = 23 and III-healthy individuals, n = 20. The collected biological samples were used to conduct NGS (16S rRNA). The conditions of patient preparation for collecting biological materials as well as the schedule of dental examination, were proposed. Based on the research conducted, we have indicated the dental indicators that best differentiate the group of COVID-19 patients (groups I and II) from healthy people (group III). These include the DMFT, D and BOP indices. The use of alpha and beta diversity analysis provided an overall insight into the diversity of microbial communities between specific niches and patient groups. The most different diversity between the studied group of patients (group II) and healthy people (group III) was noted in relation to the supragingival plaque. The order of activities during the dental exam as well as while collecting and securing clinical materials is particularly important to avoid technical errors and material contamination which may result in erroneous conclusions from the analyses of the results of sensitive tests such as the NGS. It has been shown that the dental indices: DMFT, D number, PI and BOP are the best prognostic parameters to assess the oral health. Based on beta diversity the most sensitive niche and susceptible to changes in the composition of the microbiota is the supragingival plaque. The procedures developed by our team can be applied as ready-to-use forms in studies conducted by other researchers.
Collapse
Affiliation(s)
- Barbara Brzychczy-Sroka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Talaga-Ćwiertnia
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland.
| | - Agnieszka Sroka-Oleksiak
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Kraków, Poland
| | - Elżbieta Zarzecka-Francica
- Department of Prosthodontics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Wojciech Ostrowski
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Kąkol
- University Hospital in Cracow, Temporary COVID Ward No. 1, Kraków, Poland
| | - Kamil Drożdż
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
11
|
Lee NY, Hum M, Tan GP, Seah AC, Kin PT, Tan NC, Law HY, Lee ASG. Degradation of methylation signals in cryopreserved DNA. Clin Epigenetics 2023; 15:147. [PMID: 37697422 PMCID: PMC10496221 DOI: 10.1186/s13148-023-01565-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Blood-based DNA methylation has shown great promise as a biomarker in a wide variety of diseases. Studies of DNA methylation in blood often utilize samples which have been cryopreserved for years or even decades. Therefore, changes in DNA methylation associated with long-term cryopreservation can introduce biases or otherwise mislead methylation analyses of cryopreserved DNA. However, previous studies have presented conflicting results with studies reporting hypomethylation, no effect, or even hypermethylation of DNA following long-term cryopreservation. These studies may have been limited by insufficient sample sizes, or by their profiling of methylation only on an aggregate global scale, or profiling of only a few CpGs. RESULTS We analyzed two large prospective cohorts: a discovery (n = 126) and a validation (n = 136) cohort, where DNA was cryopreserved for up to four years. In both cohorts there was no detectable change in mean global methylation across increasing storage durations as DNA. However, when analysis was performed on the level of individual CpG methylation both cohorts exhibited a greater number of hypomethylated than hypermethylated CpGs at q-value < 0.05 (4049 hypomethylated but only 50 hypermethylated CpGs in discovery, and 63 hypomethylated but only 6 hypermethylated CpGs in validation). The results were the same even after controlling for age, storage duration as buffy coat prior to DNA extraction, and estimated cell type composition. Furthermore, we find that in both cohorts, CpGs have a greater likelihood to be hypomethylated the closer they are to a CpG island; except for CpGs at the CpG islands themselves which are less likely to be hypomethylated. CONCLUSION Cryopreservation of DNA after a few years results in a detectable bias toward hypomethylation at the level of individual CpG methylation, though when analyzed in aggregate there is no detectable change in mean global methylation. Studies profiling methylation in cryopreserved DNA should be mindful of this hypomethylation bias, and more attention should be directed at developing more stable methods of DNA cryopreservation for biomedical research or clinical use.
Collapse
Affiliation(s)
- Ning Yuan Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Guek Peng Tan
- DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Ai Choo Seah
- SingHealth Polyclinics, 167 Jalan Bukit Merah, Singapore, 150167, Singapore
| | - Patricia T Kin
- SingHealth Polyclinics, 167 Jalan Bukit Merah, Singapore, 150167, Singapore
| | - Ngiap Chuan Tan
- SingHealth Polyclinics, 167 Jalan Bukit Merah, Singapore, 150167, Singapore
- SingHealth Duke-NUS Family Medicine Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hai-Yang Law
- DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
12
|
Natoli V, Charras A, Hofmann SR, Northey S, Russ S, Schulze F, McCann L, Abraham S, Hedrich CM. DNA methylation patterns in CD4 + T-cells separate psoriasis patients from healthy controls, and skin psoriasis from psoriatic arthritis. Front Immunol 2023; 14:1245876. [PMID: 37662940 PMCID: PMC10472451 DOI: 10.3389/fimmu.2023.1245876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is an autoimmune/inflammatory disorder primarily affecting the skin. Chronic joint inflammation triggers the diagnosis of psoriatic arthritis (PsA) in approximately one-third of psoriasis patients. Although joint disease typically follows the onset of skin psoriasis, in around 15% of cases it is the initial presentation, which can result in diagnostic delays. The pathophysiological mechanisms underlying psoriasis and PsA are not yet fully understood, but there is evidence pointing towards epigenetic dysregulation involving CD4+ and CD8+ T-cells. Objectives The aim of this study was to investigate disease-associated DNA methylation patterns in CD4+ T-cells from psoriasis and PsA patients that may represent potential diagnostic and/or prognostic biomarkers. Methods PBMCs were collected from 12 patients with chronic plaque psoriasis and 8 PsA patients, and 8 healthy controls. CD4+ T-cells were separated through FACS sorting, and DNA methylation profiling was performed (Illumina EPIC850K arrays). Bioinformatic analyses, including gene ontology (GO) and KEGG pathway analysis, were performed using R. To identify genes under the control of interferon (IFN), the Interferome database was consulted, and DNA Methylation Scores were calculated. Results Numbers and proportions of CD4+ T-cell subsets (naïve, central memory, effector memory, CD45RA re-expressing effector memory cells) did not vary between controls, skin psoriasis and PsA patients. 883 differentially methylated positions (DMPs) affecting 548 genes were identified between controls and "all" psoriasis patients. Principal component and partial least-squares discriminant analysis separated controls from skin psoriasis and PsA patients. GO analysis considering promoter DMPs delivered hypermethylation of genes involved in "regulation of wound healing, spreading of epidermal cells", "negative regulation of cell-substrate junction organization" and "negative regulation of focal adhesion assembly". Comparing controls and "all" psoriasis, a majority of DMPs mapped to IFN-related genes (69.2%). Notably, DNA methylation profiles also distinguished skin psoriasis from PsA patients (2,949 DMPs/1,084 genes) through genes affecting "cAMP-dependent protein kinase inhibitor activity" and "cAMP-dependent protein kinase regulator activity". Treatment with cytokine inhibitors (IL-17/TNF) corrected DNA methylation patterns of IL-17/TNF-associated genes, and methylation scores correlated with skin disease activity scores (PASI). Conclusion DNA methylation profiles in CD4+ T-cells discriminate between skin psoriasis and PsA. DNA methylation signatures may be applied for quantification of disease activity and patient stratification towards individualized treatment.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili (DINOGMI), Genoa, Italy
| | - Amandine Charras
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sigrun R. Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Liza McCann
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Susanne Abraham
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M. Hedrich
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
13
|
Joustra V, Hageman IL, Satsangi J, Adams A, Ventham NT, de Jonge WJ, Henneman P, D’Haens GR, Li Yim AYF. Systematic Review and Meta-analysis of Peripheral Blood DNA Methylation Studies in Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:185-198. [PMID: 35998097 PMCID: PMC10024549 DOI: 10.1093/ecco-jcc/jjac119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Over the past decade, the DNA methylome has been increasingly studied in peripheral blood of inflammatory bowel disease [IBD] patients. However, a comprehensive summary and meta-analysis of peripheral blood leukocyte [PBL] DNA methylation studies has thus far not been conducted. Here, we systematically reviewed all available literature up to February 2022 and summarized the observations by means of meta-analysis. METHODS We conducted a systematic search and critical appraisal of IBD-associated DNA methylation studies in PBL using the biomarker-based cross-sectional studies [BIOCROSS] tool. Subsequently, we performed meta-analyses on the summary statistics obtained from epigenome-wide association studies [EWAS] that included patients with Crohn's disease [CD], ulcerative colitis [UC] and/or healthy controls [HC]. RESULTS Altogether, we included 15 studies for systematic review. Critical appraisal revealed large methodological and outcome heterogeneity between studies. Summary statistics were obtained from four studies based on a cumulative 552 samples [177 CD, 132 UC and 243 HC]. Consistent differential methylation was identified for 256 differentially methylated probes [DMPs; Bonferroni-adjusted p ≤ 0.05] when comparing CD with HC and 103 when comparing UC with HC. Comparing IBD [CD + UC] with HC resulted in 224 DMPs. Importantly, several of the previously identified DMPs, such as VMP1/TMEM49/MIR21 and RPS6KA2, were consistently differentially methylated across all studies. CONCLUSION Methodological homogenization of IBD epigenetic studies is needed to allow for easier aggregation and independent validation. Nonetheless, we were able to confirm previous observations. Our results can serve as the basis for future IBD epigenetic biomarker research in PBL.
Collapse
Affiliation(s)
| | | | - Jack Satsangi
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | - Wouter J de Jonge
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, Netherlands
| | - Peter Henneman
- Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Genome Diagnostics Laboratory, Amsterdam, Netherlands
- Amsterdam Reproduction & Development, Amsterdam, Netherlands
| | - Geert R D’Haens
- Amsterdam UMC location University of Amsterdam, Department of Gastroenterology and Hepatology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Andrew Y F Li Yim
- Corresponding author: Andrew Y. F. Li Yim, Amsterdam UMC location University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, Netherlands.
| |
Collapse
|
14
|
Epigenetic Immune Cell Counting to Analyze Potential Biomarkers in Preterm Infants: A Proof of Principle in Necrotizing Enterocolitis. Int J Mol Sci 2023; 24:ijms24032372. [PMID: 36768695 PMCID: PMC9917065 DOI: 10.3390/ijms24032372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Epigenetic immune cell counting is a DNA (de)methylation-based technique which can be used to quantify lymphocyte subsets on dried blood spots (DBS). The foregoing techniques allow for a retrospective investigation of immune cell profiles in newborns. In this study, we used this technique for determining lymphocyte subcounts as a potential biomarker for necrotizing enterocolitis (NEC). We investigated whether this technique can be implemented in the field of neonatology, by testing whether regulatory T cell (Treg) levels are pre-existently low in preterms with NEC. Newborn screening (NBS) cards from 32 preterms with NEC and 32 age- and weight-matched preterm controls, and 60 healthy term newborns, were analyzed. Relative and absolute cell counts were determined for CD3+, CD4+, CD8+, Th17, and Treg T cells. For both relative and absolute cell counts of CD3+, CD4+, CD8+, and Th17 T cells, significant differences were found between healthy term controls and both preterm groups, but not between preterm groups. For Tregs, no significant differences were found in either relative or absolute counts between any of the newborn groups. This study demonstrates the principle of epigenetic immune cell counting to analyze lymphocyte subsets in preterm neonates.
Collapse
|
15
|
Zhao B, van Bodegom PM, Trimbos KB. Environmental DNA methylation of Lymnaea stagnalis varies with age and is hypermethylated compared to tissue DNA. Mol Ecol Resour 2023; 23:81-91. [PMID: 35899418 PMCID: PMC10087510 DOI: 10.1111/1755-0998.13691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Environmental DNA (eDNA) approaches contributing to species identifications are quickly becoming the new norm in biomonitoring and ecosystem assessments. Yet, information such as age and health state of the population, which is vital to species biomonitoring, has not been accessible from eDNA. DNA methylation has the potential to provide such information on the state of a population. Here, we measured the methylation of eDNA along with tissue DNA (tDNA) of Lymnaea stagnalis at four life stages. We demonstrate that eDNA methylation varies with age and allows distinguishing among age classes. Moreover, eDNA was globally hypermethylated in comparison to tDNA. This difference was age-specific and connected to a limited number of eDNA sites. This differential methylation pattern suggests that eDNA release with age is partially regulated through DNA methylation. Our findings help to understand mechanisms involved in eDNA release and shows the potential of eDNA methylation analysis to assess age classes. Such age class assessments will encourage future eDNA studies to assess fundamental processes of population dynamics and functioning in ecology, biodiversity conservation and impact assessments.
Collapse
Affiliation(s)
- Beilun Zhao
- Department of Environmental BiologyInstitute of Environmental Sciences, Leiden UniversityLeidenThe Netherlands
| | - Peter M. van Bodegom
- Department of Environmental BiologyInstitute of Environmental Sciences, Leiden UniversityLeidenThe Netherlands
| | - Krijn B. Trimbos
- Department of Environmental BiologyInstitute of Environmental Sciences, Leiden UniversityLeidenThe Netherlands
| |
Collapse
|
16
|
Szigeti KA, Barták BK, Nagy ZB, Zsigrai S, Papp M, Márkus E, Igaz P, Takács I, Molnár B, Kalmár A. Methodological and Biological Factors Influencing Global DNA Methylation Results Measured by LINE-1 Pyrosequencing Assay in Colorectal Tissue and Liquid Biopsy Samples. Int J Mol Sci 2022; 23:ijms231911608. [PMID: 36232908 PMCID: PMC9569782 DOI: 10.3390/ijms231911608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE-1) bisulfite pyrosequencing is a widely used technique for genome-wide methylation analyses. We aimed to investigate the effects of experimental and biological factors on its results to improve the comparability. LINE-1 bisulfite pyrosequencing was performed on colorectal tissue (n = 222), buffy coat (n = 39), and plasma samples (n = 9) of healthy individuals and patients with colorectal tumors. Significantly altered methylation was observed between investigated LINE-1 CpG positions of non-tumorous tissues (p ≤ 0.01). Formalin-fixed, paraffin-embedded biopsies (73.0 ± 5.3%) resulted in lower methylation than fresh frozen samples (76.1 ± 2.8%) (p ≤ 0.01). DNA specimens after long-term storage showed higher methylation levels (+3.2%, p ≤ 0.01). In blood collection tubes with preservatives, cfDNA and buffy coat methylation significantly changed compared to K3EDTA tubes (p ≤ 0.05). Lower methylation was detected in older (>40 years, 76.8 ± 1.7%) vs. younger (78.1 ± 1.0%) female patients (p ≤ 0.05), and also in adenomatous tissues with MTHFR 677CT, or 1298AC mutations vs. wild-type (p ≤ 0.05) comparisons. Based on our findings, it is highly recommended to consider the application of standard DNA samples in the case of a possible clinical screening approach, as well as in experimental research studies.
Collapse
Affiliation(s)
- Krisztina A Szigeti
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-459-1500
| | - Barbara K Barták
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Zsófia B Nagy
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Sára Zsigrai
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Eszter Márkus
- Department of Anaesthesia and Intensive Care, Pest County Flor Ferenc Hospital, 2143 Kistarcsa, Hungary
| | - Peter Igaz
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083 Budapest, Hungary
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Béla Molnár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083 Budapest, Hungary
| | - Alexandra Kalmár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083 Budapest, Hungary
| |
Collapse
|
17
|
Šestáková Š, Cerovská E, Šálek C, Kundrát D, Ježíšková I, Folta A, Mayer J, Ráčil Z, Cetkovský P, Remešová H. A validation study of potential prognostic DNA methylation biomarkers in patients with acute myeloid leukemia using a custom DNA methylation sequencing panel. Clin Epigenetics 2022; 14:22. [PMID: 35148810 PMCID: PMC8832751 DOI: 10.1186/s13148-022-01242-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple studies have reported the prognostic impact of DNA methylation changes in acute myeloid leukemia (AML). However, these epigenetic markers have not been thoroughly validated and therefore are still not considered in clinical practice. Hence, we aimed to independently verify results of selected studies describing the relationship between DNA methylation of specific genes and their prognostic potential in predicting overall survival (OS) and event-free survival (EFS). RESULTS Fourteen studies (published 2011-2019) comprising of 27 genes were subjected to validation by a custom NGS-based sequencing panel in 178 newly diagnosed non-M3 AML patients treated by 3 + 7 induction regimen. The results were considered as successfully validated, if both the log-rank test and multivariate Cox regression analysis had a p-value ≤ 0.05. The predictive role of DNA methylation was confirmed for three studies comprising of four genes: CEBPA (OS: p = 0.02; EFS: p = 0.03), PBX3 (EFS: p = 0.01), LZTS2 (OS: p = 0.05; EFS: p = 0.0003), and NR6A1 (OS: p = 0.004; EFS: p = 0.0003). For all of these genes, higher methylation was an indicator of longer survival. Concurrent higher methylation of both LZTS2 and NR6A1 was highly significant for survival in cytogenetically normal (CN) AML group (OS: p < 0.0001; EFS: p < 0.0001) as well as for the whole AML cohort (OS: p = 0.01; EFS < 0.0001). In contrast, for two studies reporting the poor prognostic effect of higher GPX3 and DLX4 methylation, we found the exact opposite, again linking higher GPX3 (OS: p = 0.006; EFS: p < 0.0001) and DLX4 (OS: p = 0.03; EFS = 0.03) methylation to a favorable treatment outcome. Individual gene significance levels refer to the outcomes of multivariate Cox regression analysis. CONCLUSIONS Out of twenty-seven genes subjected to DNA methylation validation, a prognostic role was observed for six genes. Therefore, independent validation studies are necessary to reveal truly prognostic DNA methylation changes and to enable the introduction of these promising epigenetic markers into clinical practice.
Collapse
Affiliation(s)
- Šárka Šestáková
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ela Cerovská
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Cyril Šálek
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dávid Kundrát
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Ivana Ježíšková
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Adam Folta
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jiří Mayer
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Zdeněk Ráčil
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Petr Cetkovský
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Remešová
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.
| |
Collapse
|
18
|
Lee YJ, You HS, Lee SH, Lee SL, Lee H, Sung HJ, Kang HG, Hyun SH. Comparison of Optimal Storage Temperature and Collection Reagents for Living Bacterial Cells in Swab Samples. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yeong Ju Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Korea
| | - Hee Sang You
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Uijeongbu, Korea
| | - Song Hee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Korea
| | - So Lip Lee
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Uijeongbu, Korea
| | - Han Lee
- Department of Biomedical Laboratory Science, Eulji University, Uijeongbu, Korea
| | - Ho Joong Sung
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Uijeongbu, Korea
- Department of Biomedical Laboratory Science, Eulji University, Uijeongbu, Korea
| | - Hee Gyoo Kang
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Uijeongbu, Korea
- Department of Biomedical Laboratory Science, Eulji University, Uijeongbu, Korea
| | - Sung Hee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Uijeongbu, Korea
- Department of Biomedical Laboratory Science, Eulji University, Uijeongbu, Korea
| |
Collapse
|
19
|
Charras A, Garau J, Hofmann SR, Carlsson E, Cereda C, Russ S, Abraham S, Hedrich CM. DNA Methylation Patterns in CD8 + T Cells Discern Psoriasis From Psoriatic Arthritis and Correlate With Cutaneous Disease Activity. Front Cell Dev Biol 2021; 9:746145. [PMID: 34746142 PMCID: PMC8567019 DOI: 10.3389/fcell.2021.746145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Psoriasis is a T cell-mediated chronic autoimmune/inflammatory disease. While some patients experience disease limited to the skin (skin psoriasis), others develop joint involvement (psoriatic arthritis; PsA). In the absence of disease- and/or outcome-specific biomarkers, and as arthritis can precede skin manifestations, diagnostic and therapeutic delays are common and contribute to disease burden and damage accrual. Objective: Altered epigenetic marks, including DNA methylation, contribute to effector T cell phenotypes and altered cytokine expression in autoimmune/inflammatory diseases. This project aimed at the identification of disease-/outcome-specific DNA methylation signatures in CD8+ T cells from patients with psoriasis and PsA as compared to healthy controls. Method: Peripheral blood CD8+ T cells from nine healthy controls, 10 psoriasis, and seven PsA patients were collected to analyze DNA methylation marks using Illumina Human Methylation EPIC BeadChips (>850,000 CpGs per sample). Bioinformatic analysis was performed using R (minfi, limma, ChAMP, and DMRcate packages). Results: DNA methylation profiles in CD8+ T cells differentiate healthy controls from psoriasis patients [397 Differentially Methylated Positions (DMPs); 9 Differentially Methylated Regions (DMRs) when ≥CpGs per DMR were considered; 2 DMRs for ≥10 CpGs]. Furthermore, patients with skin psoriasis can be discriminated from PsA patients [1,861 DMPs, 20 DMRs (≥5 CpGs per region), 4 DMRs (≥10 CpGs per region)]. Gene ontology (GO) analyses considering genes with ≥1 DMP in their promoter delivered methylation defects in skin psoriasis and PsA primarily affecting the BMP signaling pathway and endopeptidase regulator activity, respectively. GO analysis of genes associated with DMRs between skin psoriasis and PsA demonstrated an enrichment of GABAergic neuron and cortex neuron development pathways. Treatment with cytokine blockers associated with DNA methylation changes [2,372 DMPs; 1,907 DMPs within promoters, 7 DMRs (≥5 CpG per regions)] affecting transforming growth factor beta receptor and transmembrane receptor protein serine/threonine kinase signaling pathways. Lastly, a methylation score including TNF and IL-17 pathway associated DMPs inverse correlates with skin disease activity scores (PASI). Conclusion: Patients with skin psoriasis exhibit DNA methylation patterns in CD8+ T cells that allow differentiation from PsA patients and healthy individuals, and reflect clinical activity of skin disease. Thus, DNA methylation profiling promises potential as diagnostic and prognostic tool to be used for molecular patient stratification toward individualized treatment.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Garau
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sigrun R Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Emil Carlsson
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Susanne Abraham
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|