1
|
Yuan X, Rosen JM. Histone acetylation modulators in breast cancer. Breast Cancer Res 2025; 27:49. [PMID: 40165290 PMCID: PMC11959873 DOI: 10.1186/s13058-025-02006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. Aberrant epigenetic reprogramming such as dysregulation of histone acetylation has been associated with the development of breast cancer. Histone acetylation modulators have been targeted as potential treatments for breast cancer. This review comprehensively discusses the roles of these modulators and the effects of their inhibitors on breast cancer. In addition, epigenetic reprogramming not only affects breast cancer cells but also the immunosuppressive myeloid cells, which can facilitate breast cancer progression. Therefore, the review also highlights the roles of these immunosuppressive myeloid cells and summarizes how histone acetylation modulators affect their functions and phenotypes. This review provides insights into histone acetylation modulators as potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, USA.
| |
Collapse
|
2
|
Liu H, Tang Y, Sun L, Li S, Luo L, Chen Z, Li G. Involvement of Histone Acetyltransferase 1 (HAT1) in the Spermatogenesis of Non-Condensed Nuclear Sperm in Chinese Mitten Crab, Eriocheir sinensis. Biochem Genet 2025; 63:183-196. [PMID: 38416273 DOI: 10.1007/s10528-024-10700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
Chinese mitten crab, Eriocheir sinensis, is a decapod crustacean with a special, non-condensated nucleus in the sperm. Studies have shown that the nuclear compact state of male germ cells during the spermatogenesis is closely related to histone modification. To explore the possible role of histone acetyltransferase 1 (HAT1) in the chromatin organization during the E. sinensis spermatogenesis, we took the testis tissues of both adult and juvenile crabs as the materials of study and analyzed the biological functions of HAT1 by whole transcriptome sequencing and bioinformatics, then further analyzed the expression and distribution of HAT1 using the methods of RT-qRCR, western blotting, and immunofluorescence location. The results showed that HAT1 is an alkaline-unstable hydrophilic protein. It was predicted to interact with a variety of histones and chromosome assembly proteins, including Asf1b, Chaf1b, and Hist1h3f, and is involved in many biological functions pertaining to chromatin dynamics such as chromatin organization, DNA dependent nucleosome assembly, DNA conformational changes, and so on. HAT1 was up-regulated in the adult testes compared to the juvenile (n = 3, P < 0.05). HAT1 was mainly located in the nuclei of male germ cells of E. sinensis. As spermatogenesis proceeded, the expression of HAT1 decreased and even disappeared in the nuclei (n = 3, P < 0.05). HAT1 is an important player in histone acetylation, which facilitates chromatin alteration in a three-dimensional conformation. The expression of HAT1 in different male germ cells might indicate the chromatin dynamics at the diversity stages of spermatogenesis. The high expression of HAT1 at the early stages of E. sinensis spermatogenesis hints the active involvement in chromatin organization, while its progressively reduced expression accompanied by the progression of spermatogenesis suggests a relatively gradual stabilization and stereotyping of chromatin. As for the disappearance of HAT1 in mature sperm with non-condensed nuclei, the reduction in histones targeted by HAT1 or histone acetylation may be an important initiator.
Collapse
Affiliation(s)
- Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yulian Tang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
3
|
Dai Q, Zhu J, Yang J, Zhang CY, Yang WJ, Pan BS, Yang XR, Guo W, Wang BL. Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity. Curr Stem Cell Res Ther 2025; 20:103-122. [PMID: 38561604 DOI: 10.2174/011574888x305642240327041753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear. OBJECTIVE To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients. METHODS LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis. RESULTS Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere. CONCLUSION This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.
Collapse
Grants
- 81772263, 81972000, 81872355, 82072715, 82172348 National Natural Science Foundation of China
- 82202608, 81902139 National Natural Science Foundation of China Youth Fund
- 2018ZSLC05, 2020ZSLC54, 2020ZSLC31 Specialized Fund for the clinical research of Zhongshan Hospital affiliated Fudan University
- 2021ZSCX28 Science Foundation of Zhongshan Hospital, Fudan University
- 2021ZSGG08 Excellent backbone of Zhongshan Hospital, Fudan University
- shslczdzk03302 construction project of clinical key disciplines in Shanghai
- YDZX20193502000002 Key medical and health projects of Xiamen
- BSZK-2023-A18 Shanghai Baoshan Medical Key Specialty
- 2019YFC1315800, 2019YFC1315802 National Key R&D Program of China
- 81830102 State Key Program of National Natural Science of China
- 2019CXJQ02 Shanghai Municipal Health Commission Collaborative Innovation Cluster Project
- 19441905000, 21140900300 Shanghai Science and Technology Commission
Collapse
Affiliation(s)
- Qian Dai
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200871. [PMID: 39351073 PMCID: PMC11440307 DOI: 10.1016/j.omton.2024.200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.
Collapse
Affiliation(s)
- Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Li R, Wang C, Xu K, Zhan Z, He S, Ren J, Li F, Tao N, Li Z, Yang Z, Yu H. Asiatic acid inhibits HBV cccDNA transcription by promoting HBx degradation. Virol J 2024; 21:268. [PMID: 39468627 PMCID: PMC11520515 DOI: 10.1186/s12985-024-02535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a persistent global public health problem, and curing for chronic hepatitis B (CHB) through the application of existing antiviral drugs is beset by numerous challenges. The viral protein HBx is a critical regulatory factor in the life cycle of HBV. Targeting HBx is a promising possibility for the development of novel therapeutic strategies. METHODS The Nano-Glo® HiBiT Lysis Detection System was used to screen the herbal monomer compound library for compounds that inhibit HBx expression. Western blotting was used to examine proteins expression. Southern blotting or Northern blotting were used to detect HBV DNA or HBV RNA. ELISA was performed to detect the HBsAg level. The effect of asiatic acid on HBV in vivo was investigated by using recombinant cccDNA mouse model. RESULTS Asiatic acid, an extract of Centella asiatica, significantly reduced the HBx level. Mechanistic studies demonstrated that asiatic acid may promote the degradation of HBx in an autophagy pathway-dependent manner. Subsequently, asiatic acid was found to reduce the amount of HBx bound to covalently closed circular DNA (cccDNA) microchromosomes, and repressive chromatin modifications then occurred, ultimately inhibiting cccDNA transcriptional activity. Moreover, in HBV-infected cells and a mouse model of persistent HBV infection, asiatic acid exhibited potent anti-HBV activity, as evidenced by decreased levels of HBV RNAs, HBV DNA and HBsAg. CONCLUSIONS Asiatic acid was identified as a compound that targets HBx, revealing its potential for application as an anti-HBV agent.
Collapse
Grants
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- 82372996 National Natural Science Foundation of China
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- CSTB2022NSCQ-MSX0864, CSTB2023NSCQ-BHX0170, cstc2021jcyj-bshX0179, CSTB2023NSCQ-MSX0480 the Chongqing Natural Science Foundation
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- KJQN202100429, KJQN202300483 Sci-ence and Technology Research Project of Chongqing Municipal Education Commis-sion
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
- W0040 Future Medical Youth Innovation Team of Chongqing Medical University
Collapse
Affiliation(s)
- Ranran Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chunduo Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexin Xu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongzhu Zhan
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Siyi He
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jihua Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nana Tao
- Department Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| | - Zhihong Li
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| | - Zhen Yang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Af-filiated Hospital of Soochow University, 188 Shizi Street, Suzhou, Gusu District, 215006, China.
| | - Haibo Yu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- , Seventh Floor, Building A, 1 North District Road, Yuzhong District, Chongqing, 400013, China.
| |
Collapse
|
7
|
Miziak P, Baran M, Borkiewicz L, Trombik T, Stepulak A. Acetylation of Histone H3 in Cancer Progression and Prognosis. Int J Mol Sci 2024; 25:10982. [PMID: 39456765 PMCID: PMC11507103 DOI: 10.3390/ijms252010982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is a multifactorial disease resulting from both genetic factors and epigenetic changes. Histone acetylation, a post-translational modification, which alters chromatin architecture and regulates gene expression is associated with cancer initiation, development and progression. Aberrations in global histone acetylation levels are observed in various cancer cells and are also associated with patients' tumor aggressiveness. Therefore, histone acetylation may have prognostic utility and serve as a potential biomarker of cancer progression and patients' prognosis. The reversible modification of histones by an acetyl group is versatile. One particular histone can be acetylated on different lysine residues, subsequently resulting in different biological outcomes. Here, we discuss recent findings on the acetylation of the highly conserved histone protein H3 in the context of cancer biology. Specifically, we review the acetylation of particular H3 residues in various cancer types. We further highlight the significance of H3 acetylation levels as a potential cancer biomarker with prognostic implications.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (L.B.); (T.T.)
| | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (L.B.); (T.T.)
| |
Collapse
|
8
|
Bargiela-Cuevas S, Marin M, Gabaldon-Ojeda M, Klett-Mingo JI, Granado P, Sacristan S, Esteban-Lasso A, Casas JG, Martin ME, González VMM, Royuela M, García-Tuñon I, Ortega Núñez MA, Lobo MDVT. Histone Acetyl Transferase 1 Is Overexpressed in Poor Prognosis, High-grade Meningeal and Glial Brain Cancers: Immunohistochemical and Aptahistochemical Study. J Histochem Cytochem 2024; 72:585-599. [PMID: 39180315 PMCID: PMC11423361 DOI: 10.1369/00221554241272341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 08/26/2024] Open
Abstract
Primary malignancies of the central nervous system account for 2% of all cancers in adults and almost 15% in children under 15 years of age. The prognosis of brain anaplastic cancers and glioblastomas remains extremely poor, with devastating survival expectative, and new molecular markers and therapeutic targets are essential. Epigenetic changes constitute an extensive field for the development of new diagnostic and therapeutic strategies. Histone acetyl transferase-1 (HAT1) has merged as a potential prognostic marker and therapy target for different malignancies. Data repository analysis showed HAT1 mRNA overexpression in gliomas and has been described its alternative splicing in glioblastomas. Using immunohistochemical and aptahistochemical methods, we analyzed the expression of HAT1 in meningiomas, oligodendrogliomas, and astroglial cancers. We observed that HAT1 overexpression is associated with the most aggressive tumor types and the worse prognosis, as well as with a higher probability of early relapse in meningiomas. Its cytosolic localization correlates with tumor progression and prognosis. Aptamers, synthetic oligonucleotides capable to bind and inhibit a wide variety of targets, are considered as promising diagnostic and therapeutic tools. Aptahistochemistry using the aptamer apHAT610 offered superior results in comparison with the antibody used, as a good example of the potential of aptamers as diagnostic tools for histopathology.
Collapse
Affiliation(s)
- Sandra Bargiela-Cuevas
- Cell Biology and Genetics, Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
| | - María Marin
- Laboratory Medicine Department, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - María Gabaldon-Ojeda
- Cell Biology and Genetics, Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
| | | | - Paula Granado
- Cell Biology and Genetics, Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
- Inari Biotech, S.L., Madrid, Spain
| | - Silvia Sacristan
- Aptamer Group, Department Biochemistry-Research, Ramón y Cajal Institute of Sanitary Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | - María E. Martin
- Aptamer Group, Department Biochemistry-Research, Ramón y Cajal Institute of Sanitary Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Victor M. M. González
- Aptamer Group, Department Biochemistry-Research, Ramón y Cajal Institute of Sanitary Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mar Royuela
- Cell Biology and Genetics, Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
- Tissue Engineering and Regenerative Medicine, Ramón y Cajal Institute of Sanitary Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ignacio García-Tuñon
- Cell Biology and Genetics, Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
- Tissue Engineering and Regenerative Medicine, Ramón y Cajal Institute of Sanitary Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Angel Ortega Núñez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Tissue Engineering and Regenerative Medicine, Ramón y Cajal Institute of Sanitary Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
| | - María del Val Toledo Lobo
- Cell Biology and Genetics, Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Spain
- Aptamer Group, Department Biochemistry-Research, Ramón y Cajal Institute of Sanitary Research, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
9
|
Gao J, Liu W, Pei J, Li J, Hao N, Yang S, Yang X, Zou D, Xu K, Zhang L. The Role of Histone H2B Acetylation Modification in Aluminum-Induced Cognitive Dysfunction. Biol Trace Elem Res 2024; 202:3731-3739. [PMID: 37979070 DOI: 10.1007/s12011-023-03959-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aluminum (Al) is a low toxic trace element that can accumulate in the nervous system and induce cognitive disorders characterized by reduced learning and memory ability. Neuroepigenetic effects are structural changes in cellular function by the brain in response to environmental stimuli by altering the expression of specific genes and repressing normal cellular transcription, leading to abnormalities in a variety of biological processes within the nervous system and affecting neurobehavioral responses. One of the most important mechanisms of epigenetic control on chromatin shape is histone modification. In the present study, we established an offspring rat model of Al intoxication to investigate the changes in spatial learning and memory retention abilities and the relationship with histone H2B acetylation modification in rats exposed to different doses of Al over a long period of time. The results demonstrated that long-term AlCl3 staining resulted in decreased CBP gene and protein expression, increased HDAC3 gene and protein levels, as well as decreased histone H2B and acH2BK20 protein expression levels in the hippocampus of rats. In conclusion, long-term exposure to Al may vary the expression of histone H2B and acH2BK20 through the regulation of enzymes that specifically regulate histone acetylation, hence hastening the deterioration of the nervous system that impairs cognitive function.
Collapse
Grants
- 2015225025 The Science and Technology Project of Liaoning Providence, China
- F15-139-9-09 The Science and Technology Project of Shenyang, China
- 81673226 National Natural Science Foundation of China
- 201601226 Initiated Research Foundation for the Doctoral Program of Science and Technology Department of Liaoning Province, China
- L2015544, LJKZ1146 Natural Science Foundation of Education Department of Liaoning Province, China
- 201710164000038 Natural Science Foundation for Innovation and Entrepreneurship Training Program of Education Department of Liaoning Province, China
- 17-231-1-44 Natural Science Foundation of Science and Technology Department of Shenyang City, China
- 20153043 Natural Science Foundation of Shenyang Medical College, China
- Y20180512 Natural Science Foundation for graduate students of Shenyang Medical College, China
- 20179028, X202310164036 Natural Science Foundation for undergraduate students of Shenyang Medical College, China
Collapse
Affiliation(s)
- Jie Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Jing Pei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Jing Li
- Department of Shenyang Maternity and Child Health Hospital, No. 41 Shenzhou Road, Shenhe District, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Niping Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Shuo Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Xiaoming Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Danfeng Zou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China
| | - Kebin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China.
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, Liaoning Province, 110034, People's Republic of China.
| |
Collapse
|
10
|
Ortega MA, Jiménez-Álvarez L, Fraile-Martinez O, Garcia-Montero C, Guijarro LG, Pekarek L, Barrena-Blázquez S, Asúnsolo Á, López-González L, Toledo-Lobo MDV, Álvarez-Mon M, Saez MA, Gutiérrez-Calvo A, Díaz-Pedrero R. Prognostic Value of Histone Acetyl Transferase 1 (HAT-1) and Inflammatory Signatures in Pancreatic Cancer. Curr Issues Mol Biol 2024; 46:3839-3865. [PMID: 38785507 PMCID: PMC11119917 DOI: 10.3390/cimb46050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Pancreatic cancer is a type of gastrointestinal tumor with a growing incidence and mortality worldwide. Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of cases, and late-stage diagnosis is common, leading to a 5-year survival rate of less than 10% in high-income countries. The use of biomarkers has different proven translational applications, facilitating early diagnosis, accurate prognosis and identification of potential therapeutic targets. Several studies have shown a correlation between the tissue expression levels of various molecules, measured through immunohistochemistry (IHC), and survival rates in PDAC. Following the hallmarks of cancer, epigenetic and metabolic reprogramming, together with immune evasion and tumor-promoted inflammation, plays a critical role in cancer initiation and development. In this study, we aim to explore via IHC and Kaplan-Meier analyses the prognostic value of various epigenetic-related markers (histones 3 and 4 (H3/H4), histone acetyl transferase 1 (HAT-1), Anti-Silencing Function 1 protein (ASF1), Nuclear Autoantigenic Sperm Protein (NASP), Retinol Binding Protein 7 (RBBP7), importin 4 (IPO4) and IPO5), metabolic regulators (Phosphoglycerate mutase (PGAM)) and inflammatory mediators (allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A and IL-18) in patients with PDAC. Also, through a correlation analysis, we have explored the possible interconnections in the expression levels of these molecules. Our results show that higher expression levels of these molecules are directly associated with poorer survival rates in PDAC patients, except in the case of IL-10, which shows an inverse association with mortality. HAT1 was the molecule more clearly associated with mortality, with a hazard risk of 21.74. The correlogram demonstrates an important correlation between almost all molecules studied (except in the case of IL-18), highlighting potential interactions between these molecules. Overall, our study demonstrates the relevance of including different markers from IHC techniques in order to identify unexplored molecules to develop more accurate prognosis methods and possible targeted therapies. Additionally, our correlation analysis reveals potential interactions among these markers, offering insights into PDAC's pathogenesis and paving the way for targeted therapies tailored to individual patient profiles. Future studies should be conducted to confirm the prognostic value of these components in PDAC in a broader sample size, as well as to evaluate the possible biological networks connecting them.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Leonel Pekarek
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, University of New York, New York, NY 10012, USA
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - María Del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Unit of Cell Biology, Department of Biomedicine and Biotechnology, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Madrid, Spain
| | - Alberto Gutiérrez-Calvo
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| |
Collapse
|
11
|
Ocaña-Paredes B, Rivera-Orellana S, Ramírez-Sánchez D, Montalvo-Guerrero J, Freire MP, Espinoza-Ferrao S, Altamirano-Colina A, Echeverría-Espinoza P, Ramos-Medina MJ, Echeverría-Garcés G, Granda-Moncayo D, Jácome-Alvarado A, Andrade MG, López-Cortés A. The pharmacoepigenetic paradigm in cancer treatment. Front Pharmacol 2024; 15:1381168. [PMID: 38720770 PMCID: PMC11076712 DOI: 10.3389/fphar.2024.1381168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.
Collapse
Affiliation(s)
- Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | | | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | | | - Andrea Jácome-Alvarado
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - María Gabriela Andrade
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
12
|
Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. ENVIRONMENT INTERNATIONAL 2024; 185:108535. [PMID: 38428192 DOI: 10.1016/j.envint.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Ultraviolet (UV) radiation is ubiquitous in the environment, which has been classified as an established human carcinogen. As the largest and outermost organ of the body, direct exposure of skin to sunlight or UV radiation can result in sunburn, inflammation, photo-immunosuppression, photoaging and even skin cancers. To date, there are tactics to protect the skin by preventing UV radiation and reducing the amount of UV radiation to the skin. Nevertheless, deciphering the essential regulatory mechanisms may pave the way for therapeutic interventions against UV-induced skin disorders. Additionally, UV light is considered beneficial for specific skin-related conditions in medical UV therapy. Recent evidence indicates that the biological effects of UV exposure extend beyond the skin and include the treatment of inflammatory diseases, solid tumors and certain abnormal behaviors. This review mainly focuses on the effects of UV on the skin. Moreover, novel findings of the biological effects of UV in other organs and systems are also summarized. Nevertheless, the mechanisms through which UV affects the human organism remain to be fully elucidated to achieve a more comprehensive understanding of its biological effects.
Collapse
Affiliation(s)
- Xiaoyou Tang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tingyi Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Hai Xiong
- Medical College of Tibet University, Lasa 850000, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuyu Zhang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
13
|
Gao J, Zhang S, Li B, Wang Z, Liu W, Zhang L. Sub-Chronic Aluminum Exposure in Rats' Learning-Memory Capability and Hippocampal Histone H4 Acetylation Modification: Effects and Mechanisms. Biol Trace Elem Res 2023; 201:5309-5320. [PMID: 36823489 DOI: 10.1007/s12011-023-03602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
Aluminum has been found to be closely related to the pathogenesis of neurodegenerative diseases and damage learning and memory functions. Many changes in epigenetics may be one of the mechanisms of aluminum neurotoxicity. The purpose of this study is to further investigate the mechanism of action of sub-chronic aluminum exposure on learning memory and histone H4 acetylation modification in Wistar rats, and the correlation between learning memory impairment and histone H4 acetylation in aluminum-exposed rats. Rats in each dose group were given 0.0 g/L, 2.0 g/L, 4.0 g/L, and 8.0 g/L of AlCl3 distilled water daily for 12 weeks. The learning and memory ability of rats was measured by the Morris water maze test; the neuronal morphology of rat hippocampus was observed by Nissl staining and transmission electron microscope; real-time PCR, and Western blot were used to detect mRNA expression and protein content in hippocampus of rats. The results suggest that aluminum may affect the gene and protein expression of HAT1 and HDAC2, and then affect histone H4 and the acetylation of H4K12 (acH4K12), which may lead to learning and memory dysfunction in rats.
Collapse
Affiliation(s)
- Jie Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China
| | - Shiming Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China
| | - Bing Li
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ziyi Wang
- Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China
| | - Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, 110034, People's Republic of China.
| |
Collapse
|
14
|
Zobdeh F, Eremenko II, Akan MA, Tarasov VV, Chubarev VN, Schiöth HB, Mwinyi J. The Epigenetics of Migraine. Int J Mol Sci 2023; 24:ijms24119127. [PMID: 37298078 DOI: 10.3390/ijms24119127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Migraine is a complex neurological disorder and a major cause of disability. A wide range of different drug classes such as triptans, antidepressants, anticonvulsants, analgesics, and beta-blockers are used in acute and preventive migraine therapy. Despite a considerable progress in the development of novel and targeted therapeutic interventions during recent years, e.g., drugs that inhibit the calcitonin gene-related peptide (CGRP) pathway, therapy success rates are still unsatisfactory. The diversity of drug classes used in migraine therapy partly reflects the limited perception of migraine pathophysiology. Genetics seems to explain only to a minor extent the susceptibility and pathophysiological aspects of migraine. While the role of genetics in migraine has been extensively studied in the past, the interest in studying the role of gene regulatory mechanisms in migraine pathophysiology is recently evolving. A better understanding of the causes and consequences of migraine-associated epigenetic changes could help to better understand migraine risk, pathogenesis, development, course, diagnosis, and prognosis. Additionally, it could be a promising avenue to discover new therapeutic targets for migraine treatment and monitoring. In this review, we summarize the state of the art regarding epigenetic findings in relation to migraine pathogenesis and potential therapeutic targets, with a focus on DNA methylation, histone acetylation, and microRNA-dependent regulation. Several genes and their methylation patterns such as CALCA (migraine symptoms and age of migraine onset), RAMP1, NPTX2, and SH2D5 (migraine chronification) and microRNA molecules such as miR-34a-5p and miR-382-5p (treatment response) seem especially worthy of further study regarding their role in migraine pathogenesis, course, and therapy. Additionally, changes in genes including COMT, GIT2, ZNF234, and SOCS1 have been linked to migraine progression to medication overuse headache (MOH), and several microRNA molecules such as let-7a-5p, let-7b-5p, let-7f-5p, miR-155, miR-126, let-7g, hsa-miR-34a-5p, hsa-miR-375, miR-181a, let-7b, miR-22, and miR-155-5p have been implicated with migraine pathophysiology. Epigenetic changes could be a potential tool for a better understanding of migraine pathophysiology and the identification of new therapeutic possibilities. However, further studies with larger sample sizes are needed to verify these early findings and to be able to establish epigenetic targets as disease predictors or therapeutic targets.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Ivan I Eremenko
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | - Mikail A Akan
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | | | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
15
|
Ortega MA, De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, Del Val Toledo Lobo M, García-Tuñón I, Royuela M, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Alvarez-Mon MÁ. Understanding HAT1: A Comprehensive Review of Noncanonical Roles and Connection with Disease. Genes (Basel) 2023; 14:genes14040915. [PMID: 37107673 PMCID: PMC10137880 DOI: 10.3390/genes14040915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Histone acetylation plays a vital role in organizing chromatin, regulating gene expression and controlling the cell cycle. The first histone acetyltransferase to be identified was histone acetyltransferase 1 (HAT1), but it remains one of the least understood acetyltransferases. HAT1 catalyzes the acetylation of newly synthesized H4 and, to a lesser extent, H2A in the cytoplasm. However, 20 min after assembly, histones lose acetylation marks. Moreover, new noncanonical functions have been described for HAT1, revealing its complexity and complicating the understanding of its functions. Recently discovered roles include facilitating the translocation of the H3H4 dimer into the nucleus, increasing the stability of the DNA replication fork, replication-coupled chromatin assembly, coordination of histone production, DNA damage repair, telomeric silencing, epigenetic regulation of nuclear lamina-associated heterochromatin, regulation of the NF-κB response, succinyl transferase activity and mitochondrial protein acetylation. In addition, the functions and expression levels of HAT1 have been linked to many diseases, such as many types of cancer, viral infections (hepatitis B virus, human immunodeficiency virus and viperin synthesis) and inflammatory diseases (chronic obstructive pulmonary disease, atherosclerosis and ischemic stroke). The collective data reveal that HAT1 is a promising therapeutic target, and novel therapeutic approaches, such as RNA interference and the use of aptamers, bisubstrate inhibitors and small-molecule inhibitors, are being evaluated at the preclinical level.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María Del Val Toledo Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Ignacio García-Tuñón
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel Ángel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
16
|
Hu Y, Liu Z, Xu S, Zhao Q, Liu G, Song X, Qu Y, Qin Y. The interaction between the histone acetyltransferase complex Hat1-Hat2 and transcription factor AmyR provides a molecular brake to regulate amylase gene expression. Mol Microbiol 2023; 119:471-491. [PMID: 36760021 DOI: 10.1111/mmi.15036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The chromatin structure is generally regulated by chromatin remodelers and histone modifiers, which affect DNA replication, repair, and levels of transcription. The first identified histone acetyltransferase was Hat1/KAT1, which belongs to lysine (K) acetyltransferases. The catalytic subunit Hat1 and the regulatory subunit Hat2 make up the core HAT1 complex. In this study, the results of tandem affinity purification and mass spectrometry and bimolecular fluorescence complementation proved that the Penicillium oxalicum PoHat1-Hat2 is the transcriptional cofactor of the sequence-specific transcription factor PoAmyR, a transcription activator essential for the transcription of amylase gene. ChIP-qPCR results demonstrated that the complex PoHat1-Hat2 is recruited by PoAmyR to the promoters of prominent amylase genes Poamy13A and Poamy15A and performs histone H4 lysine12 acetylation. The result of the yeast two-hybrid test indicated that PoHat2 is the subunit that directly interacts with PoAmyR. PoHat1-Hat2 acts as the molecular brake of the PoAmyR-regulating transcription of amylase genes. A putative model for amylase gene regulation by PoAmyR-Hat2-Hat1 was constructed. Our paper is the first report that the Hat1-Hat2 complex acts as a cofactor for sequence-specific TF to regulate gene expression and explains the mechanism of TF AmyR regulating amylase genes expression.
Collapse
Affiliation(s)
- Yueyan Hu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.,Shandong Lishan Biotechnology Co., Ltd, Jinan, China
| | - Zhongjiao Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shaohua Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qinqin Zhao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guodong Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.,NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| |
Collapse
|
17
|
Klett-Mingo JI, Pinto-Díez C, Cambronero-Plaza J, Carrión-Marchante R, Barragán-Usero M, Pérez-Morgado MI, Rodríguez-Martín E, del Val Toledo-Lobo M, González VM, Martín ME. Potential Therapeutic Use of Aptamers against HAT1 in Lung Cancer. Cancers (Basel) 2022; 15:227. [PMID: 36612223 PMCID: PMC9818519 DOI: 10.3390/cancers15010227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is one of the leading causes of death worldwide and the most common of all cancer types. Histone acetyltransferase 1 (HAT1) has attracted increasing interest as a potential therapeutic target due to its involvement in multiple pathologies, including cancer. Aptamers are single-stranded RNA or DNA molecules whose three-dimensional structure allows them to bind to a target molecule with high specificity and affinity, thus making them exceptional candidates for use as diagnostic or therapeutic tools. In this work, aptamers against HAT1 were obtained, subsequently characterized, and optimized, showing high affinity and specificity for HAT1 and the ability to inhibit acetyltransferase activity in vitro. Of those tested, the apHAT610 aptamer reduced cell viability, induced apoptosis and cell cycle arrest, and inhibited colony formation in lung cancer cell lines. All these results indicate that the apHAT610 aptamer is a potential drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- José Ignacio Klett-Mingo
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Celia Pinto-Díez
- Aptus Biotech SL, Av. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Julio Cambronero-Plaza
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Rebeca Carrión-Marchante
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - María Isabel Pérez-Morgado
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Eulalia Rodríguez-Martín
- Departamento de Inmunología, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - María del Val Toledo-Lobo
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Maria Elena Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| |
Collapse
|
18
|
Donnarumma F, Tucci V, Ambrosino C, Altucci L, Carafa V. NAA60 (HAT4): the newly discovered bi-functional Golgi member of the acetyltransferase family. Clin Epigenetics 2022; 14:182. [PMID: 36539894 PMCID: PMC9769039 DOI: 10.1186/s13148-022-01402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chromatin structural organization, gene expression and proteostasis are intricately regulated in a wide range of biological processes, both physiological and pathological. Protein acetylation, a major post-translational modification, is tightly involved in interconnected biological networks, modulating the activation of gene transcription and protein action in cells. A very large number of studies describe the pivotal role of the so-called acetylome (accounting for more than 80% of the human proteome) in orchestrating different pathways in response to stimuli and triggering severe diseases, including cancer. NAA60/NatF (N-terminal acetyltransferase F), also named HAT4 (histone acetyltransferase type B protein 4), is a newly discovered acetyltransferase in humans modifying N-termini of transmembrane proteins starting with M-K/M-A/M-V/M-M residues and is also thought to modify lysine residues of histone H4. Because of its enzymatic features and unusual cell localization on the Golgi membrane, NAA60 is an intriguing acetyltransferase that warrants biochemical and clinical investigation. Although it is still poorly studied, this review summarizes current findings concerning the structural hallmarks and biological role of this novel targetable epigenetic enzyme.
Collapse
Affiliation(s)
- Federica Donnarumma
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
| | - Valeria Tucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Concetta Ambrosino
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.47422.370000 0001 0724 3038Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lucia Altucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Vincenzo Carafa
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| |
Collapse
|
19
|
Pansa CC, Molica LR, Moraes KCM. Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology. Scand J Gastroenterol 2022; 58:521-533. [PMID: 36426638 DOI: 10.1080/00365521.2022.2148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) results from metabolic dysfunctions that affect more than one-third of the world population. Over the last decades, scientific investigations have clarified many details on the pathology establishment and development; however, effective therapeutics approaches are still evasive. In addition, studies demonstrated that NAFLD establishment and progression are related to several etiologies. Recently, genetics and epigenetics backgrounds have emerged as relevant elements to the pathology onset, and, hence, deserve deep investigation to clarify molecular details on NAFLD signaling, which may be correlated with population behavior. Thus, to minimize the global problem, public health and public policies should take advantage of studies on NAFLD over the next following decades. METHODS In this context, we have performed a selective literature review focusing on biochemistry of lipid metabolism, genetics, epigenetics, and the ethnicity as strong elements that drive NAFLD establishment. RESULTS Considering the etiological agents that acts on NAFLD development and progression, the genetics and the epigenetics emerged as relevant factors. Genetics acts as a powerful element in the establishment and progression of the NAFLD. Over the last decades, details concerning genes and their polymorphisms, as well as epigenetics, have been considered relevant elements in the systems biology of diseases, and their effects on NAFLD should be considered in-depth, as well as the ethnicity, clarifying whether people are susceptible to liver diseases. Moreover, the endemicity and social problems of hepatic disfunction are far to be solved, which require a combined effort of various sectors of society. CONCLUSION Hence, the elements presented and discussed in this short review demonstrated their relevance to the physiological control of NAFLD, opening perspectives for research to develop new strategy to treat fatty liver diseases.
Collapse
Affiliation(s)
- Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Karen C M Moraes
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
20
|
Zheng K, Guo L, Ullah S, Cao Y, Huang X, shan H, Jiang J, Wu J, Jiang Y. Proteome changes of sheep rumen epithelium during postnatal development. Front Genet 2022; 13:1031707. [PMID: 36386827 PMCID: PMC9641056 DOI: 10.3389/fgene.2022.1031707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The development of the rumen epithelium is a critical physiological challenge for sheep. However, the molecular mechanism underlying postnatal rumen development in sheep remains rarely understood. Results: Here, we used a shotgun approach and bioinformatics analyses to investigate and compare proteomic profiles of sheep rumen epithelium tissue on day 0, 15, 30, 45, and 60 of age. A total of 4,523 proteins were identified, in which we found 852, 342, 164, and 95 differentially expressed proteins (DEPs) between day 0 and day 15, between day 15 and day 30, between day 30 and day 45, between day 45 and day 60, respectively. Furthermore, subcellular localization analysis showed that the DEPs were majorly localized in mitochondrion between day 0 and day 15, after which nucleus proteins were the most DEPs. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that DEPs significantly enriched in mitochondrion, ubiquitination, histone modifications, glutathione synthase activity, and wnt and nortch signaling pathways. Conclusion: Our data indicate that the biogenesis of mitochondrion in rumen epithelial cell is essential for the initiation of rumen epithelial development. Glutathione, wnt signaling pathway and nortch signaling pathway participated in rumen epithelial growth. Ubiquitination, post-translational modifications of histone might be key molecular functions in regulating rumen epithelial development.
Collapse
Affiliation(s)
- Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangyong Guo
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Saif Ullah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Pakistan
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huili shan
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianliang Wu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianliang Wu, ; Yongqing Jiang,
| | - Yongqing Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianliang Wu, ; Yongqing Jiang,
| |
Collapse
|
21
|
Basha NJ, Basavarajaiah SM. An insight into therapeutic efficacy of heterocycles as histone modifying enzyme inhibitors that targets cancer epigenetic pathways. Chem Biol Drug Des 2022; 100:682-698. [PMID: 36059065 DOI: 10.1111/cbdd.14135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
Histone modifying enzymes are the key regulators involved in the post-translational modification of histone and non-histone. These enzymes are responsible for the epigenetic control of cellular functions. However, deregulation of the activity of these enzymes results in uncontrolled disorders such as cancer and inflammatory and neurological diseases. The study includes histone acetyltransferases, deacetylases, methyl transferases, demethylases, DNA methyl transferases, and their potent inhibitors which are in a clinical trial and used as medicinal drugs. The present review covers the heterocycles as target-specific inhibitors of histone-modifying enzyme, more specifically histone acetyltransferases. This review also confers more recent reports on heterocycles as potential HAT inhibitors covered from 2016-2022 and future perspectives of these heterocycles in epigenetic therapy.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S M Basavarajaiah
- P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|
22
|
Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology 2022; 16:409-424. [DOI: 10.1080/17435390.2022.2085206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| |
Collapse
|
23
|
Douvris A, Viñas J, Burns KD. miRNA-486-5p: signaling targets and role in non-malignant disease. Cell Mol Life Sci 2022; 79:376. [PMID: 35731367 PMCID: PMC9217846 DOI: 10.1007/s00018-022-04406-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, highly conserved between species, that are powerful regulators of gene expression. Aberrant expression of miRNAs alters biological processes and pathways linked to human disease. miR-486-5p is a muscle-enriched miRNA localized to the cytoplasm and nucleus, and is highly abundant in human plasma and enriched in small extracellular vesicles. Studies of malignant and non-malignant diseases, including kidney diseases, have found correlations with circulating miR-486-5p levels, supporting its role as a potential biomarker. Pre-clinical studies of non-malignant diseases have identified miR-486-5p targets that regulate major signaling pathways involved in cellular proliferation, migration, angiogenesis, and apoptosis. Validated miR-486-5p targets include phosphatase and tensin homolog (PTEN) and FoXO1, whose suppression activates phosphatidyl inositol-3-kinase (PI3K)/Akt signaling. Targeting of Smad1/2/4 and IGF-1 by miR-486-5p inhibits transforming growth factor (TGF)-β and insulin-like growth factor-1 (IGF-1) signaling, respectively. Other miR-486-5p targets include matrix metalloproteinase-19 (MMP-19), Sp5, histone acetyltransferase 1 (HAT1), and nuclear factor of activated T cells-5 (NFAT5). In this review, we examine the biogenesis, regulation, validated gene targets and biological effects of miR-486-5p in non-malignant diseases.
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jose Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
24
|
Song J, Ngo L, Bell K, Zheng YG. Chemoproteomic Profiling of Protein Substrates of a Major Lysine Acetyltransferase in the Native Cellular Context. ACS Chem Biol 2022; 17:1092-1102. [PMID: 35417122 DOI: 10.1021/acschembio.1c00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The family of lysine acetyltransferases (KATs) regulates epigenetics and signaling pathways in eukaryotic cells. So far, knowledge of different KAT members contributing to the cellular acetylome is limited, which limits our understanding of biological functions of KATs in physiology and disease. Here, we found that a clickable acyl-CoA reporter, 3-azidopropanoyl CoA (3AZ-CoA), presented remarkable cell permeability and effectively acylated proteins in cells. We rationally engineered the major KAT member, histone acetyltransferase 1 (HAT1), to generate its mutant forms that displayed excellent bio-orthogonal activity for 3AZ-CoA in substrate labeling. We were able to apply the bio-orthogonal enzyme-cofactor pair combined with SILAC proteomics to achieve HAT1 substrate targeting, enrichment, and proteomic profiling in living cells. A total of 123 protein substrates of HAT1 were disclosed, underlining the multifactorial functions of this important enzyme than hitherto known. This study demonstrates the first example of utilizing bio-orthogonal reporters as a chemoproteomic strategy for substrate mapping of individual KAT isoforms in the native biological contexts.
Collapse
Affiliation(s)
- Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Liza Ngo
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Kaylyn Bell
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Lin F, Han S, Yu W, Rao T, Ruan Y, Yuan R, Li H, Ning J, Xia Y, Xie J, Qi Y, Zhou X, Cheng F. microRNA‐486‐5p is implicated in the cisplatin‐induced apoptosis and acute inflammation response of renal tubular epithelial cells by targeting HAT1. J Biochem Mol Toxicol 2022; 36:e23039. [PMID: 35279909 DOI: 10.1002/jbt.23039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Fang‐You Lin
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Shang‐Ting Han
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Wei‐Min Yu
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Ting Rao
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yuan Ruan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Run Yuan
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Hao‐Yong Li
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Zhuo Ning
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Qi Xia
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Jin‐Na Xie
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Yu‐Cheng Qi
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xiang‐Jun Zhou
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Fan Cheng
- Department of Urology Renmin Hospital of Wuhan University Wuhan Hubei China
| |
Collapse
|
26
|
Lu J, He X, Zhang L, Zhang R, Li W. Acetylation in Tumor Immune Evasion Regulation. Front Pharmacol 2021; 12:771588. [PMID: 34880761 PMCID: PMC8645962 DOI: 10.3389/fphar.2021.771588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Acetylation is considered as one of the most common types of epigenetic modifications, and aberrant histone acetylation modifications are associated with the pathological process of cancer through the regulation of oncogenes and tumor suppressors. Recent studies have shown that immune system function and tumor immunity can also be affected by acetylation modifications. A comprehensive understanding of the role of acetylation function in cancer is essential, which may help to develop new therapies to improve the prognosis of cancer patients. In this review, we mainly discussed the functions of acetylase and deacetylase in tumor, immune system and tumor immunity, and listed the information of drugs targeting these enzymes in tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lu
- Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|