1
|
Lin L, Zou Y, Zhang D. Silencing ribosome biogenesis regulator 1 homolog (RRS1) inhibits angiogenesis and cisplatin resistance of lung cancer cells by activating ferroptosis mediated by p53 pathway. Tissue Cell 2025; 94:102796. [PMID: 39983385 DOI: 10.1016/j.tice.2025.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Human RRS1 gene is abnormally expressed in many cancers, and RRS1 can inhibit the level of p53. Ferroptosis mediated by p53 pathway may be a potential therapeutic strategy for cancer. However, the specific role of RRS1 in lung cancer is not clear. METHODS The correlation between the expression level of RRS1 and the overall survival of lung cancer patients was explored through UALCAN and Kaplan-Meier plotter. A549 cells and drug-resistant A549/DDP cells were used in vitro. Wound healing, Transwell and tubule formation experiment were used to detect the abilities of cell invasion, migration and tube formation. Detecting the level of lipid ROS by BODIPY(581/591) C11 staining, the expression level of total iron and ferroptosis-related proteins were detected, so as to judge the ferroptosis in cells. Detecting the apoptosis by flow cytometry and the expression of apoptosis-related proteins by western blot, so as to observe the effect of interfering with RRS1 on cisplatin resistance of cells. RESULTS The expression of RRS1 was up-regulated, and its level was negatively correlated with the overall survival time of lung cancer patients. In vitro experiments showed that RRS1 interference reduced the invasion and migration of lung cancer cells, inhibited the expressions of MMP2 and MMP9 proteins and decreased the tube-forming ability of cells. After interfering with RRS1, the level of p53, lipid ROS and the total iron content in cells increased, the expression of SLC7A11 and GPX4 decreased while the expression of ACSL4 increased, which indicated that ferroptosis was enhanced. Interference with RRS1 increased the apoptosis of drug-resistant cells, decreased the expression of Bcl2 while increased the expression of Bax and caspase3(cleaved), which decreased the cisplatin resistance of lung cancer cell A549. However, after silencing p53, these effects were reversed. CONCLUSION RRS1 inhibits angiogenesis and cisplatin resistance of lung cancer cells by activating ferroptosis mediated by p53 pathway.
Collapse
Affiliation(s)
- Ling Lin
- Radiotherapy Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province 510095, China
| | - Ying Zou
- Internal Medicine, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province 510095, China
| | - Di Zhang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
2
|
Lv J, Quan H, Lv J, Sui Y, Yu P, Guo S, Miao Y, Lv M. Argatroban and Menadione exert protective effects in ultraviolet-irradiated skin inflammation: A transcriptomic analysis based on identification of iron overload related biomarkers. Int Immunopharmacol 2025; 151:114334. [PMID: 40020462 DOI: 10.1016/j.intimp.2025.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
Ultraviolet light (UV) can cause serious damage to human skin. The inflammatory reaction arising from repeated UV exposure leads to severe skin lesions and even promotes photo-carcinogenesis. Iron overload is featured by excessive iron intake and deposition and will promote inflammatory response inside cells. However, the core molecules involved in UV radiation induced iron overload and related anti-inflammatory strategies remain unclear. Signature genes involved in UV-irradiated skin were filtered through integrated datasets from the Gene Expression Omnibus (GEO) database. Subsequently, immune cell infiltration analysis was carried out to examine the relationship between signature gene expression and immune cell abundance. Single cell RNA-seq matrix data implicated in UV-irradiated skin was then applied to assess the expression level of signature genes in different cell clusters and to find out the core cell type and the key signaling pathway involved in UV radiation. Finally, cytological and animal experiments were conducted to investigate the potential of signature genes as therapeutic targets. SAT1 and RBMS1 were screened and validated as signature genes of UV irradiation. Immune cell infiltration analysis demonstrated that SAT1 and RBMS1 expression were associated closely with immune cell abundance, and skin fibroblasts were identified as the central cell type to communicate with other cell clusters in UV-irradiated skin. Disturbance of SAT1 exerted observably more suppressive effects on the release of inflammatory cytokines than overexpression of RBMS1. Two small molecule drugs targeting SAT1, namely Argatroban and Menadione, were predicted. Moreover, their therapeutic potentials in the treatment of UV-irradiated skin injury were confirmed experimentally.
Collapse
Affiliation(s)
- Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huilin Quan
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiarui Lv
- Department of Organ Transplantation and Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Yanan Sui
- Department of ophthalmology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Panpan Yu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Yuwei Miao
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Yin X, Luo M, Zha X, Duan M, Liu Y. RBMS1-HSPA8 axis activation drives head and neck squamous cell carcinoma progression. BMC Cancer 2025; 25:549. [PMID: 40140757 PMCID: PMC11948914 DOI: 10.1186/s12885-025-13937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Head and Neck Squamous Cell Carcinoma (HNSCC) presents significant challenges in terms of treatment and prognosis, highlighting the urgent need for new therapeutic targets and the development of effective targeted therapies to enhance patient outcomes and survival. METHODS The expression level of RBMS1 in HNSCC was identified by GEO and TCGA databases through systematic bioinformatics analysis, and further verified in human specimens by quantitative Real-time PCR, Western blot, and immunohistochemistry. The results of CCK-8, colony formation assay, wound healing, Transwell, and tumor formation assays in nude mice showed that RBMS1 promoted the proliferation, migration, and invasion of HNSCC cells. The downstream target genes of RBMS1 were identified in the RBMS1 knockdown and the control groups of TU177 cells using RNA sequencing. HSPA8 was identified as a downstream target gene of RBMS1 in functional in vitro and tumor formation experiments in nude mice. RESULTS Elevated expression levels of RBMS1 in HNSCC were identified using relevant databases and validated in human specimens. In both in vitro and in vivo studies, overexpression of RBMS1 promoted the proliferation, migration, and invasion of HNSCC cells, whereas knockdown of RBMS1 significantly inhibited these processes. RNA sequencing analysis revealed HSPA8 as a downstream target of RBMS1, and rescue experiments confirmed that HSPA8 serves as a crucial intermediary in the regulatory pathway of tumor progression influenced by RBMS1. CONCLUSIONS This study suggests that RBMS1 regulates HSPA8 to promote the proliferation, migration, and invasion of HNSCC cells, making it a potential therapeutic target for HNSCC.
Collapse
Grants
- 2171127, 82371133, 82171128 and 82303021;2208085MH239;2022AH051134;NO. 4245 the Natural Science Foundation of China, Anhui Provincial Natural Science Foundation ,the Natural Science Foundation of Universities of Anhui Province , Discipline Construction Project of the First Affiliated Hospital of Anhui Medical University
- 2171127, 82371133, 82171128 and 82303021;2208085MH239;2022AH051134;NO. 4245 the Natural Science Foundation of China, Anhui Provincial Natural Science Foundation ,the Natural Science Foundation of Universities of Anhui Province , Discipline Construction Project of the First Affiliated Hospital of Anhui Medical University
- 2171127, 82371133, 82171128 and 82303021;2208085MH239;2022AH051134;NO. 4245 the Natural Science Foundation of China, Anhui Provincial Natural Science Foundation ,the Natural Science Foundation of Universities of Anhui Province , Discipline Construction Project of the First Affiliated Hospital of Anhui Medical University
- 2171127, 82371133, 82171128 and 82303021;2208085MH239;2022AH051134;NO. 4245 the Natural Science Foundation of China, Anhui Provincial Natural Science Foundation ,the Natural Science Foundation of Universities of Anhui Province , Discipline Construction Project of the First Affiliated Hospital of Anhui Medical University
- 2171127, 82371133, 82171128 and 82303021;2208085MH239;2022AH051134;NO. 4245 the Natural Science Foundation of China, Anhui Provincial Natural Science Foundation ,the Natural Science Foundation of Universities of Anhui Province , Discipline Construction Project of the First Affiliated Hospital of Anhui Medical University
Collapse
Affiliation(s)
- Xinghong Yin
- Department of Otorhinolaryngology Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230000, China
- Department of Otorhinolaryngology Head & Neck Surgery, Fuyang People's Hospital, Fuyang, China
| | - Meng Luo
- Department of Otorhinolaryngology Head & Neck Surgery, Fuyang People's Hospital, Fuyang, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Maoli Duan
- Division of Ear, Nose and Thoat Disease, Department of Clinical Science, Intervention and Technology Karolinska Institutet, Stockholm, Sweden.
- Ear Nose and Throat Patient Area, Trauma and Reconstructive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Yehai Liu
- Department of Otorhinolaryngology Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230000, China.
| |
Collapse
|
4
|
Zhang Q, Zhang Y, Guo S, Wang H. Emerging insights into the role of microRNAs regulation of ferroptosis in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167642. [PMID: 39734007 DOI: 10.1016/j.bbadis.2024.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major type of liver cancer and an important cause of cancer death. It has been reported that the hepatocyte death plays an important role in HCC. Ferroptosis is an iron-dependent programmed cell death characterized by the accumulation of free iron and lipid peroxidation. A series of studies have shown that ferroptosis contributes to the occurrence and development of HCC. MicroRNAs (miRNAs) are non-coding RNAs with a length of approximately 222 nt. In recent years, miRNAs have been shown to participate in regulating ferroptosis to play a vital role in HCC, but the related mechanisms are not fully understood. This review summarized the current understanding of ferroptosis, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ferroptosis in HCC, with the hope of providing new targets and ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingdan Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
5
|
Tu S, Zou Y, Yang M, Zhou X, Zheng X, Jiang Y, Wang H, Chen B, Qian Q, Dou X, Bao J, Tian L. Ferroptosis in hepatocellular carcinoma: Mechanisms and therapeutic implications. Biomed Pharmacother 2025; 182:117769. [PMID: 39689515 DOI: 10.1016/j.biopha.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Ferroptosis is a novel form of oxidative cell death, in which highly expressed unsaturated fatty acids on the cell membrane are catalyzed by divalent iron or ester oxygenase to promote liposome peroxidation. This process reduces cellular antioxidant capacity, increases lipid reactive oxygen species, and leads to the accumulation of intracellular ferrous ions, which disrupts intracellular redox homeostasis and ultimately causes oxidative cell death. Studies have shown that ferroptosis induces an immune response that has a dual role in liver disease, ferroptosis also offers a promising strategy for precise cancer therapy. Ferroptosis regulators are beneficial in maintaining cellular homeostasis and tissue health, have shown efficacy in treating diseases of the hepatic system. However, the mechanisms of action and molecular regulatory pathways of ferroptosis in hepatocellular carcinoma (HCC) have not been fully elucidated. Therefore, deciphering the role of ferroptosis and its mechanisms in HCC progression is crucial for treating the disease. In this review, we introduce the morphological features and biochemical functions of ferroptosis, outline the molecular regulatory pathways of ferroptosis, and highlights the therapeutic potential of ferroptosis inhibitors and modulators to target it in HCC.
Collapse
Affiliation(s)
- Shanjie Tu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, PR China
| | - Xinlei Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xu Zheng
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan, PR China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haoran Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Buyang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Jianfeng Bao
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
6
|
Zhang X, Tang B, Luo J, Yang Y, Weng Q, Fang S, Zhao Z, Tu J, Chen M, Ji J. Cuproptosis, ferroptosis and PANoptosis in tumor immune microenvironment remodeling and immunotherapy: culprits or new hope. Mol Cancer 2024; 23:255. [PMID: 39543600 PMCID: PMC11566504 DOI: 10.1186/s12943-024-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
Normal life requires cell division to produce new cells, but cell death is necessary to maintain balance. Dysregulation of cell death can lead to the survival and proliferation of abnormal cells, promoting tumor development. Unlike apoptosis, necrosis, and autophagy, the newly recognized forms of regulated cell death (RCD) cuproptosis, ferroptosis, and PANoptosis provide novel therapeutic strategies for tumor treatment. Increasing research indicates that the death of tumor and immune cells mediated by these newly discovered forms of cell death can regulate the tumor microenvironment (TME) and influence the effectiveness of tumor immunotherapy. This review primarily elucidates the molecular mechanisms of cuproptosis, ferroptosis, and PANoptosis and their complex effects on tumor cells and the TME. This review also summarizes the exploration of nanoparticle applications in tumor therapy based on in vivo and in vitro evidence derived from the induction or inhibition of these new RCD pathways.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Bufu Tang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinhua Luo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Yang Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Csaenter of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
- Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- School of Medcine, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000, China.
| |
Collapse
|
7
|
Liao C, He Y, Luo X, Deng G. Ferroptosis: insight into the treatment of hepatocellular carcinoma. Cancer Cell Int 2024; 24:376. [PMID: 39538215 PMCID: PMC11562710 DOI: 10.1186/s12935-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignances in the world, with high morbidity and mortality. Due to the hidden onset of symptoms, there are huge obstacles in early diagnosis, recurrence, metastasis and drug resistance. Although great strides have been made in the treatment of HCC, effective treatment options are still limited and achieving longer survival for patients remains urgent. Ferroptosis is a novel type of programmed cell death that is mainly caused by iron-dependent oxidative damage. With further investigations, ferroptosis has been proved to be associated with the occurrence and development of various tumors. This article reviews the regulatory mechanism and signal transduction pathways of ferroptosis, investigates the complex relationship between autophagy, sorafenib resistance and immunotherapy with ferroptosis involved in HCC, providing new ideas and directions for the treatment of HCC.
Collapse
Affiliation(s)
- Chuanjie Liao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China
| | - Youwu He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China
| | - Xinning Luo
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, China.
| |
Collapse
|
8
|
Lu Q, Ma J, Wei L, Fu J, Li X, Lai K, Li X, Xia B, Bin B, Tang A. Shenqi Qiangjing Granules Ameliorate Asthenozoospermia in Mice by Regulating Ferroptosis through the METTL3/GPX4 Signaling Axis. TOHOKU J EXP MED 2024; 264:9-19. [PMID: 38839357 DOI: 10.1620/tjem.2024.j040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Asthenozoospermia is a leading cause of male infertility, yet current pharmacotherapies yield suboptimal outcomes, underscoring the urgent need for novel treatment modalities. Herein, we induced asthenozoospermic mouse models using busulfan and investigated the therapeutic effects of Shenqi Qiangjing Granules (SQ) on testicular pathology, serum sex hormone and steroidogenic enzyme levels, and ferroptosis. Furthermore, utilizing GC-1 spg cell lines, we elucidated the role of the METTL3-mediated m6A modification in GPX4 mRNA stability. Treatment with SQ or Fer-1 (an inhibitor of ferroptosis) significantly ameliorated testicular pathological injury, restored abnormal serum sex hormone levels, and enhanced testicular steroidogenic enzyme expression, highlighting the therapeutic potential of targeting ferroptosis in asthenozoospermia. In elucidating the molecular mechanism of METTL3 in ferroptosis, we found that METTL3 regulates GPX4 mRNA stability, subsequently impacting ferroptosis and sperm quality. Knockdown of METTL3 mimicked the effects of SQ treatment, while overexpression of METTL3 partially reversed SQ-mediated effects on ferroptosis and asthenozoospermia, underscoring the pivotal role of METTL3 in SQ therapy. In conclusion, the METTL3-GPX4-ferroptosis axis emerges as a novel regulatory pathway in the pathogenesis of asthenozoospermia. Targeting this axis, particularly through interventions such as SQ treatment, holds promise for the management of male infertility.
Collapse
Affiliation(s)
- Qiuyu Lu
- Deptartment of Pharmacy, People's Hospital of Guangxi Zhuang Autonomous Region
| | - Jiabao Ma
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Luying Wei
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Jing Fu
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Xiaoxia Li
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Kedao Lai
- Guangxi Institute of Chinese Medicine and Pharmaceutical Science
| | - Xin Li
- Guangxi University of Chinese Medicine
| | | | - Bin Bin
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| | - Aicun Tang
- The First Affiliated Hospital of Guangxi Traditional Chinese Medical University
| |
Collapse
|
9
|
Razi S, Khojini JY, Norioun H, Hayati MJ, Naseri N, Tajbaksh A, Gheibihayat SM. MicroRNA-mediated regulation of Ferroptosis: Implications for disease pathogenesis and therapeutic interventions. Cell Signal 2024; 125:111503. [PMID: 39510403 DOI: 10.1016/j.cellsig.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Ferroptosis, a form of iron-dependent regulated cell death, is characterized by the accumulation of lipid peroxides and distinctive morphological features. Moreover, the reduction of intracellular antioxidant enzyme expression or activity, specifically glutathione peroxidase 4 (GPX4) results in activation of the endogenous pathway of ferroptosis. In this review, we aimed to explore the intricate interplay between microRNAs (miRNAs) and ferroptosis, shedding light on its implications in various disease pathologies. This review delves into the role of miRNAs in modulating key regulators of ferroptosis, including genes involved in iron metabolism, lipid peroxidation, and antioxidant defenses. Furthermore, the potential of targeting miRNAs for therapeutic interventions in ferroptosis-related diseases, such as cancer, neurodegenerative disorders, and ischemia/reperfusion injury, is highlighted.
Collapse
Affiliation(s)
- Shokufeh Razi
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Tajbaksh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Yu Q, Xiao Y, Guan M, Zhou G, Zhang X, Yu J, Han M, Yang W, Wang Y, Li Z. Regulation of ferroptosis in osteoarthritis and osteoarthritic chondrocytes by typical MicroRNAs in chondrocytes. Front Med (Lausanne) 2024; 11:1478153. [PMID: 39564502 PMCID: PMC11573538 DOI: 10.3389/fmed.2024.1478153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disorder impacting bones and joints, worsened by chronic inflammation, immune dysregulation, mechanical stress, metabolic disturbances, and various other contributing factors. The complex interplay of cartilage damage, loss, and impaired repair mechanisms remains a critical and formidable aspect of OA pathogenesis. At the genetic level, multiple genes have been implicated in the modulation of chondrocyte metabolism, displaying both promotive and inhibitory roles. Recent research has increasingly focused on the influence of non-coding RNAs in the regulation of distinct cell types within bone tissue in OA. In particular, an expanding body of evidence highlights the regulatory roles of microRNAs in OA chondrocytes. This review aims to consolidate the most relevant microRNAs associated with OA chondrocytes, as identified in recent studies, and to elucidate their involvement in chondrocyte metabolic processes and ferroptosis. Furthermore, this study explores the complex regulatory interactions between long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in OA, with an emphasis on microRNA-mediated mechanisms. Finally, critical gaps in the current research are identified, offering strategic insights to advance the understanding of OA pathophysiology and guide therapeutic developments in this field.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Guohui Zhou
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Yang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yan Wang
- Scientific Research Center, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
11
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
12
|
Liang X, Wang G, Xue C, Zhou Y. RBMS1 interference inhibits malignant progression of glioblastoma cells and promotes ferroptosis. Discov Oncol 2024; 15:548. [PMID: 39392522 PMCID: PMC11469991 DOI: 10.1007/s12672-024-01430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a brain tumor characterized by the highest malignancy and the poorest prognoses. RNA binding motif single strand interacting protein 1 (RBMS1) has been implicated to be involved in various cancer progression. This study was conceived to explore the role and the mechanism of RBMS1 in GBM. MATERIALS RT-qPCR and western blot were used to evaluate RBMS1 expression and examine the transfection efficiency of sh-RBMS1. Cell proliferation was detected using CCK-8 assay and colony formation assay while cell apoptosis was detected with flow cytometry. Cell migration and invasion were detected with wound healing and transwell assay. The activities of MMP2 and MMP9 were detected using gelatin zymography. Western blot was used to measure proliferation-, apoptosis-, ferroptosis- and EMT-related proteins. Lipid peroxidation was detected with TBARS Assay Kit and lipid ROS was detected with a BODIPY 581/591 C11 kit. The total iron level was detected using corresponding assay kits. RESULTS According to GEPIA database, RBMS1 expression was upregulated in GBM and the present study found that RBMS1 expression was upregulated in GBM cells. After interfering RBMS1, GBM cell proliferation, migration, invasion and EMT process were inhibited while cell apoptosis and ferroptosis were promoted. However, ferroptosis inhibitor Fer-1 partially counteracted the protective effects of RBMS1 knockdown on GBM. CONCLUSION Collectively, this study revealed that RBMS1 silence inhibited the malignant progression of GBM possibly through ferroptosis.
Collapse
Affiliation(s)
- Xiaosong Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China
| | - Gang Wang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China
| | - Chunxiao Xue
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China
| | - Yifu Zhou
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
13
|
Xu Q, Ren L, Ren N, Yang Y, Pan J, Zheng Y, Wang G. Ferroptosis: a new promising target for hepatocellular carcinoma therapy. Mol Cell Biochem 2024; 479:2615-2636. [PMID: 38051404 DOI: 10.1007/s11010-023-04893-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer. The in-depth researches for iron metabolism, lipid peroxidation and dysregulation of antioxidant defense have brought about tangible progress in the firmament of ferroptosis with more and more results showing close connections between ferroptosis and HCC. The potential role of ferroptosis has been widely used in chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of various new drugs significantly improving the prognosis of patients. Based on the characteristics and mechanisms of ferroptosis, this article further focuses on the main signaling pathways and promising treatments of HCC, envisioning that existing problems in regard with ferroptosis and HCC could be grappled with in the foreseeable future.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yu Zheng
- Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China.
| |
Collapse
|
14
|
Saqirile, Deng Y, Li K, Yan W, Li K, Wang C. Gene Expression Regulation and the Signal Transduction of Programmed Cell Death. Curr Issues Mol Biol 2024; 46:10264-10298. [PMID: 39329964 DOI: 10.3390/cimb46090612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
Collapse
Affiliation(s)
- Saqirile
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Yuxin Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Wenxin Yan
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Ke Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
15
|
Sun L, Cao H, Wang Y, Wang H. Regulating ferroptosis by non-coding RNAs in hepatocellular carcinoma. Biol Direct 2024; 19:80. [PMID: 39267124 PMCID: PMC11391853 DOI: 10.1186/s13062-024-00530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Ferroptosis, a unique type of regulated cell death plays a vital role in inhibiting tumour malignancy and has presented new opportunities for treatment of therapy in hepatocellular carcinoma. Accumulating studies indicate that epigenetic modifications by non-coding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, can determine cancer cell vulnerability to ferroptosis in HCC. The present review first summarize the updated core molecular mechanisms of ferroptosis. We then provide a concised overview of epigenetic modification of ferroptosis in HCC. Finally, we review the recent progress in understanding of the ncRNA-mediated regulated mechanisms on ferroptosis in HCC. The review will promote our understanding of the ncRNA-mediated epigenetic regulatory mechanisms modulating ferroptosis in malignancy of HCC, highlighting a novel strategies for treatment of HCC through targeting ncRNA-ferroptosis axis.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Gastroenterology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China.
| | - Hongfei Cao
- Department of Gastroenterology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China.
| | - Yanzhe Wang
- Department of Gastroenterology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| |
Collapse
|
16
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
17
|
Shi HQ, Huang S, Ma XY, Tan ZJ, Luo R, Luo B, Zhang W, Shi L, Zhong XL, Lü MH, Chen X, Tang XW. BCAR3 and BCAR3-related competing endogenous RNA expression in hepatocellular carcinoma and their prognostic value. World J Gastrointest Oncol 2024; 16:3082-3096. [PMID: 39072167 PMCID: PMC11271796 DOI: 10.4251/wjgo.v16.i7.3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumor that has a high incidence and mortality worldwide. Despite extensive studies, the detailed molecular mechanism of HCC development remains unclear. Studies have shown that the occurrence and development of HCC are closely related to abnormal gene expression. BCAR3 has been shown to be overexpressed in a variety of malignant tumors. However, the role of BCAR3 in HCC remains unclear. AIM To investigate the expression of BCAR3 and BCAR3-related competing endogenous RNAs (ceRNAs) in HCC and their clinical significance, in order to provide new ideas for the diagnosis and treatment of HCC. METHODS The data of HCC were obtained from the Cancer Genome Atlas database and The Genotype Tissue Expression, including transcriptome data and clinical information. Multiple common databases, including UALCAN, Timer 2.0, cBioPortal, LinkedOmics, starBase, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, were used to analyse the expression of BCAR3, prognostic value, genetic alteration, co-expressed genes, differentially expressed genes, BCAR3 gene-related ceRNAs and functional enrichment analysis in HCC patients. Kaplan-Meier analysis, univariate and multivariate Cox regression analysis were used to analyze survival prognosis and the Spearman test was used to measure correlations between BCAR3 and immune functions. And R language package was used to analyze the correlation between BCAR3 and immune invasion of HCC. RESULTS Our study indicated that BCAR3 was differentially expressed in various tumor tissues. The over-expression of BCAR3 gene was an unfavorable prognostic indicator for HCC patients, and associated with unfavorable cytogenetic risk and gene mutations. Moreover, most immune cells were positively correlated with BCAR3 (P < 0.05). According to the results of functional enrichment analysis, BCAR3 was involved in the positive regulation of epidermal growth factor receptor signaling pathway and ERBB signaling pathway, and was related to DNA replication and GTPase regulator activity. Finally, our study found that based on RAB30-DT and miR-19b-3p pathways, targeting BCAR3 might promote the occurrence and development of HCC. CONCLUSION Collectively, this study indicated that the BCAR3 gene was involved in the occurrence and development of HCC, and it might be a new biomarker and therapeutic target for HCC, but the specific mechanism remains to be further verified.
Collapse
Affiliation(s)
- Hui-Qin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Shu Huang
- Department of Gastroenterology, The People’s Hospital of Lianshui, Huaian 223499, Jiangsu Province, China
- Department of Gastroenterology, Lianshui People’ Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian 223499, Jiangsu Province, China
| | - Xin-Yue Ma
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zhen-Ju Tan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Rui Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Bei Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xiao-Lin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Xia Chen
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Xiao-Wei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
18
|
Bhat AA, Kukreti N, Afzal M, Goyal A, Thapa R, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Ferroptosis and circular RNAs: new horizons in cancer therapy. EXCLI JOURNAL 2024; 23:570-599. [PMID: 38887390 PMCID: PMC11180955 DOI: 10.17179/excli2024-7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| |
Collapse
|
19
|
Cao F, Hao W, Liang W, Zeng H, Zheng J. MiR-339-5p Inhibits Ferroptosis by Promoting Autophagic Degradation of FTH1 Through Targeting ATG7 in Liver Cancer Cells. Clin Med Insights Oncol 2024; 18:11795549241244783. [PMID: 38628842 PMCID: PMC11020741 DOI: 10.1177/11795549241244783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Background Liver cancer has a high incidence and mortality rate worldwide, and there is an urgent need to identify new therapeutic strategies and predictive targets to improve the clinical outcomes of advanced liver cancer. Ferroptosis holds promise as a novel strategy for cancer therapy. Epigenetic dysregulation is a hallmark of cancer, and noncoding RNAs are tightly involved in cell fate determination. Therefore, we aimed to identify a novel ferroptosis regulator from aberrantly expressed microRNAs that may serve as a novel biomarker and therapeutic target for liver cancer. Methods The expression signature and prognostic value of miR-339 was assessed using TCGA data set. The role of miR-339/ATG7/FTH1 axis in liver cancer cells were evaluated through growth curve, colony formation, 7-AAD staining. The role of miR-339 in regulation of ferroptosis was determined by immunofluorescence staining, flow cytometry, and Elisa kits. Results Here, we showed that miR-339 is aberrantly overexpressed in patients with liver cancer. In addition, miR-339 inhibition dramatically suppresses liver cancer progression. Furthermore, miR-339 silencing drives cell death and inhibits liver cancer progression, indicating that miR-339 may serve as a novel ferroptosis suppressor. Mechanistically, we demonstrated that miR-339 targets ATG7 to facilitate the autophagic degradation of FTH1 and prevent ferroptosis in liver cancer cells. Conclusions We provide important evidence that the miR-339 inhibition activates of the autophagy pathway to promote ferroptosis by degrading FTH1 in liver cancer cells. We found that miR-339 regulates the balance between ferroptosis and autophagy in liver cancer cells.
Collapse
Affiliation(s)
- Fei Cao
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Weiyuan Hao
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Weiren Liang
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hui Zeng
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiaping Zheng
- Department of Interventional Therapy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
20
|
Sun Y, Chen D, Sun S, Ren M, Zhou L, Chen C, Zhao J, Wei H, Zhao Q, Qi Y, Zhang J, Zhang G, Liu H, Yang Q, Liu Q, Wang Y, Zhang W. RBMS1 Coordinates with the m 6A Reader YTHDF1 to Promote NSCLC Metastasis through Stimulating S100P Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307122. [PMID: 38342601 PMCID: PMC11022699 DOI: 10.1002/advs.202307122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Metastasis is the leading cause for the high mortality of lung cancer, however, effective anti-metastatic drugs are still limited. Here it is reported that the RNA-binding protein RBMS1 is positively associated with increased lymph node metastasis in non-small cell lung cancer (NSCLC). Depletion of RBMS1 suppresses cancer cell migration and invasion in vitro and inhibits cancer cell metastasis in vivo. Mechanistically, RBMS1 interacts with YTHDF1 to promote the translation of S100P, thereby accelerating NSCLC cell metastasis. The RRM2 motif of RBMS1 and the YTH domain of YTHDF1 are required for the binding of RBMS1 and YTHDF1. RBMS1 ablation inhibits the translation of S100P and suppresses tumor metastasis. Targeting RBMS1 with NTP, a small molecular chemical inhibitor of RBMS1, attenuates tumor metastasis in a mouse lung metastasis model. Correlation studies in lung cancer patients further validate the clinical relevance of the findings. Collectively, the study provides insight into the molecular mechanism by which RBMS1 promotes NSCLC metastasis and offers a therapeutic strategy for metastatic NSCLC.
Collapse
Affiliation(s)
- Yu Sun
- Sino‐US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem CellDalian Medical UniversityDalian116023China
| | - Dan Chen
- Department of Pathologythe First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalian116011China
| | - Siwen Sun
- Department of Oncology & Sino‐US Research Center for Cancer Translational Medicinethe Second Affiliated HospitalDalian Medical UniversityDalian116023China
| | - Menglin Ren
- Sino‐US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem CellDalian Medical UniversityDalian116023China
| | - Liang Zhou
- Sino‐US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem CellDalian Medical UniversityDalian116023China
| | - Chaoqun Chen
- Sino‐US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem CellDalian Medical UniversityDalian116023China
| | - Jinyao Zhao
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Huanhuan Wei
- CAS Key Laboratory of Computational BiologyBio‐Med Big Data CenterShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qingzhi Zhao
- Sino‐US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem CellDalian Medical UniversityDalian116023China
| | - Yangfan Qi
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Jinrui Zhang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Ge Zhang
- Department of ImmunologyCollege of Basic Medical SciencesDalian Medical UniversityDalian116044China
| | - Han Liu
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Qingkai Yang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Quentin Liu
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Yang Wang
- Sino‐US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem CellDalian Medical UniversityDalian116023China
| | - Wenjing Zhang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| |
Collapse
|
21
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
22
|
Cheng H, Shi Y, Li X, Jin N, Zhang M, Liu Z, Liang Y, Xie J. Human umbilical cord mesenchymal stem cells protect against ferroptosis in acute liver failure through the IGF1-hepcidin-FPN1 axis and inhibiting iron loading. Acta Biochim Biophys Sin (Shanghai) 2024; 56:280-290. [PMID: 38273781 PMCID: PMC10984864 DOI: 10.3724/abbs.2023275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/28/2023] [Indexed: 01/27/2024] Open
Abstract
Acute liver failure (ALF) is a significant global issue with elevated morbidity and mortality rates. There is an urgent and pressing need for secure and effective treatments. Ferroptosis, a novel iron-dependent regulation of cell death, plays a significant role in multiple pathological processes associated with liver diseases, including ALF. Several studies have demonstrated that mesenchymal stem cells (MSCs) have promising therapeutic potential in the treatment of ALF. This study aims to investigate the positive effects of MSCs against ferroptosis in an ALF model and explore the underlying molecular mechanisms of their therapeutic function. Our results show that intravenously injected MSCs protect against ferroptosis in ALF mouse models. MSCs decrease iron deposition in the liver of ALF mice by downregulating hepcidin level and upregulating FPN1 level. MSCs labelled with Dil are mainly observed in the hepatic sinusoid and exhibit colocalization with the macrophage marker CD11b fluorescence. ELISA demonstrates a high level of IGF1 in the CCL 4+MSC group. Suppressing the IGF1 effect by the PPP blocks the therapeutic effect of MSCs against ferroptosis in ALF mice. Furthermore, disruption of IGF1 function results in iron deposition in the liver tissue due to impaired inhibitory effects of MSCs on hepcidin level. Our findings suggest that MSCs alleviate ferroptosis induced by disorders of iron metabolism in ALF mice by elevating IGF1 level. Moreover, MSCs are identified as a promising cell source for ferroptosis treatment in ALF mice.
Collapse
Affiliation(s)
- Haiqin Cheng
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
- Department of MedicalFenyang Hospital of Shanxi ProvinceLvliang032200China
| | - Yaqian Shi
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Xuewei Li
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Ning Jin
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Mengyao Zhang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Zhizhen Liu
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| | - Yuxiang Liang
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
- Experimental Animal Center of Shanxi Medical UniversityShanxi Key Laboratory of Human Disease and Animal ModelsTaiyuan030001China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuan030001China
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityMinistry of EducationTaiyuan030001China
| |
Collapse
|
23
|
Jin S, Liu PS, Zheng D, Xie X. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 2024; 29:45-65. [PMID: 37758940 DOI: 10.1007/s10495-023-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.
Collapse
Affiliation(s)
- Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, ROC
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
24
|
Webster NJG, Kumar D, Wu P. Dysregulation of RNA splicing in early non-alcoholic fatty liver disease through hepatocellular carcinoma. Sci Rep 2024; 14:2500. [PMID: 38291075 PMCID: PMC10828381 DOI: 10.1038/s41598-024-52237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
While changes in RNA splicing have been extensively studied in hepatocellular carcinoma (HCC), no studies have systematically investigated changes in RNA splicing during earlier liver disease. Mouse studies have shown that disruption of RNA splicing can trigger liver disease and we have shown that the splicing factor SRSF3 is decreased in the diseased human liver, so we profiled RNA splicing in liver samples from twenty-nine individuals with no-history of liver disease or varying degrees of non-alcoholic fatty liver disease (NAFLD). We compared our results with three publicly available transcriptome datasets that we re-analyzed for splicing events (SEs). We found many changes in SEs occurred during early liver disease, with fewer events occurring with the onset of inflammation and fibrosis. Many of these early SEs were enriched for SRSF3-dependent events and were associated with SRSF3 binding sites. Mapping the early and late changes to gene ontologies and pathways showed that the genes harboring these early SEs were involved in normal liver metabolism, whereas those harboring late SEs were involved in inflammation, fibrosis and proliferation. We compared the SEs with HCC data from the TCGA and observed that many of these early disease SEs are found in HCC samples and, furthermore, are correlated with disease survival. Changes in splicing factor expression are also observed, which may be associated with distinct subsets of the SEs. The maintenance of these SEs through the multi-year oncogenic process suggests that they may be causative. Understanding the role of these splice variants in metabolic liver disease progression may shed light on the triggers of liver disease progression and the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nicholas J G Webster
- Jennifer Moreno VA Medical Center, San Diego, CA, 92161, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California, San Diego, CA, 92093, USA.
| | - Deepak Kumar
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Panyisha Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
25
|
Gong H, Li Z, Wu Z, Lian G, Su Z. Modulation of ferroptosis by non‑coding RNAs in cancers: Potential biomarkers for cancer diagnose and therapy. Pathol Res Pract 2024; 253:155042. [PMID: 38184963 DOI: 10.1016/j.prp.2023.155042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Ferroptosis is a recently discovered cell programmed death. Extensive researches have indicated that ferroptosis plays an essential role in tumorigenesis, development, migration and chemotherapy drugs resistance, which makes it become a new target for tumor therapy. Non-coding RNAs (ncRNAs) are considered to control a wide range of cellular processes by modulating gene expression. Recent studies have indicated that ncRNAs regulate the process of ferroptosis via various pathway to affect the development of cancer. However, the regulation network remains ambiguous. In this review, we outlined the major metabolic processes of ferroptosis and concluded the relationship between ferroptosis-related ncRNAs and cancer progression. In addition, the prospect of ncRNAs being new therapeutic targets and early diagnosis biomarkers for cancer by regulating ferroptosis were presented, and the possible obstacles were also predicted. This could help in discovering novel cancer early diagnostic methods and therapeutic approaches.
Collapse
Affiliation(s)
- Huifang Gong
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zheng Li
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhimin Wu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaojian Lian
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zehong Su
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
26
|
Yang Y, Xie L, Zhu Y, Sheng Y, Wang J, Zhou X, Li W, Cao C, Yang Y, Han C. Perfluorooctane sulfonate (PFOS), a novel environmental pollutant, induces liver injury in mice by activating hepatocyte ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115625. [PMID: 39492174 DOI: 10.1016/j.ecoenv.2023.115625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
OBJECTIVE We investigated the toxicological mechanism by which perfluorooctane sulfonate (PFOS) induces liver injury via ferroptosis. METHODS Primary mouse hepatocytes were treated with LD50 = 55 M PFOS. Their cytotoxicity was detected by CCK-8 and LDH assays, while JC-1 staining was used to identify their mitochondrial membrane potential. GSH-Px, MDA, and SOD levels were determined using kits, and Fe2 + levels were determined using the FerroOrange probe and iron ion assay kit. The DCFH-DA probe was used to examine ROS levels, while Western blot was used to examine protein expressions. After treatment with the ferroptosis inhibitor YL939 and the ROS inhibitor BABTA, the ability of PFOS to induce ferroptosis was observed. In animal experiments, we examined the liver function and the degree of hepatic ferroptosis of mice treated with PFOS as well as their histopathological changes. RESULTS PFOS could induce hepatocyte ferroptosis, while YL939 and BABTA treatment could inhibit PFOS-induced ferroptosis. PFOS could induce liver injury and increase ferroptosis levels in tissue, while treatment with YL939 and BABTA could inhibit liver injury. CONCLUSION PFOS can induce ferroptosis in hepatocytes and cause liver injury in mice, which is its toxicological mechanism.
Collapse
Affiliation(s)
| | - Liuwei Xie
- Criminal Investigation Police University of China, China
| | - Yu Zhu
- The Second Affiliated Hospital of Jiaxing University, China
| | - Yongjia Sheng
- The Second Affiliated Hospital of Jiaxing University, China
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University, China
| | - Xiaohong Zhou
- The Second Affiliated Hospital of Jiaxing University, China
| | - Wenyan Li
- The Second Affiliated Hospital of Jiaxing University, China
| | - Chenxi Cao
- The Second Affiliated Hospital of Jiaxing University, China.
| | - Yi Yang
- The Second Affiliated Hospital of Jiaxing University, China.
| | - Chenyang Han
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
27
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
28
|
Zheng X, Zhang C. The Regulation of Ferroptosis by Noncoding RNAs. Int J Mol Sci 2023; 24:13336. [PMID: 37686142 PMCID: PMC10488123 DOI: 10.3390/ijms241713336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and lipid peroxide accumulation, which is different from other regulated cell death forms morphologically, biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism, and antioxidant defense systems as well as various transcription factors and related signal pathways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs, can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferroptosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate ferroptosis in different physiological and pathological conditions, which will deepen our understanding of ferroptosis regulation by noncoding RNAs and provide new insights into employing noncoding RNAs in ferroptosis-associated therapeutic strategies.
Collapse
Affiliation(s)
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| |
Collapse
|
29
|
Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol 2023; 16:67. [PMID: 37365670 DOI: 10.1186/s13045-023-01452-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomal circRNA serves a novel genetic information molecule, facilitating communication between tumor cells and microenvironmental cells, such as immune cells, fibroblasts, and other components, thereby regulating critical aspects of cancer progression including immune escape, tumor angiogenesis, metabolism, drug resistance, proliferation and metastasis. Interestingly, microenvironment cells have new findings in influencing tumor progression and immune escape mediated by the release of exosomal circRNA. Given the intrinsic stability, abundance, and broad distribution of exosomal circRNAs, they represent excellent diagnostic and prognostic biomarkers for liquid biopsy. Moreover, artificially synthesized circRNAs may open up new possibilities for cancer therapy, potentially bolstered by nanoparticles or plant exosome delivery strategies. In this review, we summarize the functions and underlying mechanisms of tumor cell and non-tumor cell-derived exosomal circRNAs in cancer progression, with a special focus on their roles in tumor immunity and metabolism. Finally, we examine the potential application of exosomal circRNAs as diagnostic biomarkers and therapeutic targets, highlighting their promise for clinical use.
Collapse
Affiliation(s)
- Fan Zhang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, No. 2 North Yongning Road, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
30
|
Wang Q, Yu W, Wang T, Huang C. Circular RNA circDLG1 contributes to HCC progression by regulating the miR-141-3p/WTAP axis. Funct Integr Genomics 2023; 23:179. [PMID: 37227531 PMCID: PMC10213070 DOI: 10.1007/s10142-023-01096-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
This study aims to explore novel and reliable biomarkers for predicting hepatocellular carcinoma (HCC) prognosis. Circular RNAs (circRNAs) were determined by analysis of human circRNA arrays and quantitative reverse transcription polymerase reactions. To test for an interaction between circDLG1, we used luciferase reporter assays, RNA immunoprecipitation, and fluorescence in situ hybridization assays that were employed to test the interaction between circDLG1, miR-141-3p, and WTAP. q-RT-PCR and western blot were used to evaluate the target regulation of miR-141-3p and WTAP. shRNA-mediated knockdown of circDLG1, proliferation, migration, and invasion experiment of metastasis were used to evaluate the function of circDLG. CircDLG1 rather than lining DLG1 was upregulated in HCC tissues, from HCC patients as well as HCC cell lines compared to normal controls. circDLG1 high expression in HCC patients was correlated with shorter overall survival. Knockdown of circDLG1 and miR-141-3p mimic could inhibit the tumorigenesis of HCC cells in vivo and in vitro. Importantly, we demonstrated that circDLG1 could act as a sponge of miR-141-3p to regulate the expression of WTAP, and further suppress the tumorigenesis of HCC cells. Our study reveals that circDLG1 can serve as a novel potential circulating biomarker for the detection of HCC. circDLG1 participates in the progression of HCC cells by sponging miR-141-3p with WTAP, providing new insight into the treatment of HCC.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Wei Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Changshan Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|