1
|
Wang M, Jin G, Duan T, Li R, Gao Y, Yu M, Xu Y. Microglial phagocytosis and regulatory mechanisms: Key players in the pathophysiology of depression. Neuropharmacology 2025; 271:110383. [PMID: 39993469 DOI: 10.1016/j.neuropharm.2025.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Depression is a globally prevalent emotional disorder with a complex pathophysiology. Microglia are resident immune cells in the central nervous system, playing crucial roles in regulating inflammation, synaptic plasticity, immune phagocytosis, and other functions, thereby exerting significant impacts on neuropsychiatric disorders like depression. Increasing research indicates that abnormal phagocytic function of microglia in the brain is involved in depression, showing excessive or insufficient phagocytosis in different states. Here, we have provided a review of the signaling molecules involved in microglial phagocytosis in depression, including "eat me" signals such as phosphatidylserine (PS), complement, and "don't eat me" signals such as CD47, CD200 and related receptors. Furthermore, we discuss the regulatory effects of existing pharmaceuticals and dietary nutrients on microglial phagocytosis in depression, emphasizing the need for tailored modulation based on the varying phagocytic states of microglia. This review aims to facilitate a deeper understanding of the role of microglial phagocytosis in depression and provide a roadmap for potential therapeutic strategies for depression targeting microglial phagocytosis.
Collapse
Affiliation(s)
- Man Wang
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Guimin Jin
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Tingting Duan
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Run Li
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yubin Gao
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yuhao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China; Department of Neuroimaging Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
Zhang X, Xiao L, Zhou X, Xu J, Liao L, Wu P, Liao Z, Duan X. Identification of a chromatin regulator signature and potential candidate drugs for primary open-angle glaucoma. Epigenomics 2025; 17:377-387. [PMID: 40091789 PMCID: PMC11980481 DOI: 10.1080/17501911.2025.2479420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
AIMS This research aims to establish a chromatin regulator (CR) signature to provide new epigenetic insights into the pathogenesis of primary open-angle glaucoma (POAG). MATERIALS & METHODS The expression profile of CRs in trabecular meshwork (TM) tissues was analyzed by bioinformatics analysis; The selected hub CRs were further verified by cell experiments. RESULTS We found the immune microenvironment of the TMwas changed in POAG patients and identified 3 differentially expressed CRs that were relevant to immunity. Then, we successfully constructed and proved a predicted signature based on these 3 CRs, which could effectively predict the risk of POAG. The genes co-expressed with these 3 CRs and miRNAs with are gulatory relationship were identified, and a miRNA-hub CR network was successfully constructed. The results of the Gene Set Enrichment analysis indicated that these 3 hub CRs were all associated with neurodegenerative diseases. Moreover, the human trabecular meshwork cell (HTMC) oxidative stress model was constructed, and KDM5B was significantly down-regulated in this cell model. Finally, we found 10 agents that might be helpful for patients with POAG. CONCLUSIONS Dysregulation of CR expression in TM tissues may be involved in the occurrence and progression of POAG through multiple mechanisms.
Collapse
Affiliation(s)
- Xinyue Zhang
- Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Lulu Xiao
- Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier Eye Hospital, Jinan University, Guangzhou, China
| | - Xiaoyu Zhou
- Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Jiahao Xu
- Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Li Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Ping Wu
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Zhimin Liao
- Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Xuanchu Duan
- Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Khalaj M, Gutierrez ML, Nejad P, Raveh T, Fattahi F, Weissman IL. High-Throughput Screening on Primary Tumor-Associated Microglia and Macrophages Identifies HDAC Inhibitors as Enhancers of Phagocytosis and Potent Partners for Immunotherapy in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645104. [PMID: 40196519 PMCID: PMC11974905 DOI: 10.1101/2025.03.24.645104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Glioblastoma multiforme (GBM) is a lethal brain tumor with limited treatment options. Tumor-associated macrophages and microglia (TAMs) drive immune suppression and tumor progression, making them a key therapeutic target for GBM. Enhancing TAM phagocytosis in GBM has shown promise, particularly with innate checkpoint inhibitors, such as CD47-blocking antibodies. However, small molecule approaches, which offer tunable and potentially synergistic mechanisms, remain underexplored in this context. In this study, we conducted the first large-scale chemical screen on primary TAMs from patients with GBM, identifying histone deacetylase (HDAC) inhibitors as potent inducers of phagocytosis. These compounds demonstrated phagocytosis-inducing effects across multiple GBM patient samples, with further amplification when combined with CD47 blockade. In a xenograft GBM model, HDAC inhibitors enhanced phagocytosis and suppressed tumor growth, with even greater efficacy in combination with CD47 antibodies. Our findings highlight HDAC inhibitors as promising agents to reprogram TAMs and synergize with immune checkpoint therapies, offering a novel strategy to bolster anti-tumor immunity in GBM.
Collapse
Affiliation(s)
- Mona Khalaj
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madison L Gutierrez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- California State Polytechnic University, Humboldt, CA 95521, USA
| | - Parisa Nejad
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tal Raveh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Li Y, Izhar T, Kanekiyo T. HDAC3 as an Emerging Therapeutic Target for Alzheimer's Disease and other Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04866-w. [PMID: 40126601 DOI: 10.1007/s12035-025-04866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the aged population. Histone acetylation is a major epigenetic mechanism linked to memory formation and cognitive function. Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone proteins. Although pan-HDAC inhibitors are effective in ameliorating AD phenotypes in preclinical models, they are associated with potential unfavorable adverse effects and barely translated into clinical trials. Therefore, the development of novel HDAC inhibitors with a well isoform-selectivity has been desired in AD drug discovery. Among various HDAC isoforms, HDAC3 is highly expressed in neurons and exhibits detrimental effects on synaptic plasticity and cognitive function. Moreover, HDAC3 provokes neuroinflammation and neurotoxicity and contributes to AD pathogenesis. In this review, we highlight HDAC3 as an attractive therapeutic target for disease-modifying therapy in AD. In addition, we discuss the therapeutic potential of HDAC3 inhibitors in other neurological disorders.
Collapse
Affiliation(s)
- Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Taha Izhar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
5
|
Cho DY, Han JH, Kim IS, Lim JH, Ko HM, Kim B, Choi DK. The acetyltransferase GCN5 contributes to neuroinflammation in mice by acetylating and activating the NF-κB subunit p65 in microglia. Sci Signal 2025; 18:eadp8973. [PMID: 40036356 DOI: 10.1126/scisignal.adp8973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
Neuroinflammation promotes the progression of various neurological and neurodegenerative diseases. Disrupted homeostasis of protein acetylation is implicated in neurodegeneration, and the lysine acetyltransferase GCN5 (also known as KAT2A) is implicated in peripheral inflammation. Here, we investigated whether GCN5 plays a role in neuroinflammation in the brain. Systemic administration of the bacterial molecule LPS in mice to induce peripheral inflammation increased the abundance of GCN5 in various organs, including in the brain and specifically in microglia. In response to LPS, GCN5 mediated the induction of the proinflammatory cytokines TNF-α and IL-6 and the inflammatory mediators COX-2 and iNOS in microglia. Further investigation in cultured microglial cells revealed that GCN5 was activated downstream of the innate immune receptor TLR4 to acetylate Lys310 in the NF-κB subunit p65, thereby enabling the nuclear translocation and transcriptional activity of NF-κB and the resulting inflammatory response. Thus, targeting GCN5 might be explored further as a strategy to reduce neuroinflammation in the treatment of associated diseases.
Collapse
Affiliation(s)
- Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Jun-Hyuk Han
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - In-Su Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Ji-Hong Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Republic of Korea
| | - Byungwook Kim
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, and Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
6
|
He R, He Z, Zhang T, Liu B, Gao M, Li N, Geng Q. HDAC3 in action: Expanding roles in inflammation and inflammatory diseases. Cell Prolif 2025; 58:e13731. [PMID: 39143689 PMCID: PMC11693555 DOI: 10.1111/cpr.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024] Open
Abstract
Inflammation serves as the foundation for numerous physiological and pathological processes, driving the onset and progression of various diseases. Histone deacetylase 3 (HDAC3), an essential chromatin-modifying protein within the histone deacetylase superfamily, exerts its transcriptional inhibitory role through enzymatic histone modification to uphold normal physiological function, growth, and development of the body. With both enzymatic and non-enzymatic activities, HDAC3 plays a pivotal role in regulating diverse transcription factors associated with inflammatory responses and related diseases. This review examines the involvement of HDAC3 in inflammatory responses while exploring its therapeutic potential as a target for treating inflammatory diseases, thereby offering valuable insights for clinical applications.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhuokun He
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Zhang
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Bohao Liu
- Department of Thoracic SurgeryJilin UniversityChangchunChina
| | - Minglang Gao
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Li
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qing Geng
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
7
|
Kim ME, Lee JS. Mechanisms and Emerging Regulators of Neuroinflammation: Exploring New Therapeutic Strategies for Neurological Disorders. Curr Issues Mol Biol 2024; 47:8. [PMID: 39852123 PMCID: PMC11763386 DOI: 10.3390/cimb47010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells. Key signaling pathways, including NF-κB, JAK-STAT, and the NLRP3 inflammasome, are discussed alongside emerging regulators such as non-coding RNAs, epigenetic modifications, and the gut-brain axis. The therapeutic landscape is evolving, with traditional anti-inflammatory drugs like NSAIDs and corticosteroids offering limited efficacy in chronic conditions. Immunomodulators, gene and RNA-based therapeutics, and stem cell methods have all shown promise for more specific and effective interventions. Additionally, the modulation of metabolic states and gut microbiota has emerged as a novel strategy to regulate neuroinflammation. Despite significant progress, challenges remain in translating these findings into clinically viable therapies. Future studies should concentrate on integrated, interdisciplinary methods to reduce chronic neuroinflammation and slowing the progression of neurodegenerative disorders, providing opportunities for revolutionary advances in CNS therapies.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
8
|
Felice F, De Falco P, Milani M, Castelli S, Ragnini-Wilson A, Lazzarino G, D'Ambrosi N, Ciccarone F, Ciriolo MR. N-acetylaspartate mitigates pro-inflammatory responses in microglial cells by intersecting lipid metabolism and acetylation processes. Cell Commun Signal 2024; 22:564. [PMID: 39587614 PMCID: PMC11587775 DOI: 10.1186/s12964-024-01947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Microglia play a crucial role in brain development and repair by facilitating processes such as synaptic pruning and debris clearance. They can be activated in response to various stimuli, leading to either pro-inflammatory or anti-inflammatory responses associated with specific metabolic alterations. The imbalances between microglia activation states contribute to chronic neuroinflammation, a hallmark of neurodegenerative diseases. N-acetylaspartate (NAA) is a brain metabolite predominantly produced by neurons and is crucial for central nervous system health. Alterations in NAA metabolism are observed in disorders such as Multiple Sclerosis and Canavan disease. While NAA's role in oligodendrocytes and astrocytes has been investigated, its impact on microglial function remains less understood. METHODS The murine BV2 microglial cell line and primary microglia were used as experimental models. Cells were treated with exogenous NAA and stimulated with LPS/IFN-γ to reproduce the pro-inflammatory phenomenon. HPLC and immunofluorescence analysis were used to study lipid metabolism following NAA treatment. Automated fluorescence microscopy was used to analyze phagocytic activity. The effects on the pro-inflammatory response were evaluated by analysis of protein/mRNA expression and ChIP assay of typical inflammatory markers. RESULTS NAA treatment promotes an increase in both lipid synthesis and degradation, and enhances the phagocytic activity of BV2 cells, thus fostering surveillant microglia characteristics. Importantly, NAA decreases the pro-inflammatory state induced by LPS/IFN-γ via the activation of histone deacetylases (HDACs). These findings were validated in primary microglial cells, highlighting the impact on cellular metabolism and inflammatory responses. CONCLUSIONS The study highlighted the role of NAA in reinforcing the oxidative metabolism of surveillant microglial cells and, most importantly, in buffering the inflammatory processes characterizing reactive microglia. These results suggest that the decreased levels of NAA observed in neurodegenerative disorders can contribute to chronic neuroinflammation.
Collapse
Affiliation(s)
- Federica Felice
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Pamela De Falco
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Martina Milani
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Serena Castelli
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | | | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, 00131, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
- IRCCS San Raffaele Roma, Rome, 00166, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy.
- IRCCS San Raffaele Roma, Rome, 00166, Italy.
| |
Collapse
|
9
|
Rosete C, Ciernia AV. The Two Faces of HDAC3: Neuroinflammation in Disease and Neuroprotection in Recovery. Epigenomics 2024; 16:1373-1388. [PMID: 39513228 PMCID: PMC11728336 DOI: 10.1080/17501911.2024.2419357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a critical regulator of gene expression, influencing a variety of cellular processes in the central nervous system. As such, dysfunction of this enzyme may serve as a key driver in the pathophysiology of various neuropsychiatric disorders and neurodegenerative diseases. HDAC3 plays a crucial role in regulating neuroinflammation, and is now widely recognized as a major contributor to neurological conditions, as well as in promoting neuroprotective recovery following brain injury, hemorrhage and stroke. Emerging evidence suggests that pharmacological inhibition of HDAC3 can mitigate behavioral and neuroimmune deficits in various brain diseases and disorders, offering a promising therapeutic strategy. Understanding HDAC3 in the healthy brain lays the necessary foundation to define and resolve its dysfunction in a disease state. This review explores the mechanisms of HDAC3 in various cell types and its involvement in disease pathology, emphasizing the potential of HDAC3 inhibition to address neuroimmune, gene expression and behavioral deficits in a range of neurodegenerative and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, Vancouver, V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 2A1, Canada
| |
Collapse
|
10
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
11
|
Liang X, Yin S, Hu C, Tang D, Luo G, Liu Z. METTL14 Promotes Ischemic Stroke-induced Brain Injury by Stabilizing HDAC3 Expression in an m6A-IGF2BP3 Mechanism. Cell Biochem Biophys 2024:10.1007/s12013-024-01596-z. [PMID: 39448421 DOI: 10.1007/s12013-024-01596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
N6-methyladenosine (m6A) modification is the most abundant post-transcriptional modification of mRNAs and has been identified to play critical roles in ischemic stroke (IS). Herein, this study aimed to investigate the function and mechanism of Methyltransferase-like 14 (METTL14) methylase in cerebral IS. Murine BV-2 microglial cell OGD/R models and rat middle cerebral artery occlusion (MCAO) models were established to mimic IS-induced neuronal damage in vitro and brain injury in vivo. Levels of METTL14, Histone Deacetylase 3 (HDAC3) and cGAS-STING axis-related proteins were detected using qRT-PCR or western blotting. Cell proliferation and inflammation were assessed by CCK-8 assay, EdU assay and ELISA. Flow cytometry detected microglia polarization. Cell pyroptosis was analyzed by detecting related-protein markers by western blotting. The m6A modification was determined by methylated RNA immunoprecipitation assay. Brain injury was analyzed by evaluating infarct volume and neurologic score. METTL14 levels were higher in OGD/R-induced microglial cells, primary microglia and infarct brain tissues of rat MCAO models. Functionally, METTL14 silencing reversed OGD/R-induced proliferation inhibition, inflammation and pyroptosis in microglial cells and primary microglia in vitro, and ameliorated cerebral ischemic injury in rat MCAO models. Mechanistically, METTL14 induced HDAC3 m6A modification in an IGF2BP3-dependent manner, and could activate cGAS-STING pathway through HDAC3. Moreover, HDAC3 overexpression reversed the neuroprotective effects of METTL14 silencing. METTL14 silencing reversed ischemic stroke-induced brain injury by inducing HDAC3 m6A modification in an IGF2BP3-dependent mechanism, recommending a novel insight for ameliorating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Xuelin Liang
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Songhe Yin
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Canfang Hu
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Dingzhong Tang
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Guojun Luo
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Zhen Liu
- The Medical Department of Neurology, Jinshan branch of Shanghai Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
12
|
Wu X, Yang C, Sun F, Zhang Y, Wang Y, Li X, Zheng F. Enterotoxigenic Bacteroides fragilis (ETBF) Enhances Colorectal Cancer Cell Proliferation and Metastasis Through HDAC3/miR-139-3p Pathway. Biochem Genet 2024; 62:3904-3919. [PMID: 38244157 DOI: 10.1007/s10528-023-10621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is believed to promote the malignant process of colorectal cancer (CRC), but the underlying molecular mechanism still needs to be revealed. CRC cells (SW480 and HCT-116) were treated with ETBF strain. Cell proliferation, invasion and, migration were evaluated by cell counting kit 8 assay, EdU assay, colony formation assay, transwell assay, and wound healing assay. Protein expression was analyzed by western blot. MicroRNA (miR)-139-3p and histone deacetylase 3 (HDAC3) expression levels in tissues and cells were determined by qRT-PCR. Xenograft tumor model was conducted to evaluate the effect of miR-139-3p on CRC tumor growth. ETBF treatment could promote CRC cell proliferation, invasion and migration. MiR-139-3p expression was decreased by ETBF, and its overexpression reversed the effect of ETBF on CRC cell progression. HDAC3 negatively regulated miR-139-3p expression, and its overexpression facilitated CRC cell behaviors via reducing miR-139-3p expression. Moreover, HDAC3 expression was increased by ETBF, and its knockdown also abolished ETBF-mediated CRC cell progression. Additionally, miR-139-3p overexpression could reduce CRC tumor growth in vivo. ETBF aggravated CRC proliferation and metastasis via the regulation of HDAC3/miR-139-3p axis. The discovery of ETBF/HDAC3/miR-139-3p axis may provide a new direction for CRC treatment.
Collapse
Affiliation(s)
- Xiaoyong Wu
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Chengrui Yang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Fangyuan Sun
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Yanzhong Zhang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Yanliang Wang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan, China
| | - Xuzhao Li
- Department of Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750011, Ningxia, China
| | - Fengxian Zheng
- Department of Critical Care Medicine, Affiliated Danzhou People's Hospital of Hainan Medical University, No. 21-1, Datong Road, Nada Town, Danzhou City, 571747, Hainan, China.
| |
Collapse
|
13
|
Kim J, Sullivan O, Lee K, Jao J, Tamayo J, Madany AM, Wong B, Ashwood P, Ciernia AV. Repeated LPS induces training and tolerance of microglial responses across brain regions. J Neuroinflammation 2024; 21:233. [PMID: 39304952 PMCID: PMC11414187 DOI: 10.1186/s12974-024-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Neuroinflammation is involved in the pathogenesis of almost every central nervous system disorder. As the brain's innate immune cells, microglia fine tune their activity to a dynamic brain environment. Previous studies have shown that repeated bouts of peripheral inflammation can trigger long-term changes in microglial gene expression and function, a form of innate immune memory. METHODS AND RESULTS In this study, we used multiple low-dose lipopolysaccharide (LPS) injections in adult mice to study the acute cytokine, transcriptomic, and microglia morphological changes that contribute to the formation of immune memory in the frontal cortex, hippocampus, and striatum, as well as the long-term effects of these changes on behavior. Training and tolerance of gene expression was shared across regions, and we identified 3 unique clusters of DEGs (2xLPS-sensitive, 4xLPS-sensitive, LPS-decreased) enriched for different biological functions. 2xLPS-sensitive DEG promoters were enriched for binding sites for IRF and NFkB family transcription factors, two key regulators of innate immune memory. We quantified shifts in microglia morphological populations and found that while the proportion of ramified and rod-like microglia mostly remained consistent within brain regions and sexes with LPS treatment, there was a shift from ameboid towards hypertrophic morphological states across immune memory states and a dynamic emergence and resolution of events of microglia aligning end-to-end with repeated LPS. CONCLUSIONS Together, findings support the dynamic regulation of microglia during the formation of immune memories in the brain and support future work to exploit this model in brain disease contexts.
Collapse
Affiliation(s)
- Jennifer Kim
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Olivia Sullivan
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Kristen Lee
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Justin Jao
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Juan Tamayo
- MIND Institute, University of California Davis, Davis, USA
| | | | - Brandon Wong
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Paul Ashwood
- MIND Institute, University of California Davis, Davis, USA
| | - Annie Vogel Ciernia
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada.
| |
Collapse
|
14
|
Margetts AV, Vilca SJ, Bourgain-Guglielmetti F, Tuesta LM. Epigenetic heterogeneity shapes the transcriptional landscape of regional microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607229. [PMID: 39149259 PMCID: PMC11326298 DOI: 10.1101/2024.08.08.607229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Microglia, the innate immune cells in the central nervous system, exhibit distinct transcriptional profiles across brain regions that are important for facilitating their specialized function. There has been recent interest in identifying the epigenetic modifications associated with these distinct transcriptional profiles, as these may improve our understanding of the underlying mechanisms governing the functional specialization of microglia. One obstacle to achieving this goal is the large number of microglia required to obtain a genome-wide profile for a single histone modification. Given the cellular and regional heterogeneity of the brain, this would require pooling many samples which would impede biological applications that are limited by numbers of available animals. To overcome this obstacle, we have adapted a method of chromatin profiling known as Cleavage Under Targets and Tagmentation (CUT&Tag-Direct) to profile histone modifications associated with regional differences in gene expression throughout the brain reward system. Consistent with previous studies, we find that transcriptional profiles of microglia vary by brain region. However, here we report that these regional differences also exhibit transcriptional network signatures specific to each region. Additionally, we find that these region-dependent network signatures are associated with differential deposition of H3K27ac and H3K7me3, and while the H3K27me3 landscape is remarkably stable across brain regions, the H3K27ac landscape is most consistent with the anatomical location of microglia which explain their distinct transcriptional profiles. Altogether, these findings underscore the established role of H3K27me3 in cell fate determination and support the active role of H3K27ac in the dynamic regulation of microglial gene expression. In this study, we report a molecular and computational framework that can be applied to improve our understanding of the role of epigenetic regulation in microglia in both health and disease, using as few as 2,500 cells per histone mark.
Collapse
Affiliation(s)
- Alexander V. Margetts
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Samara J. Vilca
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Florence Bourgain-Guglielmetti
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
15
|
Vilca SJ, Margetts AV, Höglund L, Fleites I, Bystrom LL, Pollock TA, Bourgain-Guglielmetti F, Wahlestedt C, Tuesta LM. Microglia contribute to methamphetamine reinforcement and reflect persistent transcriptional and morphological adaptations to the drug. Brain Behav Immun 2024; 120:339-351. [PMID: 38838836 PMCID: PMC11269013 DOI: 10.1016/j.bbi.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation. In contrast, microglial depletion during abstinence does not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.
Collapse
Affiliation(s)
- Samara J Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Alexander V Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Leon Höglund
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Isabella Fleites
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Lauren L Bystrom
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Tate A Pollock
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Florence Bourgain-Guglielmetti
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Luis M Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
16
|
Kim J, Pavlidis P, Ciernia AV. Development of a High-Throughput Pipeline to Characterize Microglia Morphological States at a Single-Cell Resolution. eNeuro 2024; 11:ENEURO.0014-24.2024. [PMID: 39029952 PMCID: PMC11289588 DOI: 10.1523/eneuro.0014-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
As rapid responders to their environments, microglia engage in functions that are mirrored by their cellular morphology. Microglia are classically thought to exhibit a ramified morphology under homeostatic conditions which switches to an ameboid form during inflammatory conditions. However, microglia display a wide spectrum of morphologies outside of this dichotomy, including rod-like, ramified, ameboid, and hypertrophic states, which have been observed across brain regions, neurodevelopmental timepoints, and various pathological contexts. We applied dimensionality reduction and clustering to consider contributions of multiple morphology measures together to define a spectrum of microglial morphological states in a mouse dataset that we used to demonstrate the utility of our toolset. Using ImageJ, we first developed a semiautomated approach to characterize 27 morphology features from hundreds to thousands of individual microglial cells in a brain region-specific manner. Within this pool of features, we defined distinct sets of highly correlated features that describe different aspects of morphology, including branch length, branching complexity, territory span, and circularity. When considered together, these sets of features drove different morphological clusters. Our tools captured morphological states similarly and robustly when applied to independent datasets and using different immunofluorescent markers for microglia. We have compiled our morphology analysis pipeline into an accessible, easy-to-use, and fully open-source ImageJ macro and R package that the neuroscience community can expand upon and directly apply to their own analyses. Outcomes from this work will supply the field with new tools to systematically evaluate the heterogeneity of microglia morphological states across various experimental models and research questions.
Collapse
Affiliation(s)
- Jennifer Kim
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia V6T 1Z3, Canada
| | - Paul Pavlidis
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Michael Smith Laboratories, Vancouver, British Columbia V6T 1Z4, Canada
| | - Annie Vogel Ciernia
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
17
|
Davis N, Taylor B, Abelleira-Hervas L, Karimian-Marnani N, Aleksynas R, Syed N, Di Giovanni S, Palmisano I, Sastre M. Histone deacetylase-3 regulates the expression of the amyloid precursor protein and its inhibition promotes neuroregenerative pathways in Alzheimer's disease models. FASEB J 2024; 38:e23659. [PMID: 38733301 DOI: 10.1096/fj.202301762rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
HDAC3 inhibition has been shown to improve memory and reduce amyloid-β (Aβ) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 μM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aβ42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 μM RGFP966, without changes in Aβ. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.
Collapse
Affiliation(s)
- Nicola Davis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Ben Taylor
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | - Robertas Aleksynas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nelofer Syed
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Simone Di Giovanni
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Ilaria Palmisano
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
18
|
Vilca SJ, Margetts AV, Fleites I, Wahlestedt C, Tuesta LM. Microglia contribute to methamphetamine reinforcement and reflect persistent transcriptional and morphological adaptations to the drug. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.563168. [PMID: 37961443 PMCID: PMC10634674 DOI: 10.1101/2023.10.19.563168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Methamphetamine use disorder (MUD) is a chronic, relapsing disease that is characterized by repeated drug use despite negative consequences and for which there are currently no FDA-approved cessation therapeutics. Repeated methamphetamine (METH) use induces long-term gene expression changes in brain regions associated with reward processing and drug-seeking behavior, and recent evidence suggests that methamphetamine-induced neuroinflammation may also shape behavioral and molecular responses to the drug. Microglia, the resident immune cells in the brain, are principal drivers of neuroinflammatory responses and contribute to the pathophysiology of substance use disorders. Here, we investigated transcriptional and morphological changes in dorsal striatal microglia in response to methamphetamine-taking and during methamphetamine abstinence, as well as their functional contribution to drug-taking behavior. We show that methamphetamine self-administration induces transcriptional changes associated with protein folding, mRNA processing, immune signaling, and neurotransmission in dorsal striatal microglia. Importantly, many of these transcriptional changes persist through abstinence, a finding supported by morphological analyses. Functionally, we report that microglial ablation increases methamphetamine-taking, possibly involving neuroimmune and neurotransmitter regulation, and that post-methamphetamine microglial repopulation attenuates drug-seeking following a 21-day period of abstinence. In contrast, microglial depletion during abstinence did not alter methamphetamine-seeking. Taken together, these results suggest that methamphetamine induces both short and long-term changes in dorsal striatal microglia that contribute to altered drug-taking behavior and may provide valuable insights into the pathophysiology of MUD.
Collapse
Affiliation(s)
- Samara J. Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Alexander V. Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Isabella Fleites
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Claes Wahlestedt
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
19
|
Li J, Zhai Y, Tang M. Integrative function of histone deacetylase 3 in inflammation. Mol Biol Rep 2024; 51:83. [PMID: 38183491 DOI: 10.1007/s11033-023-09077-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 01/08/2024]
Abstract
Inflammation is a complex biological response triggered when an organism encounters internal or external stimuli. These triggers activate various signaling pathways, leading to the release of numerous inflammatory mediators aimed at the affected tissue. Ensuring precision and avoiding the excessive activation, the inflammatory process is subject to tight regulation. Histone deacetylase 3 (HDAC3), a member of class I HDACs family, stands out for its significant role in modulating various inflammatory signaling, including Nuclear Factor kappa B (NF-κB) signaling, Mitogen-activated protein kinase (MAPK) signaling and Janus kinase/signal transduction and activator of transcription (JAK-STAT) signaling. In this review, we illuminate the intricate molecular mechanisms of HDAC3 across these inflammatory pathways. We emphasize its importance in orchestrating a balanced inflammatory response and highlight its promising potential as a therapeutic target.
Collapse
Affiliation(s)
- Junjie Li
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Yiyuan Zhai
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Min Tang
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|