1
|
Xu J, Li S, Jin Y, Yao H, Hu X, Cao S, Zhou H. Network pharmacology combined with untargeted metabolomics reveals the intervention mechanism and compatibility of chenpi-rougui herb pair in nonalcoholic fatty liver disease. Front Mol Biosci 2025; 12:1553162. [PMID: 40182620 PMCID: PMC11966411 DOI: 10.3389/fmolb.2025.1553162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Background Chenpi (the dried mature peel of Citrus reticulata Blanco) and Rougui (the dried bark of Cinnamomum cassia Presl) are both edible and medicinal plants, which have therapeutic effects on nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms necessitate further exploration. This study evaluated the prevention effect of Chenpi-Rougui herb pair (CRP) on NAFLD using an integrated strategy that combined network pharmacology with metabolomics. Methods Initially, the components in CRP decoction were characterized by UPLC-QTOF-MS/MS. Subsequently, a high-fat diet induced NAFLD mouse model was used to assess the efficacy of CRP and its individual constituent, Chenpi and Rougui. Additionally, synergetic pathways and crucial targets for CRP therapy in NAFLD were identified using network pharmacology and serum metabolomics. Finally, real-time polymerase chain reaction (RT-PCR) was utilized to validate relevant genes. Results CRP exerted a more extensive prevention effect on NAFLD mice compared to the individual herb of Chenpi and Rougui. A total of 105 compounds were characterized from CRP, which were linked to 70 potential therapeutic targets for NAFLD. Thirty-two differential metabolites were identified by metabolomics, which were co-regulated by Chenpi, Rougui and CRP. Pathways associated with the intervention of herb pair in NAFLD included energy metabolism, fatty acid metabolism, glycerophospholipid metabolism, sphingolipids metabolism, arachidonic acid metabolism, sterol and bile acid metabolism. Finally, eight targets were screened through conjoint analysis and experimental verification showed that six of them including FASN, AKT1, CASP3, F2, PTGS2 and PRKCA, could be modulated by CRP in NAFLD mice. Besides, Chenpi primarily regulated FASN, AKT1, CASP3 and PRKCA, which were associated with reducing apoptosis in hepatocytes, while Rougui exceled in regulating F2 and PTGS2, closely linked to its anti-inflammatory properties. The combination of Chenpi and Rougui resulted in a broader influence on metabolites, pathways, and primary targets compared to their individual application. Conclusion These results provided valuable insights into the compatibility mechanism of CRP for treating NAFLD, and could also improve the value of its forthcoming application and development as a natural liver protective agent.
Collapse
Affiliation(s)
- Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuehui Jin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Huiwen Yao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xu Hu
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Shan Cao
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Huimin Zhou
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
2
|
Qian F, Zhai X, Cheng Z, Yu Z, Chen G, Gao Y, Sun L, Fang L, Yang S, Xu S, Liu H. Correlation between pollen morphology, karyotype, floral pigments, and scent components and morphological classification of 15 species and hybrids of Syringa L. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:15. [PMID: 39907770 DOI: 10.1007/s00114-025-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 12/12/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
In this paper, the pollen morphology characteristics, chromosome karyotype characteristics, floral pigments, and scents components of 15 species and hybrids of Syringa L. were obtained by means of scanning electron microscopy, root tips quash method, HPLC-MS, and GC-MS, and the 15 species and hybrids of Syringa L. were clustered separately with each index. Results show that the 15 species and hybrids of Syringa L. are clustered into four different groups separately by each index. In morphological taxonomy, S. microphylla Diels and S. microphylla 'ShuangJi', which belong to the Ser. Pubescentes family, original and hybrid species, most varieties of Ser. Syraega are basically cluster into the same group, which is consistent with morphological taxonomy. The findings indicate that the aforementioned four indicators are significantly related to the morphological classification of Syringa L. Among them, the clustering results of pollen morphology were the most consistent with morphological classification. The relationship between the above four aspects and the morphological classification of Syringa L. groups has not been reported in previous related researches, especially indicating the relationship between microscopic morphological indicators, specific physiological components and Syringa morphological classification. The research results have novelty, scientificity and comprehensiveness.
Collapse
Affiliation(s)
- Feng Qian
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoou Zhai
- Heilongjiang Forest Botanical Garden, Harbin, Heilongjiang Province, China
| | - Ziyin Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhenyu Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Guoqiang Chen
- Xiaobotou Town People's Government of Wudi County, Binzhou, Shandong Province, China
| | | | - Liwei Sun
- Heilongjiang Academy of Forestry, Harbin, Heilongjiang Province, China
| | - Li Fang
- Qiqihar University, Qiqihar, Heilongjiang Province, China
| | - Shumin Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shaoqi Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huimin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Li J, Wang YZ, Gmitter FG, Wang Y. Identifying the earliest citrus responses to Candidatus Liberibacter asiaticus infection: a temporal metabolomics study. FRONTIERS IN PLANT SCIENCE 2024; 15:1455344. [PMID: 39574442 PMCID: PMC11579704 DOI: 10.3389/fpls.2024.1455344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
The global citrus industry faces a great threat from Huanglongbing (HLB), a destructive disease caused by 'Candidatus Liberibacter asiaticus' (CLas) that induces significant economic losses without any known cure. Understanding how citrus plants defend against HLB, particularly at the early stages of infection, is crucial for developing long-term solutions. This study investigated the earliest metabolic responses of fresh citrus leaves to CLas infection using untargeted metabolomics and machine learning models. HLB-tolerant and HLB-sensitive cultivars were compared to analyze their biochemical reactions within 48 hours post-infection. HESI/Q-Orbitrap MS analysis identified temporal differential metabolites, revealing distinct metabolic pathways activated in response to CLas infection. Both cultivars responded by increasing specific metabolite concentrations, such as flavonoids, within 2 hours post-infection, but the HLB-tolerant cultivar maintained higher levels throughout the 48-hour period. This early metabolic activity could influence long-term plant health by enhancing disease resistance and reducing pathogen impact. These findings provide potential biomarkers for breeding HLB-resistant cultivars and offer valuable insights for developing sustainable management strategies to mitigate the impact of HLB on the citrus industry, ensuring its long-term productivity and economic viability.
Collapse
Affiliation(s)
| | | | | | - Yu Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences,
University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
4
|
Yang K, Hu B, Zhang W, Yuan T, Xu Y. Recent progress in the understanding of Citrus Huanglongbing: from the perspective of pathogen and citrus host. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:77. [PMID: 39525404 PMCID: PMC11541981 DOI: 10.1007/s11032-024-01517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Citrus Huanglongbing (HLB) is a devastating disease spread by citrus psyllid, causing severe losses to the global citrus industry. The transmission of HLB is mainly influenced by both the pathogen and the citrus psyllid. The unculturable nature of the HLB bacteria (Candidatus Liberibacter asiaticus, CLas) and the susceptibility of all commercial citrus varieties made it extremely difficult to study the mechanisms of resistance and susceptibility. In recent years, new progress has been made in understanding the virulence factors of CLas as well as the defense strategies of citrus host against the attack of CLas. This paper reviews the recent advances in the pathogenic mechanisms of CLas, the screening of agents targeting the CLas, including antimicrobial peptides, metabolites and chemicals, the citrus host defense response to CLas, and strategies to enhance citrus defense. Future challenges that need to be addressed are also discussed.
Collapse
Affiliation(s)
- Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
5
|
Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J, da Silva LC, de Souza MC, Breitkreitz MC, Rostagno MA. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit Rev Anal Chem 2024; 54:1173-1199. [PMID: 35993795 DOI: 10.1080/10408347.2022.2107871] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.
Collapse
Affiliation(s)
- Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Jaísa Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Laíse Capelasso da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | | | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
6
|
Li Y, Brown SE, Li Y, Cheng Q, Wu H, Wei S, Li X, Lin C, Liu Z, Mao Z. Profiles of phenolics and their synthetic pathways in Asparagus officinalis L. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100187. [PMID: 38186632 PMCID: PMC10767369 DOI: 10.1016/j.fochms.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
The synthetic pathways of some phenolics compounds in asparagus have been reported, however, the diversified phenolics compounds including their modification and transcription regulation remains unknown. Thus, multi-omics strategies were applied to detect the phenolics profiles, contents, and screen the key genes for phenolics biosynthesis and regulation in asparagus. A total of 437 compounds, among which 204 phenolics including 105 flavonoids and 82 phenolic acids were detected with fluctuated concentrations in roots (Rs), spears (Ss) and flowering twigs (Fs) of the both green and purple cultivars. Based on the detected phenolics profiles and contents correlated to the gene expressions of screened synthetic enzymes and regulatory TFs, a full phenolics synthetic pathway of asparagus was proposed for the first time, essential for future breeding of asparagus and scaled healthy phenolics production using synthetic biological strategies.
Collapse
Affiliation(s)
- Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Sylvia E. Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yunbin Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Qin Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Shugu Wei
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610023, China
| | - Xingyu Li
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| |
Collapse
|
7
|
Pérez-Hedo M, Gallego-Giraldo C, Forner-Giner MÁ, Ortells-Fabra R, Urbaneja A. Plant volatile-triggered defense in citrus against biotic stressors. FRONTIERS IN PLANT SCIENCE 2024; 15:1425364. [PMID: 39049855 PMCID: PMC11266131 DOI: 10.3389/fpls.2024.1425364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Plants employ sophisticated defense mechanisms, including releasing volatile organic compounds, to defend against biotic and abiotic stresses. These compounds play a crucial role in plant defense by attracting natural enemies and facilitating communication between plants to activate defense mechanisms. However, there has been no research on how exposure to these compounds activates defense mechanisms in citrus plants. To elucidate the underlying mechanisms governing citrus defensive activation, we conducted a molecular analysis of the rootstock Citrange carrizo [a hybrid of Citrus sinensis × Poncirus trifoliata] in response to defense activation by the volatile (Z)-3-hexenyl propanoate [(Z)-3-HP], utilizing a groundbreaking transcriptomic analysis involving the genomes of both parental species. Our results revealed significant gene expression changes, notably the overexpression of genes related to plant immunity, antioxidant activity, defense against herbivores, and tolerance to abiotic stress. Significantly, P. trifoliata contributed most notably to the hybrid's gene expression profile in response to (Z)-3-HP. Additionally, plants exposed to (Z)-3-HP repelled several citrus pests, attracted natural predators, and led to diminished performance of two key citrus pests. Our study emphasizes the complex molecular basis of volatile-triggered defenses in citrus and highlights the potential of plant volatiles in pest control strategies.
Collapse
Affiliation(s)
- Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Carolina Gallego-Giraldo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - María Ángeles Forner-Giner
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Citricultura y Producción Vegetal, Moncada, Valencia, Spain
| | - Raúl Ortells-Fabra
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| |
Collapse
|
8
|
Yuan Z, Li G, Zhang H, Peng Z, Ding W, Wen H, Zhou H, Zeng J, Chen J, Xu J. Four novel Cit7GlcTs functional in flavonoid 7- O-glucoside biosynthesis are vital to flavonoid biosynthesis shunting in citrus. HORTICULTURE RESEARCH 2024; 11:uhae098. [PMID: 38863995 PMCID: PMC11165160 DOI: 10.1093/hr/uhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Citrus fruits have abundant flavonoid glycosides (FGs), an important class of natural functional and flavor components. However, there have been few reports about the modification of UDP-glycosyltransferases (UGTs) on flavonoids in citrus. Notably, in flavonoid biosynthesis, 7-O-glucosylation is the initial and essential step of glycosylation prior to the synthesis of flavanone disaccharides, the most abundant and iconic FGs in citrus fruits. Here, based on the accumulation of FGs observed at the very early fruit development stage of two pummelo varieties, we screened six novel flavonoid 7-O-glucosyltransferase genes (7GlcTs) via transcriptomic analysis and then characterized them in vitro. The results revealed that four Cg7GlcTs possess wide catalytic activities towards various flavonoid substrates, with CgUGT89AK1 exhibiting the highest catalytic efficiency. Transient overexpression of CgUGT90A31 and CgUGT89AK1 led to increases in FG synthesis in pummelo leaves. Interestingly, these two genes had conserved sequences and consistent functions across different germplasms. Moreover, CitUGT89AK1 was found to play a role in the response of citrus to Huanglongbing infection by promoting FG production. The findings improve our understanding of flavonoid 7-O-glucosylation by identifying the key genes, and may help improve the benefits of flavonoid biosynthesis for plants and humans in the future.
Collapse
Affiliation(s)
- Ziyu Yuan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Gu Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huixian Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenyu Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxin Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
9
|
Pandey SS, Li J, Oswalt C, Wang N. Dynamics of ' Candidatus Liberibacter asiaticus' Growth, Concentrations of Reactive Oxygen Species, and Ion Leakage in Huanglongbing-Positive Sweet Orange. PHYTOPATHOLOGY 2024; 114:961-970. [PMID: 38478730 DOI: 10.1094/phyto-08-23-0294-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Current affiliation: Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India
| | - Jinyun Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Chris Oswalt
- Institute of Food and Agricultural Sciences, University of Florida, Bartow, FL 33830, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
10
|
Li Y, Ma R, Gao C, Li Z, Zheng Y, Fang F, Wang C, Li G, Du X, Xu C, Xu M, Liu R, Deng X, Zheng Z. Integrated bacterial transcriptome and host metabolome analysis reveals insights into " Candidatus Liberibacter asiaticus" population dynamics in the fruit pith of three citrus cultivars with different tolerance. Microbiol Spectr 2024; 12:e0405223. [PMID: 38440971 PMCID: PMC10986616 DOI: 10.1128/spectrum.04052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas), the causal agent of citrus Huanglongbing (HLB), is able to multiply to a high abundance in citrus fruit pith. However, little is known about the biological processes and phytochemical substances that are vital for CLas colonization and growth in fruit pith. In this study, CLas-infected fruit pith of three citrus cultivars ("Shatangju" mandarin, "Guanxi" pomelo, and "Shatian" pomelo) exhibiting different tolerance to CLas were collected and used for dual RNA-Seq and untargeted metabolome analysis. Comparative transcriptome analysis found that the activation of the CLas noncyclic TCA pathway and pathogenic-related effectors could contribute to the colonization and growth of CLas in fruit pith. The pre-established Type 2 prophage in the CLas genome and the induction of its CRISPR/cas system could enhance the phage resistance of CLas and, in turn, facilitate CLas population growth in fruit pith. CLas infection caused the accumulation of amino acids that were correlated with tolerance to CLas. The accumulation of most sugars and organic acids in CLas-infected fruit pith, which could be due to the phloem blockage caused by CLas infection, was thought to be beneficial for CLas growth in localized phloem tissue. The higher levels of flavonoids and terpenoids in the fruit pith of CLas-tolerant cultivars, particularly those known for their antimicrobial properties, could hinder the growth of CLas. This study advances our understanding of CLas multiplication in fruit pith and offers novel insight into metabolites that could be responsible for tolerance to CLas or essential to CLas population growth.IMPORTANCECitrus Huanglongbing (HLB, also called citrus greening disease) is a highly destructive disease currently threatening citrus production worldwide. HLB is caused by an unculturable bacterial pathogen, "Candidatus Liberibacter asiaticus" (CLas). However, the mechanism of CLas colonization and growth in citrus hosts is poorly understood. In this study, we utilized the fruit pith tissue, which was able to maintain the CLas at a high abundance, as the materials for dual RNA-Seq and untargeted metabolome analysis, aiming to reveal the biological processes and phytochemical substances that are vital for CLas colonization and growth. We provided a genome-wide CLas transcriptome landscape in the fruit pith of three citrus cultivars with different tolerance and identified the important genes/pathways that contribute to CLas colonization and growth in the fruit pith. Metabolome profiling identified the key metabolites, which were mainly affected by CLas infection and influenced the population dynamic of CLas in fruit pith.
Collapse
Affiliation(s)
- Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ruifeng Ma
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Chenying Gao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ziyi Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guohua Li
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Xiaozhen Du
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Changbao Xu
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Meirong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Rui Liu
- Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, Guangdong, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Cao X, Liu Y, Luo X, Wang C, Yue L, Elmer W, Dhankher OP, White JC, Wang Z, Xing B. Mechanistic investigation of enhanced bacterial soft rot resistance in lettuce (Lactuca sativa L.) with elemental sulfur nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163793. [PMID: 37127166 DOI: 10.1016/j.scitotenv.2023.163793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Crop diseases significantly threaten global food security and will worsen with a changing climate. Elemental sulfur nanomaterials (S NMs) were used to suppress bacterial pathogen Pectobacterium carotovorum on lettuce (Lactuca sativa L.). Foliar application with S NMs at 10-100 mg/L statistically decreased the occurrence of bacterial soft rot, where 100 mg/L exhibited the best performance with alleviating disease severity by 94.1 % as relative to infected controls. The disease suppression efficiency of S based materials (100 mg/L) and a conventional pesticide (thiophanate-methyl) followed the order of S NMs ≈ pesticide > S bulk particles (BPs) > sulfate. The disease control efficiency of S NMs was 1.33- and 3.20-fold that of S BPs and sulfate, respectively, and the shoot and root biomass with S NMs was 1.25- and 1.17-fold that of the pesticide treated plants. Mechanistically, S NMs (1) triggered jasmonic acid (JA) and salicylic acid (SA) mediated systematic induced resistance and systemic acquired resistance, thereby upregulating pathogenesis-related gene expression (enhanced by 29.3-259.7 %); (2) enhanced antioxidative enzyme activity and antioxidative gene expression (improved by 67.5-326.6 %), thereby alleviating the oxidative stress; and (3) exhibited direct in vivo antibacterial activity. Metabolomics analysis demonstrated that S NMs also promoted the tricarboxylic acid cycle and increased SA and JA metabolite biosynthesis. Moreover, S NMs application increased nutritive quality of lettuce by 20.8-191.7 %. These findings demonstrate that S NMs have potential to manage crop disease, thereby reducing the environmental burden due to decreasing use of conventional pesticides.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yulin Liu
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xing Luo
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wade Elmer
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
12
|
Pandey SS, Xu J, Achor DS, Li J, Wang N. Microscopic and Transcriptomic Analyses of Early Events Triggered by ' Candidatus Liberibacter asiaticus' in Young Flushes of Huanglongbing-Positive Citrus Trees. PHYTOPATHOLOGY 2023; 113:985-997. [PMID: 36449527 DOI: 10.1094/phyto-10-22-0360-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves of HLB-positive trees after CLas infection, consistent with CLas-triggered callose deposition. RNA-seq-based global expression analysis of young leaves of HLB-positive sweet orange with (CLas-Pos) and without (CLas-Neg) detectable CLas demonstrated a significant impact on gene expression in young leaves, including on the expression of genes involved in host immunity, stress response, and plant hormone biosynthesis and signaling. CLas-Pos and CLas-Neg expression data displayed distinct patterns. The number of upregulated genes was higher than that of the downregulated genes in CLas-Pos for plant-pathogen interactions, glutathione metabolism, peroxisome, and calcium signaling, which are commonly associated with pathogen infections, compared with the healthy control. On the contrary, the number of upregulated genes was lower than that of the downregulated genes in CLas-Neg for genes involved in plant-pathogen interactions and peroxisome biogenesis/metabolism. Additionally, a time-course quantitative reverse transcription-PCR-based expression analysis visualized the induced expression of companion cell-specific genes, phloem protein 2 genes, and sucrose transport genes in young flushes triggered by CLas. This study advances our understanding of early events during CLas infection of citrus young flushes.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Diann S Achor
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
13
|
Alatorre-Cruz JM, Carreño-López R, Alatorre-Cruz GC, Paredes-Esquivel LJ, Santiago-Saenz YO, Nieva-Vázquez A. Traditional Mexican Food: Phenolic Content and Public Health Relationship. Foods 2023; 12:foods12061233. [PMID: 36981159 PMCID: PMC10048498 DOI: 10.3390/foods12061233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Phenolic compounds have a positive effect on obesity, diabetes, and cardiovascular diseases because of their antioxidant and anti-inflammatory capacity. The prevalence of these diseases has increased in the last years in the Mexican population. Therefore, the Mexican diet must be assessed as provider of phenolic compounds. To assess this, a survey of phenolic compound intake was validated and applicated to 973 adults (798 females) between 18 and 79 years old. We compared the phenolic compound intake of 324 participants with more diseases (239 females) and 649 participants with healthier condition (559 females). The groups differed in sex, age, and scholarship. Males, older participants, and those with lower schooling reported suffering from more diseases. Regarding phenolic compound intake analyses, the participants with healthier conditions displayed a higher phenolic compound intake than the other group in all foods assessed. In addition, the regression model showed that the phenolic compounds intake of Mexican dishes, such as arroz con frijol or enchiladas, positively affected health status, suggesting that this traditional food is beneficial for the participant’s health condition. However, the weight effect of PCI was different for each disease. We conclude that, although PCI of Mexican food positively affects health conditions, this effect depends on sex, age, and participants’ diseases.
Collapse
Affiliation(s)
| | - Ricardo Carreño-López
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-2222295500 (ext. 2526)
| | | | | | - Yair Olovaldo Santiago-Saenz
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca 42160, Mexico
| | - Adriana Nieva-Vázquez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla-Complejo Regional Sur, Puebla 72420, Mexico
| |
Collapse
|
14
|
Yang SY, Lin ZX, Xian YF, Zhang HM, Xu HX. Traditional uses, chemical compounds, pharmacological activities and clinical studies on the traditional Chinese prescription Yi-Gan San. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115859. [PMID: 36280017 DOI: 10.1016/j.jep.2022.115859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A widely used traditional prescription, Yi-Gan San (YGS) is a remedy for neurodegenerative disorders. The formulation consists of seven Chinese medicinal materials in specific proportions, namely Uncariae Ramulus cum Uncis (Uncaria rhynchophylla (Miq.) Miq. ex Havil.), Bupleuri Radix (Bupleurum chinense DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Ligusticum wallichii Franch.), Poria (Poria cocos (Schw.) Wolf), Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala Koidz.) and Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.). Using YGS has been shown to alleviate various behavioural and psychological symptoms of dementia (BPSD). AIM OF THIS REVIEW The goal of this review is to give up-to-date information about the traditional uses, chemistry, pharmacology and clinical efficacy of YGS based on the scientific literature and to learn the current focus and provide references in the next step. MATERIALS AND METHODS The database search room was accessed using the search terms "Yi-Gan San" and "Yokukansan" to obtain results from resources such as Web of Science, PubMed, Google Scholar and Sci Finder Scholar. We not only consulted the literature of fellow authors for this review but also explored classical medical books. RESULTS YGS has been used to cure neurosis, sleeplessness, night weeping and restlessness in infants. Its chemical components primarily consist of triterpenes, flavonoids, phenolics, lactones, alkaloids and other types of compounds. These active ingredients displayed diverse pharmacological activities to ameliorate BPSD by regulating serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmission. In addition, YGS showed neuroprotective, antistress, and anti-inflammatory effects. The majority of cases of neurodegenerative disorders are treated with YGS, including Alzheimer's disease and dementia with Lewy bodies. CONCLUSIONS Based on previous studies, YGS has been used as a traditional prescription in East Asia, such as Japan, Korea and China, and it has diverse chemical compounds and multiple pharmacological activities. Nevertheless, few experimental studies have focused on chemical and quantitative YGS studies, suggesting that further comprehensive research on its chemicals and quality assessments is critical for future evaluations of drug efficacy.
Collapse
Affiliation(s)
- Si-Yu Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hong-Mei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
15
|
Integrated Transcriptome and Metabolome Analysis Reveals Phenylpropanoid Biosynthesis and Phytohormone Signaling Contribute to " Candidatus Liberibacter asiaticus" Accumulation in Citrus Fruit Piths (Fluffy Albedo). Int J Mol Sci 2022; 23:ijms232415648. [PMID: 36555287 PMCID: PMC9779719 DOI: 10.3390/ijms232415648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is a phloem-restricted α-proteobacterium that is associated with citrus huanglongbing (HLB), which is the most destructive disease that affects all varieties of citrus. Although midrib is usually used as a material for CLas detection, we recently found that the bacterium was enriched in fruits, especially in the fruit pith. However, no study has revealed the molecular basis of these two parts in responding to CLas infection. Therefore, we performed transcriptome and UHPLC-MS-based targeted and untargeted metabolomics analyses in order to organize the essential genes and metabolites that are involved. Transcriptome and metabolome characterized 4834 differentially expressed genes (DEGs) and 383 differentially accumulated metabolites (DAMs) between the two materials, wherein 179 DEGs and 44 DAMs were affected by HLB in both of the tissues, involving the pathways of phenylpropanoid biosynthesis, phytohormone signaling transduction, starch and sucrose metabolism, and photosynthesis. Notably, we discovered that the gene expression that is related to beta-glucosidase and endoglucanase was up-regulated in fruits. In addition, defense-related gene expression and metabolite accumulation were significantly down-regulated in infected fruits. Taken together, the decreased amount of jasmonic acid, coupled with the reduced accumulation of phenylpropanoid and the increased proliferation of indole-3-acetic acid, salicylic acid, and abscisic acid, compared to leaf midribs, may contribute largely to the enrichment of CLas in fruit piths, resulting in disorders of photosynthesis and starch and sucrose metabolism.
Collapse
|
16
|
Wu B, Yu Q, Deng Z, Duan Y, Luo F, Gmitter Jr F. A chromosome-level phased genome enabling allele-level studies in sweet orange: a case study on citrus Huanglongbing tolerance. HORTICULTURE RESEARCH 2022; 10:uhac247. [PMID: 36643761 PMCID: PMC9832951 DOI: 10.1093/hr/uhac247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 05/30/2023]
Abstract
Sweet orange originated from the introgressive hybridizations of pummelo and mandarin resulting in a highly heterozygous genome. How alleles from the two species cooperate in shaping sweet orange phenotypes under distinct circumstances is unknown. Here, we assembled a chromosome-level phased diploid Valencia sweet orange (DVS) genome with over 99.999% base accuracy and 99.2% gene annotation BUSCO completeness. DVS enables allele-level studies for sweet orange and other hybrids between pummelo and mandarin. We first configured an allele-aware transcriptomic profiling pipeline and applied it to 740 sweet orange transcriptomes. On average, 32.5% of genes have a significantly biased allelic expression in the transcriptomes. Different cultivars, transgenic lineages, tissues, development stages, and disease status all impacted allelic expressions and resulted in diversified allelic expression patterns in sweet orange, but particularly citrus Huanglongbing (HLB) shifted the allelic expression of hundreds of genes in leaves and calyx abscission zones. In addition, we detected allelic structural mutations in an HLB-tolerant mutant (T19) and a more sensitive mutant (T78) through long-read sequencing. The irradiation-induced structural mutations mostly involved double-strand breaks, while most spontaneous structural mutations were transposon insertions. In the mutants, most genes with significant allelic expression ratio alterations (≥1.5-fold) were directly affected by those structural mutations. In T19, alleles located at a translocated segment terminal were upregulated, including CsDnaJ, CsHSP17.4B, and CsCEBPZ. Their upregulation is inferred to keep phloem protein homeostasis under the stress from HLB and enable subsequent stress responses observed in T19. DVS will advance allelic level studies in citrus.
Collapse
Affiliation(s)
- Bo Wu
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Qibin Yu
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Yongping Duan
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Feng Luo
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Frederick Gmitter Jr
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
17
|
Gb_ANR-47 Enhances the Resistance of Gossypium barbadense to Fusarium oxysporum f. sp. vasinfectum (FOV) by Regulating the Content of Proanthocyanidins. PLANTS 2022; 11:plants11151902. [PMID: 35893607 PMCID: PMC9332461 DOI: 10.3390/plants11151902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Anthocyanidin reductase (ANR) is an important regulator of flavonoid metabolism, and proanthocyanidins, the secondary metabolites of flavonoids, play an important role in the response of plants to pathogenic stress. Therefore, in this study, the expression analysis of the ANR gene family of Gossypium barbadense after inoculation with Fusarium oxysporum f. sp. vasinfectum (FOV) was performed at different time points. It was found that Gb_ANR-47 showed significant differences in the disease-resistant cultivar 06-146 and the susceptible cultivar Xinhai 14, as well as in the highest root expression. It was found that the expression of Gb_ANR-47 in the resistant cultivar was significantly higher than that in the susceptible cultivar by MeJA and SA, and different amounts of methyl jasmonate (MeJA) and salicylic acid (SA) response elements were found in the promoter region of Gb_ANR-47. After silencing GbANR-47 in 06-146 material by VIGS technology, its resistance to FOV decreased significantly. The disease severity index (DSI) was significantly increased, and the anthocyanin content was significantly decreased in silenced plants, compared to controls. Our findings suggest that GbANR-47 is a positive regulator of FOV resistance in Gossypium barbadense. The research results provide an important theoretical basis for in-depth analysis of the molecular mechanism of GbANR-47 and improving the anti-FOV of Gossypium barbadense.
Collapse
|
18
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
19
|
Ma W, Pang Z, Huang X, Xu J, Pandey SS, Li J, Achor DS, Vasconcelos FNC, Hendrich C, Huang Y, Wang W, Lee D, Stanton D, Wang N. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat Commun 2022; 13:529. [PMID: 35082290 PMCID: PMC8791970 DOI: 10.1038/s41467-022-28189-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Huanglongbing (HLB) is a devastating disease of citrus, caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas). Here, we present evidence that HLB is an immune-mediated disease. We show that CLas infection of Citrus sinensis stimulates systemic and chronic immune responses in phloem tissue, including callose deposition, production of reactive oxygen species (ROS) such as H2O2, and induction of immunity-related genes. The infection also upregulates genes encoding ROS-producing NADPH oxidases, and downregulates antioxidant enzyme genes, supporting that CLas causes oxidative stress. CLas-triggered ROS production localizes in phloem-enriched bark tissue and is followed by systemic cell death of companion and sieve element cells. Inhibition of ROS levels in CLas-positive stems by NADPH oxidase inhibitor diphenyleneiodonium (DPI) indicates that NADPH oxidases contribute to CLas-triggered ROS production. To investigate potential treatments, we show that addition of the growth hormone gibberellin (known to have immunoregulatory activities) upregulates genes encoding H2O2-scavenging enzymes and downregulates NADPH oxidases. Furthermore, foliar spray of HLB-affected citrus with gibberellin or antioxidants (uric acid, rutin) reduces H2O2 concentrations and cell death in phloem tissues and reduces HLB symptoms. Thus, our results indicate that HLB is an immune-mediated disease that can be mitigated with antioxidants and gibberellin.
Collapse
Affiliation(s)
- Wenxiu Ma
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Xiaoen Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Diann S Achor
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Fernanda N C Vasconcelos
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Yixiao Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Daniel Stanton
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA.
| |
Collapse
|
20
|
Ikram M, Raja NI, Mashwani ZUR, Omar AA, Mohamed AH, Satti SH, Zohra E. Phytogenic Selenium Nanoparticles Elicited the Physiological, Biochemical, and Antioxidant Defense System Amelioration of Huanglongbing-Infected ‘Kinnow’ Mandarin Plants. NANOMATERIALS 2022; 12:nano12030356. [PMID: 35159701 PMCID: PMC8839265 DOI: 10.3390/nano12030356] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Citrus greening or huanglongbing (HLB) is commonly known as yellow dragon disease and affects citrus production worldwide. Therefore, it has a significant impact on and deleterious effects in the agro-industrial sector. Significant efforts have been made to combat this disease and mitigate its destructive impact on citrus production, but still, there is no effective biocompatible treatment available to control HLB disorder. This study is considered the first biocompatible approach to evaluate the potential of phytogenic selenium nanoparticles (SeNPs) to improve the health of HLB-infected ‘Kinnow’ mandarin plants. Polymerase chain reactions (PCRs) with specific primers were used to detect HLB disease in ‘Kinnow’ mandarin plants, and PCR products were sequenced to identify Candidatus Liberibacter asiaticus (CLas), and accession numbers for CLas1 and CLas2, MZ851933 and MZ851934, respectively, were obtained. SeNPs were synthesized by using Allium sativum L. clove extract as a reducing, capping, and stabilizing agent and various techniques such as UV-visible spectrophotometry, energy dispersive X-rays, scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD) were used to confirm the biogenesis of SeNPs. Different concentrations of SeNPs (25, 50, 75, and 100 mg L−1) were exogenously applied to HLB-infected ‘Kinnow’ mandarin plants and obtained spectacular results. The obtained results from the current study proved that 75 mg L−1 of SeNPs was most effective to improve the chlorophyll, carotenoids, relative water content (RWC), membrane stability index (MSI), total soluble sugar (TSS), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), total flavonoid content (TFC), and total phenolic content (TPC) and significant decrease was observed in hydrogen peroxide (H2O2), malondialdehyde (MDA), and proline (PRO) contents of HLB-infected ‘Kinnow’ mandarin plants as compared to untreated diseased citrus plants. In conclusion, these results allow us to synthesize the SeNPs formulation as a promising management strategy to treat the HLB disease in citrus plants.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (Z.-U.-R.M.); (S.H.S.); (E.Z.)
- Correspondence: (M.I.); (N.I.R.); or (A.A.O.); or (A.H.M.); Tel.: +92-340-1479464 (M.I.); +1-863-521-4569 (A.A.O.); +1-863-521-4886 (A.H.M.); Fax: +1-863-956-4631 (A.A.O. & A.H.M.)
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (Z.-U.-R.M.); (S.H.S.); (E.Z.)
- Correspondence: (M.I.); (N.I.R.); or (A.A.O.); or (A.H.M.); Tel.: +92-340-1479464 (M.I.); +1-863-521-4569 (A.A.O.); +1-863-521-4886 (A.H.M.); Fax: +1-863-956-4631 (A.A.O. & A.H.M.)
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (Z.-U.-R.M.); (S.H.S.); (E.Z.)
| | - Ahmad Alsayed Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
- Correspondence: (M.I.); (N.I.R.); or (A.A.O.); or (A.H.M.); Tel.: +92-340-1479464 (M.I.); +1-863-521-4569 (A.A.O.); +1-863-521-4886 (A.H.M.); Fax: +1-863-956-4631 (A.A.O. & A.H.M.)
| | - Azza H. Mohamed
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura 33516, Egypt
- Correspondence: (M.I.); (N.I.R.); or (A.A.O.); or (A.H.M.); Tel.: +92-340-1479464 (M.I.); +1-863-521-4569 (A.A.O.); +1-863-521-4886 (A.H.M.); Fax: +1-863-956-4631 (A.A.O. & A.H.M.)
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (Z.-U.-R.M.); (S.H.S.); (E.Z.)
| | - Efat Zohra
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (Z.-U.-R.M.); (S.H.S.); (E.Z.)
| |
Collapse
|
21
|
Killiny N. Generous Hosts: ' Candidatus Liberibacter asiaticus' Growth in Madagascar Periwinkle ( Catharanthus roseus) Highlights Its Nutritional Needs. PHYTOPATHOLOGY 2022; 112:89-100. [PMID: 34598662 DOI: 10.1094/phyto-05-21-0200-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
'Candidatus Liberibacter asiaticus', the putative causal agent of citrus greening, is not available in pure culture yet. In addition to trees of citrus and citrus relatives, 'Ca. L. asiaticus' can grow in Madagascar periwinkle (Catharanthus roseus). Using gas chromatography-mass spectrometry, we compared the phloem sap composition in sweet orange 'Valencia' (Citrus sinensis) and periwinkle plants after the infection with 'Ca. L. asiaticus'. Interestingly, in contrast to our previous studies of total leaf metabolites, we found that, compared with uninfected phloem sap, the organic acids implicated in the tricarboxylic acid cycle (TCA) cycle including citrate, isocitrate, succinate, fumarate, and malate were reduced significantly in the infected phloem saps of both species. As a result of the reduction of organic acids content, the pH of infected phloem saps was increased. We hypothesize that the bacterial growth induces the mitochondrial TCA cycle in parenchyma cells to produce more of these compounds to be used as a bacterial carbon source. Once these compounds reach a low level in the phloem sap, the bacterium may send a signal, yet to be identified, to initiate a feedback loop to further induce the TCA cycle. Phloem blockage might be another reason behind the reduced translocation of TCA cycle intermediates within the phloem. The net result, localized availability of organic acids, likely benefits bacterial growth and may explain the unequal distribution of 'Ca. L. asiaticus' within infected trees. These findings may help in designing media for the pure culturing of 'Ca. L. asiaticus'.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
22
|
Zhang J, Zhang J, Kaliaperumal K, Zhong B. Variations of the chemical composition of Citrus sinensis Osbeck cv. Newhall fruit in relation to the symptom severity of Huanglongbing. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Xue A, Liu Y, Li H, Cui M, Huang X, Wang W, Wu D, Guo X, Hao Y, Luo L. Early detection of Huanglongbing with EESI-MS indicates a role of phenylpropanoid pathway in citrus. Anal Biochem 2021; 639:114511. [PMID: 34883070 DOI: 10.1016/j.ab.2021.114511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022]
Abstract
Huanglongbing (HLB), a devastating disease for citrus worldwide, is caused by Candidatus Liberibacter asiaticus (CLas). In this study, we employed a novel extractive electrospray ionization-mass spectrometry (EESI-MS) method to analyze the metabolites in leaves of uninfected and HLB-infected Newhall navel orange. The results showed that uninfected and HLB-infected leaves could be readily distinguished based on EESI-MS combined by multivariable analysis. Nine phenolic compounds involved in phenylpropanoid pathway, such as p-coumaric acid, naringin, and apigenin, were principal components to distinguish the leaves of uninfected and HLB-infected Newhall navel orange. Gene expression was also conducted to further explore the molecular mechanism of phenylpropanoid branch pathway in HLB. The expression of genes (4CL, HCT, CHI, CHS, CYP, and C12R) involved in phenylpropanoid branch pathway was increased in asymptomatic and early period of HLB-infected leaves, while decreased in later period of HLB-infected leaves. This study provides a novel method for early detection of citrus HLB and suggests the regulation mechanism of phenylpropanoid pathway in the interaction between citrus and CLas.
Collapse
Affiliation(s)
- Ahui Xue
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Haoxing Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Wenjing Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Dong Wu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
24
|
Jones SE, Killiny N. Influence of Rootstock on the Leaf Volatile Organic Compounds of Citrus Scion Is More Pronounced after the Infestation with Diaphorina citri. PLANTS 2021; 10:plants10112422. [PMID: 34834785 PMCID: PMC8623621 DOI: 10.3390/plants10112422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/03/2022]
Abstract
Nowadays, citrus greening or Huanglongbing is considered the most destructive disease in the citrus industry worldwide. In the Americas and Asia, the disease is caused by the putative pathogen, ‘Candidatus Liberibacter asiaticus’ and transmitted by the psyllid vector, Diaphorina citri. It has been shown that volatile organic compounds (VOC) that are released from citrus leaves attract the psyllid vector. Herein, we tested whether the rootstock influenced the stored VOC profile in the scion leaves and if these influences were altered after infestation with D. citri. The VOC profiles of the hexane-extracted leaves of the mandarin hybrid ‘Sugar Belle’ that were grafted on three different rootstocks (C-35, sour orange (SO), and US-897) with and without infestation with D. citri were studied. The GC-MS analysis showed that the scion VOC profiles of the non-infested control trees were similar to each other, and rootstock was not a strong influence. However, after one month of infestation with D. citri, clear differences in the scion VOC profiles appeared that were rootstock dependent. Although the total scion leaf VOC content did not differ between the three rootstocks, the infestation increased scion monoterpenes significantly on US-897 and C-35 rootstock, increased terpene alcohols on US-897 and SO rootstock, and increased sesquiterpenes on SO. Infestation with D. citri significantly reduced fatty acids and fatty acid esters across all of the rootstocks. Therefore, our results suggest that rootstock choice could influence scions with an inducible volatile defense by enhancing the amounts of VOCs that are available for repelling vectors or for signaling to their natural enemies or parasitoids. According to this study, US-897 may be the best choice among the three that were studied herein, due to its diverse and robust VOC defense response to infestation with D. citri.
Collapse
|
25
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
26
|
Detection of Oxytetracycline in Citrus Phloem and Xylem Saps Using Europium-Based Method. Antibiotics (Basel) 2021; 10:antibiotics10091036. [PMID: 34572618 PMCID: PMC8469136 DOI: 10.3390/antibiotics10091036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oxytetracycline (OTC) has been used for the control of several plant diseases and was recently approved for the control of Huanglongbing, the citrus greening disease. Huanglongbing is caused by the phloem limited ‘Candidatus Liberibacter asiaticus’. Determination of OTC in the xylem and phloem of citrus plants is of great interest as they are the main routes of translocation in citrus. In addition, the determination of the level of OTC in the phloem sap is necessary for the control of the ‘Ca. L. asiaticus’ pathogen, which resides in the phloem. Herein, we demonstrated that the level of OTC in the citrus phloem and xylem saps obtained using the centrifugation method can be successfully measured using the europium (Eu) method directly or with cleanup by solid-phase extraction (SPE). Recovery of OTC from spiked sap samples purified by solid-phase extraction (SPE) was higher than 90%, while recovery from saps without SPE cleanup were nearly 100%. The ‘Ca. L. asiaticus’-infected leaf and phloem sap samples showed higher inhibition of the fluorescence intensity of the OTC standard compared to non-infected control leaf and phloem samples. In agreement with this finding, the levels of phenols and flavonoids in ‘Ca. L. asiaticus’-infected leaves were higher than those controls and were shown to interfere with the Eu method. Therefore, the SPE cleanup step only improved OTC recovery from leaf samples containing the interfering compounds. The Eu method was then used to determine OTC levels in the phloem and xylem sap of OTC-treated plants, and the results were similar whether measured directly or after SPE. Visualization under ultraviolet light (400 nm) showed the presence of OTC in citrus xylem and phloem saps with and without the use of SPE.
Collapse
|
27
|
Munir S, Ahmed A, Li Y, He P, Singh BK, He P, Li X, Asad S, Wu Y, He Y. The hidden treasures of citrus: finding Huanglongbing cure where it was lost. Crit Rev Biotechnol 2021; 42:634-649. [PMID: 34325576 DOI: 10.1080/07388551.2021.1942780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease which has significantly downsized the entire industry worldwide. The intractable and incurable disease has brought the citriculture an enormous loss of productivity. With no resistant varieties available, failure of chemical treatments despite repeated applications, and hazardous consequences to environmental health, have led to large-scale research to find a sustainable cure. Inside plants, the key determinants of health and safety, live the endophytic microbes. Endophytes possess unrivaled plant benefiting properties. The progression of HLB is known to cause disturbance in endophytic bacterial communities. Given the importance of the plant endophytic microbiome in disease progression, the notion of engineering microbiomes through indigenous endophytes is attracting scientific attention which is considered revolutionary as it precludes the incompatibility concerns associated with the use of alien (microbes from other plant species) endophytes. In this review, we briefly discuss the transformation of the plant-pathogen-environment to the plant-pathogen-microbial system in a disease triangle. We also argue the employment of indigenous endophytes isolated from a healthy state to engineer the diseased citrus endophytic microbiomes that can provide sustainable solution for vascular pathogens. We evaluated the plethora of microbiomes responses to the re-introduction of endophytes which leads to disease resistance in the citrus host. The idea is not merely confined to citrus-HLB, but it is globally applicable for tailoring a customized cure for general plant-pathogen systems particularly for the diseases caused by the vascular system-restricted pathogens.
Collapse
Affiliation(s)
- Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, Australia.,Global Centre for Land Based Innovation, Western Sydney University, Penrith South, Australia
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Suhail Asad
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, P. R. China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| |
Collapse
|
28
|
Killiny N, Nehela Y, George J, Rashidi M, Stelinski LL, Lapointe SL. Phytoene desaturase-silenced citrus as a trap crop with multiple cues to attract Diaphorina citri, the vector of Huanglongbing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110930. [PMID: 34034878 DOI: 10.1016/j.plantsci.2021.110930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 05/26/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive diseases in citrus worldwide. Unfortunately, HLB has no cure and management relies on insecticides to reduce populations of the vector, Diaphorina citri Kuwayama (Hemiptera: Liviidae). We propose an attract-and-kill strategy using a trap crop as an alternative to vector control to reduce transmission of the pathogen, 'Candidatus Liberibacter asiaticus'. We evaluated vector response to phytoene desaturase-silenced citrus trees using virus-induced gene silencing technology. Citrus tristeza virus (CTV) was used to produce a phytoene desaturase-silenced citrus (CTV-tPDS) that expresses visual, olfactory, and gustatory cues to attract D. citri. We found that D. citri were more attracted to CTV-tPDS plants with noticeably better fecundity and overall population fitness than on control plants. Moreover, rearing D. citri on CTV-tPDS plants significantly increased their survival probability compared with those reared on control plants. CTV-tPDS plants possessed reduced content of both carotenoid and chlorophyll pigments resulting in a consistent photobleached phenotype on citrus leaves which provided a sufficient close-range visual attractant to stimulate D. citri landing. Additionally, CTV-tPDS plants exhibited an enriched profile of volatile organic compounds (VOCs), which offered adequate olfactory cues to attract psyllid from long-range. Finally, CTV-tPDS plants exhibited an enriched metabolite content of phloem sap and leaves which offered appropriate gustatory cues that influenced probing/feeding behavior. We believe that introducing CTV-tPDS plants (as a trap crop) to D. citri-infested orchards will attract and congregate psyllids to facilitate their removal from the target crop with insecticides or by other means. This new strategy could be deployed relatively quickly and economically to HLB-impacted citrus industries. Moreover, it is an eco-friendly strategy because it should partially reduce the input of chemical insecticides ameliorating the indirect cost of HLB infection.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA; Department of Agricultural Botany, Faculty of Agriculture, Tanta University, 31512 Tanta, Egypt
| | - Justin George
- United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL, 34945, USA; United States Department of Agriculture, Agricultural Research Service, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Mahnaz Rashidi
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Stephen L Lapointe
- United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| |
Collapse
|
29
|
Citrate Mediated Europium-Based Detection of Oxytetracycline in Citrus Tissues. Antibiotics (Basel) 2021; 10:antibiotics10050566. [PMID: 34065819 PMCID: PMC8151757 DOI: 10.3390/antibiotics10050566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 01/29/2023] Open
Abstract
Oxytetracycline (OTC) and streptomycin have been used for the control of several plant diseases and were recently permitted for the control of citrus greening disease, Huanglongbing. Consequently, sensitive and reliable methods are highly needed for the detection of OTC in citrus tissues. Herein, we studied the replacement of cetyltrimethylammonium chloride (CTAC) by citrate (Cit) as a sensitizing agent for the analysis of OTC in citrus tissues using the recently established europium (Eu) method. In addition, we determined the optimal conditions for the formation of the Eu-OTC-Cit ternary complex in tris buffer. Our results showed that the plant matrix significantly decreased the fluorescence intensity of the Eu-OTC-Cit complex even after the replacement of CTAC. Our investigations showed that phenols such as gallic acid degrade slowly at high pH and their degradation was enhanced in the presence of the (Eu+3) cation. To reduce the plant matrix interference, the sample extract was cleaned using solid-phase extraction (SPE). The OTC recoveries from spiked healthy and Candidatus Liberibacter asiaticus (CLas)-infected trees were 91.4 ± 7.8% and 82.4 ± 3.9%, respectively. We also used the citrate method to determine the level of OTC in trunk-injected trees. The level of OTC as measured using the Eu-OTC-Cit complex (117.5 ± 20.3 µg g−1 fresh weight “FWT”) was similar to that measured using Eu-OTC-CTAC complex (97.5 ± 14 µg g−1 FWT). In addition, we were able to visualize the OTC in citrus leaf extract, under ultraviolet light (400 nm), after it was cleaned with the SPE. Our study showed that the citrate can be successfully used to replace the harmful CTAC surfactant, which could also react with phenols.
Collapse
|
30
|
Development of Europium-Sensitized Fluorescence-Based Method for Sensitive Detection of Oxytetracycline in Citrus Tissues. Antibiotics (Basel) 2021; 10:antibiotics10020224. [PMID: 33672358 PMCID: PMC7926362 DOI: 10.3390/antibiotics10020224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial compounds have been successfully used to control many plant and animal diseases. Recently, oxytetracycline (OTC) and streptomycin have been approved for the treatment of Huanglongbing in citrus. Since the application of OTC is under strict regulations, several methods have been developed to determine and monitor its levels in the environment including high-performance liquid chromatography, ELISA, colorimetric, and fluorometric assays. In this study, we developed a fluorometric method for the determination of OTC in plant tissues based on its complexation with europium. Our preliminary trials showed that phenols and flavonoids interfere with the europium assay by reacting with the sensitizing reagent, cetyltrimethylammonium chloride. Consequently, we used the 60 mg hydrophilic–lipophilic balanced (HLB) cartridges to purify the OTC from the plant matrix. The recovery of OTC from spiked leaf samples was 75 ± 7.6%. Using the 500 mg HLB, we were able to detect 0.3 ppm OTC in the final sample extract, which corresponds to 3 µg g−1 fresh weight (FWT). The developed method was successfully used to measure the level of OTC in leaves obtained from trunk-injected trees. The results obtained by the europium method were similar to those obtained using the ELISA assay. We also tested the cross-reactivity of OTC metabolites with the europium method. The 4-epi-OTC showed a high cross-reactivity (50.0 ± 3.6%) with europium assay, whereas α-apo-OTC and β-apo-OTC showed small cross-reactivity. We showed that the europium-sensitized fluorescence-based method can be successfully used to assess OTC in citrus plant tissues after a cleanup step. Our results showed that this method was sensitive, reproducible, and can be used to analyze many samples simultaneously.
Collapse
|
31
|
Aniqa A, Kaur S, Sadwal S. A Review of the Anti-Cancer Potential of Murraya koenigii (Curry Tree) and Its Active Constituents. Nutr Cancer 2021; 74:12-26. [PMID: 33587002 DOI: 10.1080/01635581.2021.1882509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Murraya koenigii (MK) relates to the Rutaceae family and has many health benefits. To date, over eighty-eight carbazole alkaloids along with terpenoids, and other nutrients have been identified from different parts of this plant. This review presents accumulated information regarding the role of MK and its constituents in the prevention/treatment of cancer. Literature survey revealed that MK and its constituents target multiple deranged pathways associated with apoptosis, growth (JAK-STAT, mTOR), and cell cycle in a variety of cancerous cell lines (colon, lung, liver, skin, prostate, breast, etc.) and few animal models. Thus, the present review highlights the anticancer mechanism of MK and its phytoconstituents, and further future perspectives. The ameliorating effects of MK and its phytoconstituents against various cancers warrant its multi-institutional clinical trials as soon as possible. The prospects of relatively cheaper cancer drugs could then be brighter, particularly for the socio-economically feebler cancer patients of the world.
Collapse
Affiliation(s)
- Aniqa Aniqa
- Department of Biophysics, Panjab University, Chandigarh, India
| | | | - Shilpa Sadwal
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
32
|
Nehela Y, Killiny N. Melatonin Is Involved in Citrus Response to the Pathogen Huanglongbing via Modulation of Phytohormonal Biosynthesis. PLANT PHYSIOLOGY 2020; 184:2216-2239. [PMID: 32843523 PMCID: PMC7723116 DOI: 10.1104/pp.20.00393] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/06/2020] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB) is a devastating citrus disease worldwide that is putatively caused by Candidatus Liberibacter asiaticus and transmitted by Diaphorina citri Melatonin is a ubiquitously distributed auxin-like metabolite found in both prokaryotes and eukaryotes. In this study, we used integrative metabolomic and transcriptomic approaches to investigate the potential role of melatonin in citrus response against HLB and to understand the relationships between melatonin and the stress-associated phytohormones at molecular and metabolic levels. Melatonin was detected in the leaves of Valencia sweet orange (Citrus sinensis) after derivatization with N-methyl-N-trimethylsilyltrifluoroacetamide using a targeted gas chromatography-mass spectrometry running in selective ion monitoring mode-based method. Ca. L. asiaticus infection and D. citri infestation significantly increased endogenous melatonin levels in Valencia sweet orange leaves and upregulated the expression of its biosynthetic genes (CsTDC, CsT5H, CsSNAT, CsASMT, and CsCOMT). However, infection with Ca. L. asiaticus had a greater effect than did infestation with D. citri Melatonin induction was positively correlated with salicylic acid content, but not that of trans-jasmonic acid. Moreover, melatonin supplementation enhanced the endogenous contents of the stress-associated phytohormones (salicylates, auxins, trans-jasmonic acid, and abscisic acid) and the transcript levels of their biosynthetic genes. Furthermore, melatonin supplementation diminished the Ca. L. asiaticus titer within the infected leaves, which suggests that melatonin might play an antibacterial role against this bacterium and gram-negative bacteria in general. These findings provide a better understanding of the melatonin-mediated defensive response against HLB via modulation of multiple hormonal pathways. Understanding the role of melatonin in citrus defense to HLB may provide a novel therapeutic strategy to mitigate the disease.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, 31512 Tanta, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850
| |
Collapse
|
33
|
Killiny N, Jones SE, Hijaz F, Kishk A, Santos-Ortega Y, Nehela Y, Omar AA, Yu Q, Gmitter FG, Grosser JW, Dutt M. Metabolic Profiling of Hybrids Generated from Pummelo and Citrus latipes in Relation to Their Attraction to Diaphorina citri, the Vector of Huanglongbing. Metabolites 2020; 10:metabo10120477. [PMID: 33255226 PMCID: PMC7760127 DOI: 10.3390/metabo10120477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022] Open
Abstract
The citrus industry at present is severely affected by huanglongbing disease (HLB). HLB is caused by the supposed bacterial pathogen “Candidatus Liberibacter asiaticus” and is transmitted by the insect vector, the Asian citrus psyllid, Diaphorina citri Kuwayama. Developing new citrus hybrids to improve HLB management is much needed. In this study, we investigated the metabolomic profiles of three new hybrids produced from the cross of C2-5-12 Pummelo (Citrus maxima (L.) Osbeck) × pollen from Citrus latipes. The hybrids were selected based on leaf morphology and seedling vigor. The selected hybrids exhibited compact and upright tree architecture as seen in C. latipes. Hybrids were verified by simple sequence repeat markers, and were subjected to metabolomic analysis using gas chromatography-mass spectrometry. The volatile organic compounds (VOCs) and polar metabolites profiling also showed that the new hybrids were different from their parents. Interestingly, the levels of stored VOCs in hybrid II were higher than those observed in its parents and other hybrids. The level of most VOCs released by hybrid II was also higher than that released from its parents. Additionally, the preference assay showed that hybrid II was more attractive to D. citri than its parents and other hybrids. The leaf morphology, compact and upright architecture of hybrid II, and its attraction to D. citri suggest that it could be used as a windbreak and trap tree for D. citri (double duty), once its tolerance to HLB disease is confirmed. Our results showed that metabolomic analysis could be successfully used to understand the biochemical mechanisms controlling the interaction of D. citri with its host plants.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
- Correspondence: ; Tel.: +863-956-8833; Fax: +863-956-4631
| | - Shelley E. Jones
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
| | - Faraj Hijaz
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
| | - Abdelaziz Kishk
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Yulica Santos-Ortega
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
| | - Yasser Nehela
- Department of Plant Pathology, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (S.E.J.); (F.H.); (A.K.); (Y.S.-O.); (Y.N.)
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Ahmad A. Omar
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
- Biochemistry Department, College of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Qibin Yu
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| | - Fred G. Gmitter
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| | - Jude W. Grosser
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| | - Manjul Dutt
- Department of Horticultural Sciences, University of Florida, Citrus Research and Education Center, IFAS, Lake Alfred, FL 33850, USA; (A.A.O.); (Q.Y.); (F.G.G.J.); (J.W.G.); (M.D.)
| |
Collapse
|
34
|
Killiny N, Nehela Y, Hijaz F, Gonzalez-Blanco P, Hajeri S, Gowda S. Knock-down of δ-aminolevulinic acid dehydratase via virus-induced gene silencing alters the microRNA biogenesis and causes stress-related reactions in citrus plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110622. [PMID: 32900450 DOI: 10.1016/j.plantsci.2020.110622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The δ-aminolevulinic acid (δ-ALA) is an intermediate in the biosynthetic pathway of tetrapyrroles. Tetrapyrroles play vital roles in many biological processes such as photosynthesis, respiration, and light-sensing. ALA-dehydratase (ALAD) combines two molecules of δ-ALA to form porphobilinogen. In citrus, the silencing of ALAD caused discrete yellow spots and necrosis in leaves and stems. Additionally, it caused rapid death in developing new shoots. Herein, we hypothesize that the accumulation of δ-ALA results in severe stress and reduced meristem development. For that reason, we investigated the dynamic changes in the expression profiles of 23 microRNA (miRNA) identified through small RNA sequencing, from CTV-tALAD plants in comparison with healthy C. macrophylla and C. macrophylla infiltrated with CTV-wt. Furthermore, we reported the effect of ALAD silencing on the total phenolics, H2O2, and reactive oxygen species (ROS) levels, to examine the possibilities of miRNAs involving the regulation of these pathways. Our results showed that the total phenolics content, H2O2, and O2- levels were increased in CTV-tALAD plants. Moreover, 63 conserved miRNA members belonging to 23 different miRNA families were differentially expressed in CTV-tALAD plants compared to controls. The identified miRNAs are implicated in auxin biosynthesis and signaling, axillary shoot meristem formation and leaf morphology, starch metabolism, and oxidative stress. Collectively, our findings suggested that ALAD silencing initiates stress on citrus plants. As a result, CTV-tALAD plants exhibit reduced metabolic rate, growth, and development in order to cope with the stress that resulted from the accumulation of δ-ALA. This cascade of events led to leaf, stem, and meristem necrosis and failure of new shoot development.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Faraj Hijaz
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Pedro Gonzalez-Blanco
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Subhas Hajeri
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| |
Collapse
|