1
|
Guruchandran S, Rajendra Prasath BB, Sudhakar S, Mani E. Development of Hematite Nano Ellipsoids/Pectin Composite Films for Green Packaging Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18418-18429. [PMID: 39163477 DOI: 10.1021/acs.langmuir.4c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Synthetic packaging materials are known to cause serious environmental and human health problems. Among the eco-friendly biopolymers from nonfood sources that are suitable for packaging applications, pectin is a promising candidate. However, native pectin films (NPF) exhibit poor mechanical strength, high hydrophilicity, and poor gas diffusion barrier properties. These shortcomings offset the advantages of pectin as a potential packaging material. To address these limitations, in this study, hematite nano ellipsoids (HNEs) were incorporated as fillers to reinforce native pectin films. This reinforcement resulted in substantial improvements in the mechanical properties, hydrophobicity, thermal stability, barrier properties, and optical attributes of pectin films. Compared to NPF, the pectin-hematite composite film exhibited a 35% increase in tensile strength, a 30° increase in contact angle, a 6-fold increase in the oxygen diffusion barrier properties, and a 20% increase in the water vapor barrier properties. This study presents a sustainable, biocompatible, and biodegradable packaging solution by capitalizing on eco-friendly biopolymer and nanoparticle engineering.
Collapse
Affiliation(s)
- Srisowmeya Guruchandran
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Xie L, Chen Y. The protagonist of contemporary and emerging nanotechnology-based theranostics and therapeutic approaches in reshaping intensive care unit. Saudi Med J 2024; 45:759-770. [PMID: 39074899 PMCID: PMC11288488 DOI: 10.15537/smj.2024.45.8.20240069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
To maintain a clean and hygienic environment in the intensive care unit (ICU) is crucial for ensuring patient safety, preventing infections, and reducing healthcare-associated complications. With the increasing prevalence of infections and the emergence of viral and bacterial resistance to standard antiseptics, there is a pressing need for innovative antiseptic solutions. Nanotechnology is increasingly being employed in medicine, particularly focusing on mitigating the activities of various pathogens, including those associated with hospital-acquired infections. This paper explores the current impact of nanotechnology, with a particular focus on bacterial infections and SARS-CoV-2, which significantly strain healthcare systems, and then discusses how nanotechnology can enhance existing treatment methodologies. We highlight the effectiveness of the nanotechnology-based bactericide Bio-Kil in reducing bacterial counts in an ICU. The aim is to educate healthcare professionals on the existing role and prospects of nanotechnology in addressing prevalent infectious diseases.
Collapse
Affiliation(s)
- Ling Xie
- From the Department of Critical Medicine, First People’s Hospital of Linping District, Hangzhou, China.
| | - Yun Chen
- From the Department of Critical Medicine, First People’s Hospital of Linping District, Hangzhou, China.
| |
Collapse
|
3
|
Şomoghi R, Semenescu A, Pasăre V, Chivu OR, Nițoi DF, Marcu DF, Florea B. The Impact of ZnO Nanofillers on the Mechanical and Anti-Corrosion Performances of Epoxy Composites. Polymers (Basel) 2024; 16:2054. [PMID: 39065371 PMCID: PMC11280588 DOI: 10.3390/polym16142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Epoxy resins were reinforced with different ZnO nanofillers (commercial ZnO nanoparticles (ZnO NPs), recycled ZnO and functionalized ZnO NPs) in order to obtain ZnO-epoxy composites with suitable mechanical properties, high adhesion strength, and good resistance to corrosion. The final properties of ZnO-epoxy composites depend on several factors, such as the type and contents of nanofillers, the epoxy resin type, curing agent, and preparation methods. This paper aims to review the preparation methods, mechanical and anti-corrosion performance, and applications of ZnO-epoxy composites. The epoxy-ZnO composites are demonstrated to be valuable materials for a wide range of applications, including the development of anti-corrosion and UV-protective coatings, for adhesives and the chemical industry, or for use in building materials or electronics.
Collapse
Affiliation(s)
- Raluca Şomoghi
- Faculty of Petroleum Refining and Petrochemistry, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Street, No. 202, 6th District, 060021 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
- Academy of Romanian Scientists, 3 Ilfov Str., 5th District, 050044 Bucharest, Romania
| | - Vili Pasăre
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| | - Oana Roxana Chivu
- Faculty of Industrial Engineering and Robotics, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (O.R.C.); (D.F.N.)
| | - Dan Florin Nițoi
- Faculty of Industrial Engineering and Robotics, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (O.R.C.); (D.F.N.)
| | - Dragoş Florin Marcu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| | - Bogdan Florea
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei Street, No. 313, 6th District, 060042 Bucharest, Romania; (D.F.M.); (B.F.)
| |
Collapse
|
4
|
Costa NL, Hiranobe CT, Cardim HP, Dognani G, Sanchez JC, Carvalho JAJ, Torres GB, Paim LL, Pinto LF, Cardim GP, Cabrera FC, dos Santos RJ, Silva MJ. A Review of EPDM (Ethylene Propylene Diene Monomer) Rubber-Based Nanocomposites: Properties and Progress. Polymers (Basel) 2024; 16:1720. [PMID: 38932070 PMCID: PMC11207359 DOI: 10.3390/polym16121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Ethylene propylene diene monomer (EPDM) is a synthetic rubber widely used in industry and commerce due to its high thermal and chemical resistance. Nanotechnology has enabled the incorporation of nanomaterials into polymeric matrixes that maintain their flexibility and conformation, allowing them to achieve properties previously unattainable, such as improved tensile and chemical resistance. In this work, we summarize the influence of different nanostructures on the mechanical, thermal, and electrical properties of EPDM-based materials to keep up with current research and support future research into synthetic rubber nanocomposites.
Collapse
Affiliation(s)
- Naiara Lima Costa
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
- School of Technology and Sciences (FCT–UNESP), São Paulo State University, Presidente Prudente 19060-900, SP, Brazil;
| | - Carlos Toshiyuki Hiranobe
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| | - Henrique Pina Cardim
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| | - Guilherme Dognani
- School of Technology and Sciences (FCT–UNESP), São Paulo State University, Presidente Prudente 19060-900, SP, Brazil;
| | - Juan Camilo Sanchez
- Mechanical Engineering Department, Pascual Bravo University Institution (IUPB), Medellín 050036, Colombia; (J.C.S.); (J.A.J.C.)
| | | | - Giovanni Barrera Torres
- Industrial Design Engineering Department, Arts and Humanities Faculty, Metropolitan Institute of Technology (ITM), Medellín 050036, Colombia;
| | - Leonardo Lataro Paim
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| | - Leandro Ferreira Pinto
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| | - Guilherme Pina Cardim
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| | - Flávio Camargo Cabrera
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| | - Renivaldo José dos Santos
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| | - Michael Jones Silva
- School of Engineering and Science (FEC–UNESP), São Paulo State University, Rosana 19274-000, SP, Brazil; (N.L.C.); (C.T.H.); (H.P.C.); (L.L.P.); (L.F.P.); (G.P.C.); (R.J.d.S.)
| |
Collapse
|
5
|
Afrizal, Yusmaniar, Valentino B, Riswoko A, Khairunnisa Gumilar K. Effect of methyl methacrylate concentrations on surface and thermal analysis of composite polymer polymethylmethacrylates with mesogen reactive RM82. Des Monomers Polym 2024; 27:1-11. [PMID: 38586248 PMCID: PMC10997352 DOI: 10.1080/15685551.2024.2336657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
This research report of the synthesis of composite polymers from liquid crystal mesogen reactive (RM82) monomers with Methyl methacrylate (MMA). The purpose of this research is analysis the effect concentration of MMA on the surface and thermal of the composite polymer PMMA-RM82. The result of the morphological analysis of composite surfaces performed by polarization optical microscopy (POM) technique showed liquid crystal textures affected composition from two monomers. SEM images show that the surface of the RM82 liquid crystal has a shape resembling fibrous and blade-like crystals with a length of up to 10 μm (micrometers). Analysis thermal showed the heat released by the PMMA-RM82 increased with the increase in MMA weight percent. This affects the rapid crystallization process of PMMA-RM82 which of concentration MMA 30%-RM82 the heat released is almost twice as much as the heat released by MMA 5%-RM82. The absence of PMMA and RM82 peaks both endothermic and exothermic in PMMA-RM82 samples indicates that polymerization has occurred and a new product has formed. Analysis structure molecule by FTIR found that the IR spectral form of each variation in the weight percent of MMA was almost the same, but there was a spectral shift that showed that polymerization had occurred in PMMA-RM82 which was characterized by a reaction to the free radical C=C bond released by the photoinitiator. XRD pattern of composite PMMA-RM82 showed the peaks formed are located at scattering angles similar to RM82 but there is a decrease in intensity as the percent weight of MMA increases.
Collapse
Affiliation(s)
- Afrizal
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Yusmaniar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Bryan Valentino
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| | - Asep Riswoko
- National Research and Innovation Agency, KST Habibie, South Tangerang, Indonesia
| | - Karin Khairunnisa Gumilar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
| |
Collapse
|
6
|
Aziz T, Farid A, Haq F, Kiran M, Ullah N, Faisal S, Ali A, Khan FU, You S, Bokhari A, Mubashir M, Chuah LF, Show PL. Role of silica-based porous cellulose nanocrystals in improving water absorption and mechanical properties. ENVIRONMENTAL RESEARCH 2023; 222:115253. [PMID: 36702191 DOI: 10.1016/j.envres.2023.115253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 05/27/2023]
Abstract
Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University. School of Engineering. Hangzhou. Zhejiang Province, 310024, China
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Fazal Haq
- Department of Chemistry. Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture. Gomal University, D. I. Khan, 29050, Pakistan
| | - Naveed Ullah
- Department of Chemistry. Gomal University, D. I. Khan, 29050, Pakistan
| | - Shah Faisal
- Department of Chemistry. University of Science and Technology Bannu, 28000, Pakistan
| | - Amjad Ali
- Institute of Polymer Material. School of Material Science & Engineering, Jiangsu University, China
| | - Farman Ullah Khan
- Department of Chemistry. University of Science and Technology Bannu, 28000, Pakistan
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan; Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St Zone 1, Abu Dhabi, United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
7
|
Kausar A. Cutting-edge Shape Memory Polymer/Fullerene Nanocomposite: Design and Contemporary Status. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
8
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
9
|
Samrot AV, Sivasuriyan SK, Xavier S, Shobana N, Rajalakshmi D, Sathiyasree M, Ram Singh SP. Biopolymer-Based Gels. HANDBOOK OF BIOPOLYMERS 2023:469-490. [DOI: 10.1007/978-981-19-0710-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Deng W, Li G, Li W, Yang M, Cui W. Facile fabrication of polystyrene particles/graphene composites for improved dielectric and thermal properties. Des Monomers Polym 2022; 26:23-30. [PMID: 36605894 PMCID: PMC9809381 DOI: 10.1080/15685551.2022.2162282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this paper, polystyrene (PS)-based reduced graphene oxide (rGO) composites were prepared by mixing PS latex particles with graphene oxide (GO) and the following in-situ reduction. The structure and morphology of PS/rGO composites were characterized, and the effects of rGO content on the dielectric properties as well as thermal stability of PS/rGO composites were investigated. Results showed that rGO sheets armoured on the surface of PS particles and exhibited well dispersion in the PS matrix after hot compression. The introduction of rGO improved the dielectric properties of the composites remarkably. When rGO content was 0.12 vol%, the dielectric permittivity and breakdown strength of PS/rGO arrived at 6.3 at102 Hz and 107 kV/mm, with 50% and 35.4% enhancement compared to the pristine PS. Furthermore, PS/rGO presented better thermal stability than the pristine PS, but the overlapping of rGO sheets in PS matrix induced the instability of dielectric loss with frequency.
Collapse
Affiliation(s)
- Wei Deng
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China,Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, Heilongjiang, China,CONTACT Wei Deng School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin150040, China; Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
| | - Guoan Li
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Wanyu Li
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Meng Yang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Weiwei Cui
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Dulal M, Afroj S, Ahn J, Cho Y, Carr C, Kim ID, Karim N. Toward Sustainable Wearable Electronic Textiles. ACS NANO 2022; 16:19755-19788. [PMID: 36449447 PMCID: PMC9798870 DOI: 10.1021/acsnano.2c07723] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023]
Abstract
Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great value for personalized healthcare applications. However, material performance and sustainability, complicated and difficult e-textile fabrication methods, and their limited end-of-life processability are major challenges to wide adoption of e-textiles. In this review, we explore the potential for sustainable materials, manufacturing techniques, and their end-of-the-life processes for developing eco-friendly e-textiles. In addition, we survey the current state-of-the-art for sustainable fibers and electronic materials (i.e., conductors, semiconductors, and dielectrics) to serve as different components in wearable e-textiles and then provide an overview of environmentally friendly digital manufacturing techniques for such textiles which involve less or no water utilization, combined with a reduction in both material waste and energy consumption. Furthermore, standardized parameters for evaluating the sustainability of e-textiles are established, such as life cycle analysis, biodegradability, and recyclability. Finally, we discuss the current development trends, as well as the future research directions for wearable e-textiles which include an integrated product design approach based on the use of eco-friendly materials, the development of sustainable manufacturing processes, and an effective end-of-the-life strategy to manufacture next generation smart and sustainable wearable e-textiles that can be either recycled to value-added products or decomposed in the landfill without any negative environmental impacts.
Collapse
Affiliation(s)
- Marzia Dulal
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| |
Collapse
|
12
|
Hurtuková K, Vašinová T, Kasálková NS, Fajstavr D, Rimpelová S, Pavlíčková VS, Švorčík V, Slepička P. Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer. NANOMATERIALS 2022; 12:nano12152658. [PMID: 35957089 PMCID: PMC9370165 DOI: 10.3390/nano12152658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/10/2022]
Abstract
Here, we aimed at the preparation of an antibacterial surface on a flexible polydimethylsiloxane substrate. The polydimethylsiloxane surface was sputtered with silver, deposited with carbon, heat treated and exposed to excimer laser, and the combinations of these steps were studied. Our main aim was to find the combination of techniques applicable both against Gram-positive and Gram-negative bacteria. The surface morphology of the structures was determined by atomic force microscopy and scanning electron microscopy. Changes in surface chemistry were conducted by application of X-ray photoelectron spectroscopy and energy dispersive spectroscopy. The changes in surface wettability were characterized by surface free energy determination. The heat treatment was also applied to selected samples to study the influence of the process on layer stability and formation of PDMS-Ag or PDMS-C-Ag composite layer. Plasmon resonance effect was determined for as-sputtered and heat-treated Ag on polydimethylsiloxane. The heating of such structures may induce formation of a pattern with a surface plasmon resonance effect, which may also significantly affect the antibacterial activity. We have implemented sputtering of the carbon base layer in combination with excimer laser exposure of PDMS/C/Ag to modify its properties. We have confirmed that deposition of primary carbon layer on PDMS, followed by sputtering of silver combined with subsequent heat treatment and activation of such surface with excimer laser, led to the formation of a surface with strong antibacterial properties against two bacterial strains of S. epidermidis and E. coli.
Collapse
Affiliation(s)
- Klaudia Hurtuková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (K.H.); (T.V.); (N.S.K.); (D.F.); (V.Š.)
| | - Tereza Vašinová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (K.H.); (T.V.); (N.S.K.); (D.F.); (V.Š.)
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (K.H.); (T.V.); (N.S.K.); (D.F.); (V.Š.)
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (K.H.); (T.V.); (N.S.K.); (D.F.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.R.); (V.S.P.)
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (S.R.); (V.S.P.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (K.H.); (T.V.); (N.S.K.); (D.F.); (V.Š.)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (K.H.); (T.V.); (N.S.K.); (D.F.); (V.Š.)
- Correspondence:
| |
Collapse
|
13
|
Blown Composite Films of Low-Density/Linear-Low-Density Polyethylene and Silica Aerogel for Transparent Heat Retention Films and Influence of Silica Aerogel on Biaxial Properties. MATERIALS 2022; 15:ma15155314. [PMID: 35955248 PMCID: PMC9369760 DOI: 10.3390/ma15155314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022]
Abstract
Blown films based on low-density polyethylene (LDPE)/linear low-density polyethylene (LLDPE) and silica aerogel (SA; 0, 0.5, 1, and 1.5 wt.%) were obtained at the pilot scale. Good particle dispersion and distribution were achieved without thermo oxidative degradation. The effects of different SA contents (0.5–1.5 wt.%) were studied to prepare transparent-heat-retention LDPE/LLDPE films with improved material properties, while maintaining the optical performance. The optical characteristics of the composite films were analyzed using methods such as ultraviolet–visible spectroscopy and electron microscopy. Their mechanical characteristics were examined along the machine and transverse directions (MD and TD, respectively). The MD film performance was better, and the 0.5% composition exhibited the highest stress at break. The crystallization kinetics of the LDPE/LLDPE blends and their composites containing different SA loadings were investigated using differential scanning calorimetry, which revealed that the crystallinity of LDPE/LLDPE was increased by 0.5 wt.% of well-dispersed SA acting as a nucleating agent and decreased by agglomerated SA (1–1.5 wt.%). The LDPE/LLDPE/SA (0.5–1.5 wt.%) films exhibited improved infrared retention without compromising the visible light transmission, proving the potential of this method for producing next-generation heat retention films. Moreover, these films were biaxially drawn at 13.72 MPa, and the introduction of SA resulted in lower draw ratios in both the MD and TD. Most of the results were explained in terms of changes in the biaxial crystallization caused by the process or the influence of particles on the process after a systematic experimental investigation. The issues were strongly related to the development of blown nanocomposites films as materials for the packaging industry.
Collapse
|
14
|
Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. PHOTONICS 2022. [DOI: 10.3390/photonics9050300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present work, graphene oxide (GO)–polyvinyl alcohol (PVA) composites thin film has been successfully synthesized and prepared by spin coating techniques. Then, the properties and morphology of the samples were characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM). Experimental FTIR results for GO–PVA thin film demonstrated the existence of important functional groups such as -CH2 stretching, C=O stretching, and O–H stretching. Furthermore, UV-Vis analysis indicated that the GO–PVA thin film had the highest absorbance that can be observed at wavelengths ranging from 200 to 500 nm with a band gap of 4.082 eV. The surface morphology of the GO–PVA thin film indicated the thickness increased when in contact with carbaryl. The incorporation of the GO–PVA thin film with an optical method based on the surface plasmon resonance (SPR) phenomenon demonstrated a positive response for the detection of carbaryl pesticide as low as 0.02 ppb. This study has successfully proposed that the GO–PVA thin film has high potential as a polymer nanomaterial-based SPR sensor for pesticide detection.
Collapse
|
15
|
Rezvova MA, Nikishau PA, Makarevich MI, Glushkova TV, Klyshnikov KY, Akentieva TN, Efimova OS, Nikitin AP, Malysheva VY, Matveeva VG, Senokosova EA, Khanova MY, Danilov VV, Russakov DM, Ismagilov ZR, Kostjuk SV, Ovcharenko EA. Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene- b-isobutylene- b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:733. [PMID: 35269222 PMCID: PMC8911977 DOI: 10.3390/nano12050733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/27/2023]
Abstract
Nanocomposites based on poly(styrene-block-isobutylene-block-styrene) (SIBS) and single-walled carbon nanotubes (CNTs) were prepared and characterized in terms of tensile strength as well as bio- and hemocompatibility. It was shown that modification of CNTs using dodecylamine (DDA), featured by a long non-polar alkane chain, provided much better dispersion of nanotubes in SIBS as compared to unmodified CNTs. As a result of such modification, the tensile strength of the nanocomposite based on SIBS with low molecular weight (Mn = 40,000 g mol-1) containing 4% of functionalized CNTs was increased up to 5.51 ± 0.50 MPa in comparison with composites with unmodified CNTs (3.81 ± 0.11 MPa). However, the addition of CNTs had no significant effect on SIBS with high molecular weight (Mn~70,000 g mol-1) with ultimate tensile stress of pure polymer of 11.62 MPa and 14.45 MPa in case of its modification with 1 wt% of CNT-DDA. Enhanced biocompatibility of nanocomposites as compared to neat SIBS has been demonstrated in experiment with EA.hy 926 cells. However, the platelet aggregation observed at high CNT concentrations can cause thrombosis. Therefore, SIBS with higher molecular weight (Mn~70,000 g mol-1) reinforced by 1-2 wt% of CNTs is the most promising material for the development of cardiovascular implants such as heart valve prostheses.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
| | - Miraslau I. Makarevich
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
- Department of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Tatiana V. Glushkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Kirill Yu. Klyshnikov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Tatiana N. Akentieva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Olga S. Efimova
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Andrey P. Nikitin
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Valentina Yu. Malysheva
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Vera G. Matveeva
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Evgeniia A. Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Mariam Yu. Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| | - Viacheslav V. Danilov
- Research Laboratory for Processing and Analysis of Big Data, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Dmitry M. Russakov
- Institute of Fundamental Sciences, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Zinfer R. Ismagilov
- Institute of Coal Chemistry and Material Science, Federal Research Center of Coal and Coal Chemistry SB RAS, 650000 Kemerovo, Russia; (O.S.E.); (A.P.N.); (V.Y.M.); (Z.R.I.)
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems, Belarusian State University, 220006 Minsk, Belarus; (P.A.N.); (M.I.M.); (S.V.K.)
- Department of Chemistry, Belarusian State University, 220006 Minsk, Belarus
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Evgeny A. Ovcharenko
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (T.V.G.); (K.Y.K.); (T.N.A.); (V.G.M.); (E.A.S.); (M.Y.K.); (E.A.O.)
| |
Collapse
|
16
|
Lee DK, Yoo J, Kim H, Kang BH, Park SH. Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios. MATERIALS 2022; 15:ma15041356. [PMID: 35207898 PMCID: PMC8874980 DOI: 10.3390/ma15041356] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
In response to the rising need for flexible and lightweight materials capable of efficient heat transport, many studies have been conducted to improve the thermal properties of polymers via nanofillers. Among the various nanofillers, carbon nanotubes (CNTs) are considered as the most promising, owing to their excellent thermal and electrical properties. Accordingly, CNT/polymer composites can be used as flexible and lightweight heat transfer materials, owing to their low density. In this study, we fabricated multi-walled CNT (MWCNT)/polymer composites with different aspect ratios to investigate their effects on electrical and thermal properties. Through a three-roll milling process, CNTs were uniformly dispersed in the polymer matrix to form a conductive network. Enhanced electrical and thermal properties were observed in MWCNT composite with a high aspect ratio as compared to those with a low aspect ratio. The thermal conductivity of composites obtained as a function of the filler content was also compared with the results of a theoretical prediction model.
Collapse
|
17
|
Yulianti R, Irmawati Y, Destyorini F, Ghozali M, Suhandi A, Kartolo S, Hardiansyah A, Byun JH, Fauzi MH, Yudianti R. Highly Stretchable and Sensitive Single-Walled Carbon Nanotube-Based Sensor Decorated on a Polyether Ester Urethane Substrate by a Low Hydrothermal Process. ACS OMEGA 2021; 6:34866-34875. [PMID: 34963970 PMCID: PMC8697591 DOI: 10.1021/acsomega.1c05543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
We report a highly stretchable sensor with low-concentration (1.5 wt %) single-walled carbon nanotubes (SWCNTs) on flexible polyether ester urethane (PEEU) yarn, fabricated using a low hydrothermal process at 90 °C. Although SWCNTs restrict the PEEU polymer chain mobility, the resulting ductility of our nanocomposites reduces only by 16.5% on average, initially from 667.3% elongation at break to 557.2%. The resulting electrical resistivity of our nanocomposites can be controlled systematically by the number of hydrothermal cycles. A high gauge factor value of 4.84 is achieved at a tensile strain below 100%, and it increases up to 28.5 with applying a tensile strain above 450%. We find that the piezoresistivity of our nanocomposite is sensitive to temperature variations of 25-85 °C due to the hopping effect, which promotes more charge transport at elevated temperatures. Our nanocomposites offer both a high sensitivity and a large strain sensing range, which is achieved with a relatively simple fabrication technique and low concentration of SWCNTs.
Collapse
Affiliation(s)
- Riyani
Tri Yulianti
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Yuyun Irmawati
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Fredina Destyorini
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Muhammad Ghozali
- Research
Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Andi Suhandi
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Surip Kartolo
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Andri Hardiansyah
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Joon-Hyun Byun
- Korea
Institute of Materials Science, 797 Changwondaero, Changwon 642-831, South Korea
| | - Mohammad Hamzah Fauzi
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| | - Rike Yudianti
- Research
Center for Physics, Indonesian Institute of Sciences, Kawasan Puspiptek, South Tangerang 15314, Indonesia
| |
Collapse
|
18
|
Aziz T, Mehmood S, Haq F, Ullah R, Khan FU, Ullah B, Raheel M, Iqbal M, Ullah A. Synthesis and modification of silica‐based epoxy nanocomposites with different sol–gel process enhanced thermal and mechanical properties. J Appl Polym Sci 2021; 138. [DOI: 10.1002/app.51191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
AbstractThis research article describes the results of nano‐silica composites filled with different epoxy contents containing nano‐SiO2 particles from (5–25 wt%). Reinforcing hybrid composites enhance thermal and mechanical properties to achieve vital and sustainable products. Silica‐based nanocomposites with high purity were prepared and used for the surface modification of nanosized silica particles. The surface structure's composition and physical properties of modified nano‐SiO2 particles were characterized through Fourier transferred infrared spectrometer, X‐ray photoelectron spectroscopy, thermogravimetric analyzer, and scanning electron microscopic. Silica‐based nanocomposites were prepared by incorporating of modified nano‐SiO2 as an enhancing filler. The morphology of fracture surface and dynamic mechanical properties were investigated. Results showed that the silica‐based epoxy nanocomposites are bearing a long chain structure that could improve the compatibility of silica nanocomposites with epoxy resin and contribute to a better dispersion state in the matrix, which enhanced the overall performance of epoxy‐cured products.
Collapse
Affiliation(s)
- Tariq Aziz
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Sahid Mehmood
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Fazal Haq
- Department of Chemistry Gomal University D I Khan Khyber Pakhtoonkhwa Pakistan
| | - Roh Ullah
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (BIT) Beijing China
| | - Farman Ullah Khan
- Department of Chemistry University of Science and Technology Bannu Pakistan
| | - Bakhtar Ullah
- Institute of Advanced Study Shenzhen University Shenzhen China
| | - Muhammad Raheel
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Quetta Pakistan
| | - Mudassir Iqbal
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Asmat Ullah
- School of Pharmacy Xi'an Jiaotong University Shaanxi China
| |
Collapse
|
19
|
Khaledian S, Kahrizi D, Tofik Jalal Balaky S, Arkan E, Abdoli M, Martinez F. Electrospun nanofiber patch based on gum tragacanth/polyvinyl alcohol/molybdenum disulfide composite for tetracycline delivery and their inhibitory effect on Gram+ and Gram– bacteria. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Talapatra A, Datta D. Estimation of improvement in elastic moduli for functionalised defective graphene-based thermoplastic polyurethane nanocomposites: a molecular dynamics approach. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1935927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Animesh Talapatra
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Debasis Datta
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| |
Collapse
|
21
|
Ehsani M, Rahimi P, Joseph Y. Structure-Function Relationships of Nanocarbon/Polymer Composites for Chemiresistive Sensing: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3291. [PMID: 34068640 PMCID: PMC8126093 DOI: 10.3390/s21093291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/17/2023]
Abstract
Composites of organic compounds and inorganic nanomaterials provide novel sensing platforms for high-performance sensor applications. The combination of the attractive functionalities of nanomaterials with polymers as an organic matrix offers promising materials with tunable electrical, mechanical, and chemisensitive properties. This review mainly focuses on nanocarbon/polymer composites as chemiresistors. We first describe the structure and properties of carbon nanofillers as reinforcement agents used in the manufacture of polymer composites and the sensing mechanism of developed nanocomposites as chemiresistors. Then, the design and synthesizing methods of polymer composites based on carbon nanofillers are discussed. The electrical conductivity, mechanical properties, and the applications of different nanocarbon/polymer composites for the detection of different analytes are reviewed. Lastly, challenges and the future vision for applications of such nanocomposites are described.
Collapse
Affiliation(s)
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (M.E.); (Y.J.)
| | | |
Collapse
|
22
|
Ali A, Andriyana A, Hassan SBA, Ang BC. Fabrication and Thermo-Electro and Mechanical Properties Evaluation of Helical Multiwall Carbon Nanotube-Carbon Fiber/Epoxy Composite Laminates. Polymers (Basel) 2021; 13:polym13091437. [PMID: 33947012 PMCID: PMC8124318 DOI: 10.3390/polym13091437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
The development of advanced composite materials has taken center stage because of its advantages over traditional materials. Recently, carbon-based advanced additives have shown promising results in the development of advanced polymer composites. The inter- and intra-laminar fracture toughness in modes I and II, along with the thermal and electrical conductivities, were investigated. The HMWCNTs/epoxy composite was prepared using a multi-dispersion method, followed by uniform coating at the mid-layers of the CF/E prepregs interface using the spray coating technique. Analysis methods, such as double cantilever beam (DCB) and end notched flexure (ENF) tests, were carried out to study the mode I and II fracture toughness. The surface morphology of the composite was analyzed using field emission scanning electron microscopy (FESEM). The DCB test showed that the fracture toughness of the 0.2 wt.% and 0.4 wt.% HMWCNT composite laminates was improved by 39.15% and 115.05%, respectively, compared with the control sample. Furthermore, the ENF test showed that the mode II interlaminar fracture toughness for the composite laminate increased by 50.88% and 190%, respectively. The FESEM morphology results confirmed the HMWCNTs bridging at the fracture zones of the CF/E composite and the improved interlaminar fracture toughness. The thermogravimetric analysis (TGA) results demonstrated a strong intermolecular bonding between the epoxy and HMWCNTs, resulting in an improved thermal stability. Moreover, the differential scanning calorimetry (DSC) results confirmed that the addition of HMWCNT shifted the Tg to a higher temperature. An electrical conductivity study demonstrated that a higher CNT concentration in the composite laminate resulted in a higher conductivity improvement. This study confirmed that the demonstrated dispersion technique could create composite laminates with a strong interfacial bond interaction between the epoxy and HMWCNT, and thus improve their properties.
Collapse
Affiliation(s)
- Alamry Ali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Andri Andriyana
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence:
| | - Shukur Bin Abu Hassan
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Bee Chin Ang
- Center of Advanced Materials, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
23
|
Jose R, Varghese LA, Gopalakrishna Panicker U. Tailoring dielectric properties of natural rubber/millable polyurethane elastomer blends by filler embedding. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03595-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Alsohaimi I, Hafez IH, Berber MR. Mechanically stable membranes of polyacrylic acid‐grafted chitosan‐functionalized carbon nanotubes with remarkable water storage capacity in sandy soils. J Appl Polym Sci 2021. [DOI: 10.1002/app.49915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ibrahim Alsohaimi
- Chemistry Department College of Science, Jouf University Saudi Arabia
| | - Inas H. Hafez
- Department of Natural Resources and Agricultural Engineering, Faculty of Agriculture Damanhour University Damanhour Egypt
| | - Mohamed R. Berber
- Chemistry Department College of Science, Jouf University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
25
|
Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. NANO SELECT 2021. [DOI: 10.1002/nano.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maneesh Kumar Poddar
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal Karnataka India
| | - Pritam Kumar Dikshit
- Department of Life Sciences School of Basic Sciences and Research Sharda University Greater Noida Uttar Pradesh India
| |
Collapse
|
26
|
Fabrication of Graphitic Carbon
Nitride‐Based
Film: An Emerged Highly Efficient Catalyst for Direct C—H Arylation under Solar Light. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Mehtab S, Zaidi MGH, Kunwar R, Singhal K, Siddiqui TI. Temperature-regulated morphology and electrical conductivity of nano tungsten carbide reinforced polyindole composites. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2020.1871182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sameena Mehtab
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Mohammad Gulam Haider Zaidi
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Rita Kunwar
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Kavita Singhal
- Department of Chemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | |
Collapse
|
28
|
Khalid N, Razak JA, Hasib H, Ismail M, Mohamad N, Junid R, Puspitasari P. A short review on polyaniline (PANI) based nanocomposites for various applications: enhancing the electrical conductivity. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2020; 957:012028. [DOI: 10.1088/1757-899x/957/1/012028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
This short review has summarized the significance of polyaniline (PANI) advanced polymer that focusing into their modification strategy, electrical conductivity and various potential applications. PANI is one type of conductive polymer that was synthesized by oxidative aniline polymerization with varied concentration of acid dopant. In recent year, many researches has been conducted specifically to enhance the electrical conductivity of PANI. There have been numbers of studies involving PANI that specially reported the electrical conductivity could be improved through proper dopant (acid) selection and robust composite strategy. The PANI based nanocomposite shows higher electrical conductivity by integrating it with nanofiller due to the filler-matrix interface contact. Therefore, by modifying the PANI properties, it could be benefited for various potential application in the future.
Collapse
|
29
|
Rezvova MA, Yuzhalin AE, Glushkova TV, Makarevich MI, Nikishau PA, Kostjuk SV, Klyshnikov KY, Matveeva VG, Khanova MY, Ovcharenko EA. Biocompatible Nanocomposites Based on Poly(styrene- block-isobutylene- block-styrene) and Carbon Nanotubes for Biomedical Application. Polymers (Basel) 2020; 12:E2158. [PMID: 32971801 PMCID: PMC7569909 DOI: 10.3390/polym12092158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, we incorporated carbon nanotubes (CNTs) into poly(styrene-block-isobutylene-block-styrene) (SIBS) to investigate the physical characteristics of the resulting nanocomposite and its cytotoxicity to endothelial cells. CNTs were dispersed in chloroform using sonication following the addition of a SIBS solution at different ratios. The resultant nanocomposite films were analyzed by X-ray microtomography, optical and scanning electron microscopy; tensile strength was examined by uniaxial tension testing; hydrophobicity was evaluated using a sessile drop technique; for cytotoxicity analysis, human umbilical vein endothelial cells were cultured on SIBS-CNTs for 3 days. We observed an uneven distribution of CNTs in the polymer matrix with sporadic bundles of interwoven nanotubes. Increasing the CNT content from 0 wt% to 8 wt% led to an increase in the tensile strength of SIBS films from 4.69 to 16.48 MPa. The engineering normal strain significantly decreased in 1 wt% SIBS-CNT films in comparison with the unmodified samples, whereas a further increase in the CNT content did not significantly affect this parameter. The incorporation of CNT into the SIBS matrix resulted in increased hydrophilicity, whereas no cytotoxicity towards endothelial cells was noted. We suggest that SIBS-CNT may become a promising material for the manufacture of implantable devices, such as cardiovascular patches or cusps of the polymer heart valve.
Collapse
Affiliation(s)
- Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Arseniy E. Yuzhalin
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Miraslau I. Makarevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
| | - Sergei V. Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220030 Minsk, Belarus; (M.I.M.); (P.A.N.); (S.V.K.)
- Faculty of Chemistry, Belarusian State University, 220006 Minsk, Belarus
- Institute of Regenerative Medicine, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Kirill Yu. Klyshnikov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Mariam Yu. Khanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| | - Evgeny A. Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (A.E.Y.); (T.V.G.); (K.Y.K.); (V.G.M.); (M.Y.K.); (E.A.O.)
| |
Collapse
|
30
|
Rezvova MA, Glushkova TV, Makarevich MI, Nikishau PA, Kostjuk SV, Klyshnikov KY, Ovcharenko EA. Nanocomposites Based on Biocompatible Thermoelastoplastic and Carbon Nanoparticles for Use in Cardiovascular Surgery. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220090141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Babu K, Rendén G, Afriyie Mensah R, Kim NK, Jiang L, Xu Q, Restás Á, Esmaeely Neisiany R, Hedenqvist MS, Försth M, Byström A, Das O. A Review on the Flammability Properties of Carbon-Based Polymeric Composites: State-of-the-Art and Future Trends. Polymers (Basel) 2020; 12:polym12071518. [PMID: 32650531 PMCID: PMC7408100 DOI: 10.3390/polym12071518] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/24/2022] Open
Abstract
Carbon based fillers have attracted a great deal of interest in polymer composites because of their ability to beneficially alter properties at low filler concentration, good interfacial bonding with polymer, availability in different forms, etc. The property alteration of polymer composites makes them versatile for applications in various fields, such as constructions, microelectronics, biomedical, and so on. Devastations due to building fire stress the importance of flame-retardant polymer composites, since they are directly related to human life conservation and safety. Thus, in this review, the significance of carbon-based flame-retardants for polymers is introduced. The effects of a wide variety of carbon-based material addition (such as fullerene, CNTs, graphene, graphite, and so on) on reaction-to-fire of the polymer composites are reviewed and the focus is dedicated to biochar-based reinforcements for use in flame retardant polymer composites. Additionally, the most widely used flammability measuring techniques for polymeric composites are presented. Finally, the key factors and different methods that are used for property enhancement are concluded and the scope for future work is discussed.
Collapse
Affiliation(s)
- Karthik Babu
- Center for Polymer Composites and Natural Fiber Research, Tamil Nadu 625005, India;
| | - Gabriella Rendén
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden;
| | - Rhoda Afriyie Mensah
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (R.A.M.); (L.J.); (Q.X.)
| | - Nam Kyeun Kim
- Centre for Advanced Composite Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand;
| | - Lin Jiang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (R.A.M.); (L.J.); (Q.X.)
| | - Qiang Xu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (R.A.M.); (L.J.); (Q.X.)
| | - Ágoston Restás
- Department of Fire Protection and Rescue Control, National University of Public Service, H-1011 Budapest, Hungary;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Mikael S. Hedenqvist
- Department of Fibre and Polymer Technology, Polymeric Materials Division, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden;
- Correspondence: (M.S.H.); (O.D.)
| | - Michael Försth
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden; (M.F.); (A.B.)
| | - Alexandra Byström
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden; (M.F.); (A.B.)
| | - Oisik Das
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
- Correspondence: (M.S.H.); (O.D.)
| |
Collapse
|
32
|
Siwal SS, Zhang Q, Devi N, Thakur VK. Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers (Basel) 2020; 12:E505. [PMID: 32110927 PMCID: PMC7182882 DOI: 10.3390/polym12030505] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.
Collapse
Affiliation(s)
- Samarjeet Singh Siwal
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming 650093, China
| | - Nishu Devi
- Department of Chemistry, University of Johannesburg, P.O. Box: 524, Auckland Park 2006, South Africa
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| |
Collapse
|
33
|
Cabello-Alvarado C, Reyes-Rodríguez P, Andrade-Guel M, Cadenas-Pliego G, Pérez-Alvarez M, Cruz-Delgado VJ, Melo-López L, Quiñones-Jurado ZV, Ávila-Orta CA. Melt-Mixed Thermoplastic Nanocomposite Containing Carbon Nanotubes and Titanium Dioxide for Flame Retardancy Applications. Polymers (Basel) 2019; 11:polym11071204. [PMID: 31330943 PMCID: PMC6680381 DOI: 10.3390/polym11071204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022] Open
Abstract
The study of polymeric nanocomposites is a possible alternative to conventional flame retardants. The aim of the present work is to investigate the effects of carbon-nanotubes (CNT) and TiO2 nanoparticles (NPs) on the thermo-mechanical, flammability, and electrical properties of polypropylene (PP). In this work, PP-TiO2/CNT nanocomposites were obtained with TiO2/CNT mixtures (ratio 1:2) through the melt extrusion process, with different weight percentage of nanoparticles (1, 5, and 10 wt %). The PP-TiO2/CNT nanocomposites were characterized by DSC, TGA, MFI, FTIR, XRD, and SEM. It was possible to determine that the thermal stability of the PP increases when increasing the content of NPs. A contrary situation is observed in the degree of crystallinity and thermo-oxidative degradation, which decreased with respect to pure PP. The TiO2 NPs undergo coalition and increase their size at a lower viscosity of the nanocomposite (1 and 5 wt %). The mechanical properties decreased slightly, however, the Young's modulus presented an improvement of 10% as well as electrical conductivity, this behavior was noted in nanocomposites of 10 wt % of NPs. Flammability properties were measured with a cone calorimeter, and a reduction in the peak heat release rate was observed in nanocomposites with contents of nanoparticles of 5 and 10 wt.
Collapse
Affiliation(s)
- C Cabello-Alvarado
- CONACYT-Consorcio de Investigación y de Innovación del Estado de Tlaxcala, C.P. 90000 Tlaxcala, Mexico
- Centro de Investigación en Química Aplicada, Saltillo, 25315 Coahuila, Mexico
| | - P Reyes-Rodríguez
- Centro de Investigación en Química Aplicada, Saltillo, 25315 Coahuila, Mexico
| | - M Andrade-Guel
- Centro de Investigación en Química Aplicada, Saltillo, 25315 Coahuila, Mexico
| | - G Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Saltillo, 25315 Coahuila, Mexico.
| | - M Pérez-Alvarez
- CONACYT-Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, 07730 Ciudad de Mexico, Mexico
| | - V J Cruz-Delgado
- CONACYT-Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Mérida C.P. 97205, Yucatán, Mexico
| | - L Melo-López
- CONACYT-Consorcio de Investigación y de Innovación del Estado de Tlaxcala, C.P. 90000 Tlaxcala, Mexico
- Centro de Investigación en Química Aplicada, Saltillo, 25315 Coahuila, Mexico
| | - Z V Quiñones-Jurado
- Innovación y Desarrollo en Materiales Avanzados A.C., Grupo POLYnnova, Carr. San Luis Potosí-Guadalajara 1510, Nivel 3, Local 12, Lomas del Tecnológico, San Luis Potosí S.L.P. C.P. 78211 Mexico, Mexico
| | - C A Ávila-Orta
- Centro de Investigación en Química Aplicada, Saltillo, 25315 Coahuila, Mexico.
| |
Collapse
|