1
|
Baglyas M, Ott PG, Schwarczinger I, Nagy JK, Darcsi A, Bakonyi J, Móricz ÁM. Antimicrobial Diterpenes from Rough Goldenrod ( Solidago rugosa Mill.). Molecules 2023; 28:molecules28093790. [PMID: 37175200 PMCID: PMC10180332 DOI: 10.3390/molecules28093790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Solidago rugosa is one of the goldenrod species native to North America but has sporadically naturalized as an alien plant in Europe. The investigation of the root and leaf ethanol extracts of the plant using a bioassay-guided process with an anti-Bacillus assay resulted in the isolation of two antimicrobial components. Structure elucidation was performed based on high-resolution tandem mass spectrometric and one- and two-dimensional NMR spectroscopic analyses that revealed (-)-hardwickiic acid (Compound 1) and (-)-abietic acid (Compound 2). The isolates were evaluated for their antimicrobial properties against several plant pathogenic bacterial and fungal strains. Both compounds demonstrated an antibacterial effect, especially against Gram-positive bacterial strains (Bacillus spizizenii, Clavibacter michiganensis subsp. michiganensis, and Curtobacterium flaccumfaciens pv. flaccumfaciens) with half maximal inhibitory concentration (IC50) between 1 and 5.1 µg/mL (5-20 times higher than that of the positive control gentamicin). In the used concentrations, minimal bactericidal concentration (MBC) was reached only against the non-pathogen B. spizizenii. Besides their activity against Fusarium avenaceum, the highest antifungal activity was observed for Compound 1 against Bipolaris sorokiniana with an IC50 of 3.8 µg/mL.
Collapse
Affiliation(s)
- Márton Baglyas
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Hőgyes E. Str. 7-9, 1092 Budapest, Hungary
| | - Péter G Ott
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Ildikó Schwarczinger
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Judit Kolozsváriné Nagy
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - András Darcsi
- Pharmaceutical Chemistry and Technology Department, National Institute of Pharmacy and Nutrition, Szabolcs Str. 33, 1135 Budapest, Hungary
| | - József Bakonyi
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Ágnes M Móricz
- Plant Protection Institute, Centre for Agricultural Research, ELKH, Herman O. Str. 15, 1022 Budapest, Hungary
| |
Collapse
|
2
|
Li X, Zhang Y, Wang S, Shi C, Wang S, Wang X, Lü X. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36:1990-2015. [DOI: 10.1002/ptr.7426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yu Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuxuan Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Caihong Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuang Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Lü
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
3
|
Pharmacological Properties of a Traditional Korean Formula Bojungchiseup-tang on 3T3-L1 Preadipocytes and High-Fat Diet-Induced Obesity Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8851010. [PMID: 33313321 PMCID: PMC7719489 DOI: 10.1155/2020/8851010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
The global obesity epidemic has nearly doubled since 1980, and this increasing prevalence is threatening public health. It has been reported that natural products could contain potential functional ingredients that may assist in preventing obesity. Bojungchiseub-tang (BJT), mentioned in the Donguibogam as an herbal medication for the treatment of edema, a symptom of obesity, consists of eleven medicinal herbs. However, the pharmacological activity of BJT has not been investigated. The present study was designed to investigate the putative effect of BJT on the adipogenesis of 3T3-L1 cells and the weight gain of high-fat diet (HFD-) fed C57BL/6 mice. Oil Red O staining was conducted to examine the amount of lipids in 3T3-L1 adipocytes. Male C57BL/6 mice were divided into three groups: standard diet group (control, CON), 45% HFD group (HFD), and HFD supplemented with 10% of BJT (BJT). The expression levels of genes and proteins related to adipogenesis in cells, WAT, and liver were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. We found that BJT treatment significantly decreased the protein and mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) in a dose-dependent manner in differentiated 3T3-L1 cells. Similar to the results of the in vitro experiment, BJT suppressed HFD-induced weight gain in an obese mouse model. In addition, BJT effectively reduced the HFD-induced epididymal adipose tissue weight/body weight index. BJT also downregulated the mRNA levels of PPARγ, C/EBPα, and SREBP1 in the epididymal adipose and liver tissue of HFD-fed obese mice. These findings suggest that BJT induces weight loss by affecting adipogenic transcription factors.
Collapse
|
4
|
Fursenco C, Calalb T, Uncu L, Dinu M, Ancuceanu R. Solidago virgaurea L.: A Review of Its Ethnomedicinal Uses, Phytochemistry, and Pharmacological Activities. Biomolecules 2020; 10:E1619. [PMID: 33266185 PMCID: PMC7761148 DOI: 10.3390/biom10121619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/26/2023] Open
Abstract
Solidago virgaurea L. (European goldenrod, Woundwort), Asteraceae, is a familiar medicinal plant in Europe and other parts of the world, widely used and among the most researched species from its genus. The aerial parts of European goldenrod have long been used for urinary tract conditions and as an anti-inflammatory agent in the traditional medicine of different peoples. Its main chemical constituents are flavonoids (mainly derived from quercetin and kaempferol), C6-C1 and C6-C3 compounds, terpenes (mostly from the essential oil), and a large number of saponin molecules (mainly virgaureasaponins and solidagosaponins). Published research on its potential activities is critically reviewed here: antioxidant, anti-inflammatory, analgesic, spasmolitic, antihypertensive, diuretic, antibacterial, antifungal, antiparasite, cytotoxic and antitumor, antimutagenic, antiadipogenic, antidiabetic, cardioprotective, and antisenescence. The evidence concerning its potential benefits is mainly derived from non-clinical studies, some effects are rather modest, whereas others are more promising, but need more confirmation in both non-clinical models and clinical trials.
Collapse
Affiliation(s)
- Cornelia Fursenco
- Departament of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Nicolae Testemitanu SUMPh, 66 Mălina Mică Street, MD-2025 Chisinau, Moldova; (C.F.); (T.C.)
- Scientific Center of Medicines, Faculty of Pharmacy, Nicolae Testemitanu SUMPh, 66 Mălina Mică Street, MD-2025 Chisinau, Moldova;
| | - Tatiana Calalb
- Departament of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Nicolae Testemitanu SUMPh, 66 Mălina Mică Street, MD-2025 Chisinau, Moldova; (C.F.); (T.C.)
| | - Livia Uncu
- Scientific Center of Medicines, Faculty of Pharmacy, Nicolae Testemitanu SUMPh, 66 Mălina Mică Street, MD-2025 Chisinau, Moldova;
- Departament of Pharmaceutical and Toxicological Chemistry, Faculty of Pharmacy, Nicolae Testemitanu SUMPh, 66 Mălina Mică Street, MD-2025 Chisinau, Moldova
| | - Mihaela Dinu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, Sector 2, 020956 Bucharest, Romania;
| | - Robert Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, Sector 2, 020956 Bucharest, Romania;
| |
Collapse
|
5
|
Gwon MH, Im YS, Seo AR, Kim KY, Moon HR, Yun JM. Phenethyl Isothiocyanate Protects against High Fat/Cholesterol Diet-Induced Obesity and Atherosclerosis in C57BL/6 Mice. Nutrients 2020; 12:nu12123657. [PMID: 33261070 PMCID: PMC7761196 DOI: 10.3390/nu12123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study concerns obesity-related atherosclerosis, hyperlipidemia, and chronic inflammation. We studied the anti-obesity and anti-atherosclerosis effects of phenethyl isothiocyanate (PEITC) and explored their underlying mechanisms. We established an animal model of high fat/cholesterol-induced obesity in C57BL/6 mice fed for 13 weeks. We divided the mice into five groups: control (CON), high fat/cholesterol (HFCD), HFCD with 3 mg/kg/day gallic acid (HFCD + G), and HFCD with PEITC (30 and 75 mg/kg/day; HFCD + P30 and P75). The body weight, total cholesterol, and triglyceride were significantly lower in the HFCD + P75 group than in the HFCD group. Hepatic lipid accumulation and atherosclerotic plaque formation in the aorta were significantly lower in both HFCD + PEITC groups than in the HFCD group, as revealed by hematoxylin and eosin (H&E) staining. To elucidate the mechanism, we identified the expression of genes related to inflammation, reverse cholesterol transport, and lipid accumulation pathway in the liver. The expression levels of peroxisome proliferator activated receptor gamma (PPARγ), liver-X-receptor α (LXR-α), and ATP binding cassette subfamily A member 1 (ABCA1) were increased, while those of scavenger receptor A (SR-A1), cluster of differentiation 36 (CD36), and nuclear factor-kappa B (NF-κB) were decreased in the HFCD + P75 group compared with those in the HFCD group. Moreover, PEITC modulated H3K9 and H3K27 acetylation, H3K4 dimethylation, and H3K27 di-/trimethylation in the HFCD + P75 group. We, therefore, suggest that supplementation with PEITC may be a potential candidate for the treatment and prevention of atherosclerosis and obesity.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Sun Im
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - A-Reum Seo
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Kyoung Yun Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
- Correspondence: ; Tel.: +82-62-530-1332
| |
Collapse
|
6
|
Sowa P, Marcinčáková D, Miłek M, Sidor E, Legáth J, Dżugan M. Analysis of Cytotoxicity of Selected Asteraceae Plant Extracts in Real Time, Their Antioxidant Properties and Polyphenolic Profile. Molecules 2020; 25:molecules25235517. [PMID: 33255596 PMCID: PMC7728153 DOI: 10.3390/molecules25235517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/20/2023] Open
Abstract
Plants from Asteraceae family are widely used for their therapeutic effects in the treatment of gastrointestinal diseases, but the consequences of excessive intake still need to be studied. The aims of this study were the evaluation of cytotoxicity, measurement of antioxidant properties and determination of polyphenolic profile of Tanacetum vulgare L. (tansy), Achillea millefolium L. (yarrow) and Solidago gigantea Ait. (goldenrod) ethanolic extracts. The cytotoxicity of extracts was monitored by xCELLigence system in real time by using porcine intestinal epithelial cell line (IPEC-1) and by measurement of changes in metabolic activity ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay). The antioxidant properties were measured by spectrophotometric methods and polyphenolic profiles were determined by HPLC-DAD for 50% ethanol extracts (10% w/v). Strong cytotoxic effect was recorded for tansy and yarrow extracts (125-1000 µg/mL) by xCELLigence system and MTS assay. Conversely, a supportive effect on cell proliferation was recorded for goldenrod extracts (125 µg/mL) by the same methods (p < 0.001). The antioxidant activity was in good correlation with total polyphenolic content, and the highest value was recorded for goldenrod leaves, followed by tansy leaves, goldenrod flowers and yarrow leaf extracts. The goldenrod extracts were abundant with flavonoids, whereas phenolic acid derivatives predominated in the polyphenolic profile of tansy and yarrow.
Collapse
Affiliation(s)
- Patrycja Sowa
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (M.M.); (E.S.); (M.D.)
- Correspondence: ; Tel.: +48-17-785-4820
| | - Dana Marcinčáková
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (D.M.); (J.L.)
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (M.M.); (E.S.); (M.D.)
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (M.M.); (E.S.); (M.D.)
| | - Jaroslav Legáth
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (D.M.); (J.L.)
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (M.M.); (E.S.); (M.D.)
| |
Collapse
|
7
|
Móricz ÁM, Krüzselyi D, Ott PG, Garádi Z, Béni S, Morlock GE, Bakonyi J. Bioactive clerodane diterpenes of giant goldenrod (Solidago gigantea Ait.) root extract. J Chromatogr A 2020; 1635:461727. [PMID: 33338903 DOI: 10.1016/j.chroma.2020.461727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Giant goldenrod (Solidago gigantea Ait.) root extract was screened for bioactive compounds by high-performance thin-layer chromatography (HPTLC), coupled with effect-directed analysis including antibacterial (Bacillus subtilis F1276, B. subtilis subsp. spizizenii, Aliivibrio fischeri and Xanthomonas euvesicatoria), antifungal (Fusarium avenaceum) and enzyme inhibition (acetyl- and butyrylcholinesterases, α- and β-glucosidases and α-amylase) assays. Compounds of six multipotent zones (Sg1-Sg6) were characterized by HPTLC-heated electrospray ionization-high-resolution mass spectrometry (HRMS) and HPTLC-Direct Analysis in Real Time-HRMS. Apart from zone Sg3, containing three compounds, a single characteristic compound was detectable in each bioactive zone. The bioassay-guided isolation using preparative-scale flash chromatography and high-performance liquid chromatography provided eight compounds that were identified by NMR spectroscopy as clerodane diterpenes. All isolates possessed inhibiting activity against at least one of the tested microorganisms.
Collapse
Affiliation(s)
- Ágnes M Móricz
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, 1022 Budapest, Hungary.
| | - Dániel Krüzselyi
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Péter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, 1022 Budapest, Hungary
| | - Zsófia Garádi
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői Str. 26, 1085 Budapest, Hungary
| | - Szabolcs Béni
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői Str. 26, 1085 Budapest, Hungary
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and TransMIT Center of Effect-Directed Analysis, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - József Bakonyi
- Plant Protection Institute, Centre for Agricultural Research, Herman O. Str. 15, 1022 Budapest, Hungary
| |
Collapse
|
8
|
Park SH, Lee DH, Choi HI, Ahn J, Jang YJ, Ha TY, Jung CH. Synergistic lipid-lowering effects of Zingiber mioga and Hippophae rhamnoides extracts. Exp Ther Med 2020; 20:2270-2278. [PMID: 32765704 DOI: 10.3892/etm.2020.8913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/13/2019] [Indexed: 11/05/2022] Open
Abstract
The effects of a mixture of Hippophae rhamnoides (HR) and Zingiber mioga (ZM) extract (ZH) on intracellular lipid accumulation were investigated in vitro and the anti-obesity effects of ZH evaluated in mice with high-fat diet-induced obesity. The results revealed that ZH inhibited lipid accumulation in 3T3-L1 adipocytes and Huh-7 cells by suppressing adipogenic and lipogenic gene and protein expression. To evaluate the anti-obesity effects of ZH, mice fed a high-fat diet were orally administered low and high doses of ZH (low, ZM 400 mg/kg + HR 100 mg/kg; high, ZM 800 mg/kg + HR 200 mg/kg) for 9 weeks. ZH significantly reduced body weight gain and adipose tissue accumulation with no reduction in food intake when compared to control treatment. Furthermore, ZH reduced hepatic triglyceride and total cholesterol levels, as well as adipose cell size, in the liver and epididymal fat pads, respectively, through inhibition of adipogenesis and lipogenesis-related gene expression. These results suggested that ZH inhibits lipid accumulation, thereby indicating its potential for use as a new therapeutic strategy for obesity.
Collapse
Affiliation(s)
- So-Hyun Park
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.,Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Da-Hye Lee
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.,Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyun-Il Choi
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.,Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young-Jin Jang
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Tae-Youl Ha
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.,Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.,Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
9
|
Jang YS, Kim HY, Zuo G, Lee EH, Kang SK, Lim SS. Constituents from Solidago virgaurea var. gigantea and their inhibitory effect on lipid accumulation. Fitoterapia 2020; 146:104683. [PMID: 32634454 DOI: 10.1016/j.fitote.2020.104683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
In this study, the anti-adipogenic activities of compounds isolated from Solidago viraurea var. gigantea (SG) extracts were investigated using Oil Red O staining in the 3T3-L1 cell line. Four known compounds including 3,5-di-O-caffeoylquinic acid (5), protocatechuic acid (6), chlorogenic acid (7), and kaempferol-3-O-rutinoside (8), and four undescribed compounds including (1R,2S,3S,5R,7S)-methyl 7-((cinnamoyloxy)methyl)-2,3-dihydroxy-6,8-dioxabicyclo[3.2.1]octane-5-carboxylate (1), (1R,2S,3S,5R,7S)-methyl 2,3-dihydroxy-7-((((Z)-3-phenylacryloyl)oxy)methyl)-6,8-dioxabicyclo[3.2.1]octane-5-carboxylate (2), (1R,2S,3S,5R,7S)-2,3-dihydroxy-7-((((Z)-3-phenylacryloyl)oxy)methyl)-6,8-dioxabicyclo[3.2.1]octane-5-carboxylic acid (3), and (1R,2S,3S,5R,7S)-7-((cinnamoyloxy)methyl)-2,3-dihydroxy-6,8-dioxabicyclo[3.2.1]octane-5-carboxylic acid (4) were isolated from S. viraurea var. gigantea. The structures of the compounds were first identified by comparing their 1H NMR spectra with spectral data from the literature and a more detailed identification was then performed using 2D NMR (Correlated spectroscopy (COSY), heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and nuclear overhauser spectroscopy (NOESY)), and X-ray crystallography analyses. The anti-adipogenic activities of all compounds were evaluated by MTT assay and Oil Red O staining in 3T3-L1 cells. 3,5-di-O-caffeoylquinic acid was found to inhibit lipid accumulation more potently than the other tested compounds.
Collapse
Affiliation(s)
- Young Soo Jang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea
| | - Sung Kwon Kang
- Department of Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-746, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
10
|
Shang A, Gan RY, Xu XY, Mao QQ, Zhang PZ, Li HB. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Crit Rev Food Sci Nutr 2020; 61:2061-2077. [PMID: 32462901 DOI: 10.1080/10408398.2020.1769548] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, obesity has become a global public health issue. It is closely associated with the occurrence of several chronic diseases, such as diabetes and cardiovascular diseases. Some edible and medicinal plants show anti-obesity activity, such as fruits, vegetables, spices, legumes, edible flowers, mushrooms, and medicinal plants. Numerous studies have indicated that these plants are potential candidates for the prevention and management of obesity. The major anti-obesity mechanisms of plants include suppressing appetite, reducing the absorption of lipids and carbohydrates, inhibiting adipogenesis and lipogenesis, regulating lipid metabolism, increasing energy expenditure, regulating gut microbiota, and improving obesity-related inflammation. In this review, the anti-obesity activity of edible and medicinal plants was summarized based on epidemiological, experimental, and clinical studies, with related mechanisms discussed, which provided the basis for the research and development of slimming products. Further studies should focus on the exploration of safer plants with anti-obesity activity and the identification of specific anti-obesity mechanisms.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Qi W, Wang Y, Yao J, Sun H, Duan X, Song G, Pang S, Wang C, Li A. Genistein inhibits AOM/DSS-induced colon cancer by regulating lipid droplet accumulation and the SIRT1/FOXO3a pathway in high-fat diet-fed female mice. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1684452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Jinli Yao
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Shaojie Pang
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Chunling Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Zheng Y, Lee J, Shin KO, Park K, Kang IJ. Synergistic action of Erigeron annuus L. Pers and Borago officinalis L. enhances anti-obesity activity in a mouse model of diet-induced obesity. Nutr Res 2019; 69:58-66. [PMID: 31670067 DOI: 10.1016/j.nutres.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Prior studies show that Borago officinalis L. (BO) can suppress lipid accumulation in 3 T3-L1 adipocytes. Similarly, we recently revealed that Erigeron annuus L. Pers (EA) can significantly diminish both lipid accumulation and adipocyte differentiation in 3 T3-L1 cells through an AMPK (AMP-activated protein kinase)-dependent mechanism. Accordingly, the objective of this present study was to evaluate the anti-obesity activity of EA and/or BO using an animal model of obesity. Obesity was induced in C57BL/6 J mice by feeding a high-fat diet (HFD; 60 kcal% fat) for 3 weeks, followed by administration of EA and/or BO (100-200 mg/kg body weight) or positive control Garcinia Cambogia (GC) (100 mg/kg body weight) for an additional 8 weeks. The anti-obesity effect of EA and/or BO was assessed by measuring body weight, adipocyte size, lipid accumulation, and expression level of genes associated with adipogenesis. We found the administration of EA and/or BO significantly attenuated increases in body weight gain, adipocyte size, and lipid accumulation in obese mice induced by HFD. In addition, western blot analysis revealed that HFD-mediated increases in expressions levels of adipogenic genes such as PPARγ, C/EBPα, and SREBP-1c were diminished by EA and/or BO. Moreover, EA and/or BO significantly stimulated the production of adiponectin, a unique adipokine known to stimulate the breakdown of fat/lipids, whereas adiponectin levels were reduced in mice fed a HFD. Notably, a combination of EA and BO was more effective at modulating such parameters than EA or BO alone. Taken together, these results demonstrate that an anti-obesity effect of EA and/or BO can reduce adipocyte hypertrophy and modulate the expression of adipogenesis-associated genes.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaesun Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyungho Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
13
|
Leptin and Adiponectin Signaling Pathways Are Involved in the Antiobesity Effects of Peanut Skin Extract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2935315. [PMID: 31737168 PMCID: PMC6815585 DOI: 10.1155/2019/2935315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
Excessive food intake and metabolic disorder promote obesity and diabetes. In China, peanut skin is used as a herbal medicine to treat hemophilia, thrombocytopenic purpura, and hepatic hemorrhage. In the present study, we demonstrated that peanut skin extract (PSE) safely reduced appetite, body weight, fat tissue, plasma TG and TC, and blood glucose level in mice with diet-induced obesity (DIO). Moreover, the leptin/leptin receptor/neuropeptide Y (NPY) and adiponectin signaling pathways involved in the antiobesity effects of PSE are confirmed through leptin and adiponectin overexpression and leptin receptor silencing in mice. PSE consisted of oligosaccharide and polyphenol in a mass ratio of 45 : 55, and both parts were important for the antiobesity function of PSE. Our results suggested that PSE can be developed as functional medical food to treat metabolic disorders and obesity.
Collapse
|
14
|
Solidago graminifolia L. Salisb. ( Asteraceae) as a Valuable Source of Bioactive Polyphenols: HPLC Profile, In Vitro Antioxidant and Antimicrobial Potential. Molecules 2019; 24:molecules24142666. [PMID: 31340530 PMCID: PMC6680997 DOI: 10.3390/molecules24142666] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 11/17/2022] Open
Abstract
Solidago species are often used in traditional medicine as anti-inflammatory, diuretic, wound-healing and antimicrobial agents. Still, the bioactive compounds and biological activities of some species have not been studied. The present work aimed to investigate the polyphenolic profile and the biological properties of Solidago graminifolia L. Salisb., a poorly explored medicinal plant. The hydroalcoholic extracts from aerial parts were evaluated for total phenolic content (TPC), total flavonoid content (TFC) and the polyphenolic compounds were investigated by HPLC-MS. The antioxidant potential in vitro was determined using DPPH and FRAP assays. Antibacterial and antifungal effects were evaluated by dilution assays and MIC, MBC and MFC were calculated. The results showed that Solidago graminifolia aerial parts contain an important amount of total phenolics (192.69 mg GAE/g) and flavonoids (151.41 mg RE/g), with chlorogenic acid and quercitrin as major constituents. The hydroalcoholic extracts showed promising antioxidant and antimicrobial potential, with potent antibacterial activity against Staphylococcus aureus and important antifungal effect against Candida albicans and C. parapsilosis. The obtained results indicated that the aerial parts of Solidago graminifolia could be used as novel resource of phytochemicals in herbal preparations with antioxidant and antimicrobial activities.
Collapse
|
15
|
Merino JJ, Parmigiani-Izquierdo JM, Toledano Gasca A, Cabaña-Muñoz ME. The Long-Term Algae Extract ( Chlorella and Fucus sp) and Aminosulphurate Supplementation Modulate SOD-1 Activity and Decrease Heavy Metals (Hg ++, Sn) Levels in Patients with Long-Term Dental Titanium Implants and Amalgam Fillings Restorations. Antioxidants (Basel) 2019; 8:antiox8040101. [PMID: 31014007 PMCID: PMC6523211 DOI: 10.3390/antiox8040101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
The toxicity of heavy metals such as Hg++ is a serious risk for human health. We evaluated whether 90 days of nutritional supplementation (d90, n = 16) with Chlorella vulgaris (CV) and Fucus sp extracts in conjunction with aminosulphurate (nutraceuticals) supplementation could detox heavy metal levels in patients with long-term titanium dental implants (average: three, average: 12 years in mouth) and/or amalgam fillings (average: four, average: 15 years) compared to baseline levels (d0: before any supplementation, n = 16) and untreated controls (without dental materials) of similar age (control, n = 21). In this study, we compared levels of several heavy metals/oligoelements in these patients after 90 days (n = 16) of nutritional supplementation with CV and aminozuphrates extract with their own baseline levels (d0, n = 16) and untreated controls (n = 21); 16 patients averaging 44 age years old with long-term dental amalgams and titanium implants for at least 10 years (average: 12 years) were recruited, as well as 21 non-supplemented controls (without dental materials) of similar age. The following heavy metals were quantified in hair samples as index of chronic heavy metal exposure before and after 90 days supplementation using inductively coupled plasma-mass spectrometry (ICP-MS) and expressed as μg/g of hair (Al, Hg++, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, and Ti). We also measured several oligoelements (Ca++, Mg++, Na+, K+, Cu++, Zn++, Mn++, Cr, V, Mo, B, I, P, Se, Sr, P, Co, Fe++, Ge, Rb, and Zr). The algae and nutraceutical supplementation during 90 consecutive days decreased Hg++, Ag, Sn, and Pb at 90 days as compared to baseline levels. The mercury levels at 90 days decreased as compared with the untreated controls. The supplementation contributed to reducing heavy metal levels. There were increased lithium (Li) and germanium (Ge) levels after supplementation in patients with long-term dental titanium implants and amalgams. They also (d90) increased manganesum (Mn++), phosphorum (P), and iron (Fe++) levels as compared with their own basal levels (d0) and the untreated controls. Finally, decreased SuperOxide Dismutase-1 (SOD-1) activity (saliva) was observed after 90 days of supplementation as compared with basal levels (before any supplementation, d0), suggesting antioxidant effects. Conversely, we detected increased SOD-1 activity after 90 days as compared with untreated controls. This SOD-1 regulation could induce antioxidant effects in these patients. The long-term treatment with algae extract and aminosulphurates for 90 consecutive days decreased certain heavy metal levels (Hg++, Ag, Sn, Pb, and U) as compared with basal levels. However, Hg++ and Sn reductions were observed after 90 days as compared with untreated controls (without dental materials). The dental amalgam restoration using activated nasal filters in conjunction with long-term nutritional supplementation enhanced heavy metals removal. Finally, the long-term supplementation with these algae and aminoazuphrates was safe and non-toxic in patients. These supplements prevented certain deficits in oligoelements without affecting their Na+/K+ ratios after long-term nutraceutical supplementation.
Collapse
Affiliation(s)
- José Joaquín Merino
- Clínica CIROM, Centro de Implantología and Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain.
| | | | | | | |
Collapse
|
16
|
Kim HR, Jung BK, Yeo MH, Yoon WJ, Chang KS. Inhibition of lipid accumulation by the ethyl acetate fraction of Distylium racemosum in vitro and in vivo. Toxicol Rep 2019; 6:215-221. [PMID: 30891421 PMCID: PMC6403441 DOI: 10.1016/j.toxrep.2019.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
Lipid accumulation in the 3T3-L1 cells were inhibited by treatment with DRE. The expression levels of SREBP1c, PPARγ, C/EBPα, and FAS were decreased by DRE. HFD induced fat mice showed lower rate of weight gain and serum TG level through DRE administration.
This study confirms the anti-obesity effect of the ethyl acetate fraction of Distylium racemosum (DRE), a member of Hamamelidaceae, that naturally grows on Jeju Island, on adipocyte differentiation in 3T3-L1 cells. This study further demonstrated that DRE exhibits anti-obesity effects in C57BL/6 obese mice. The degree of adipocyte differentiation was determined using Oil red O stain; results indicated a decrease in fat globules, which was dependent on DRE concentration, when pre-adipocytes were treated with differentiation-inducing agents. In addition, this significantly reduced the expression of the adipogenic transcription factor and related genes. C57BL/6 obese mice treated with DRE showed a lower rate of body weight gain than the high-fat diet (HFD) group mice. Further, the level of serum triglyceride in the DRE treatment group was lower than that in the HFD group. The findings show that DRE are capable of suppressing adipocyte accumulation; therefore, DRE may represent a promising source of functional materials for the anti-obesity.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea.,Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Bo-Kyoung Jung
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Min-Ho Yeo
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 63208, Republic of Korea
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
17
|
Park YJ, Lee GS, Cheon SY, Cha YY, An HJ. The anti-obesity effects of Tongbi-san in a high-fat diet-induced obese mouse model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:1. [PMID: 30606178 PMCID: PMC6319014 DOI: 10.1186/s12906-018-2420-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recently, it has been noted that natural herbal medications may be effective in treating obesity. Tongbi-san (TBS) is a traditional medicine usually used for dysuria (i.e., painful urination), containing three herbs, Cyperus rotundus L., Citrus unshiu Markovich, and Poria cocos. In this study, we aimed to examine whether TBS can inhibit high-fat diet (HFD)-induced adipogenesis in the liver and epididymal adipose tissue of obese mice. METHODS Male C57BL/6 N mice were fed a normal diet, an HFD, an HFD plus orlistat 10 or 20 mg/kg, or an HFD plus TBS 50 or 100 mg/kg for 11 weeks. Body weight was checked weekly and histological tissue examinations were investigated. An expression of genes involved in adipogenesis was also assessed. RESULTS Oral administration of TBS significantly reduced body weight and decreased epididymal and visceral white adipose tissue (WAT) weight. In addition, we found that TBS enhanced the expression of the adenosine monophosphate-activated protein kinase (AMPK) and inhibited the expression of transcription factors, such as CCAAT/enhancer-binding proteins (C/EBPs), sterol regulatory element-binding protein 1 (SREBP1), and peroxisome proliferator-activated receptor γ (PPARγ) in the liver and epididymal WAT as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). CONCLUSION These findings demonstrate that the anti-obesity effects of TBS may be linked to the activation of AMPK.
Collapse
|
18
|
Guruvaiah P, Guo H, Li D, Xie Z. Preventive Effect of Flavonol Derivatives Abundant Sanglan Tea on Long-Term High-Fat-Diet-Induced Obesity Complications in C57BL/6 Mice. Nutrients 2018; 10:nu10091276. [PMID: 30201876 PMCID: PMC6164069 DOI: 10.3390/nu10091276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Sanglan Tea (SLT) is a Chinese medicine-based formulation that is consumed as a health drink for the effective management of obesity-associated complications. However, its chemical components and mechanism of action in the prevention of hepatic steatosis and obesity-related impairments have been uncertain. In this study, we aimed to unveil the chemical profile of SLT and to explore its preventive mechanism in high-fat-diet-induced non-alcoholic fatty liver disease (NAFLD) and obesity-related consequences in C57BL/6 mice. Ultrahigh-performance liquid chromatography (UHPLC) coupled to a quadrupole-orbitrap high-resolution mass spectrometry (MS) analysis of SLT indicated that analogs of quercetin and kaempferol are major compounds of flavonoids in SLT. A dietary supplement of SLT efficiently managed the blood glucose elevation, retained the serum total cholesterol (TC), LDL-cholesterol (LDL-C), and triglyceride (TG) levels, as well as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity, and reduced the fat storage in the liver induced by a high-fat diet. The underlying mechanism of this preventive effect is hypothesized to be related to the inhibition of over-expression of lipogenesis and adipogenesis-related genes. Overall, this study suggests that SLT, being rich in quercetin and kaempferol analogs, could be a potential food supplement for the prevention of high-fat-diet-induced NAFLD and obesity-related complications.
Collapse
Affiliation(s)
- Ponmari Guruvaiah
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Huimin Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Modulatory Effect of Polyphenolic Compounds from the Mangrove Tree Rhizophora mangle L. on Non-Alcoholic Fatty Liver Disease and Insulin Resistance in High-Fat Diet Obese Mice. Molecules 2018; 23:molecules23092114. [PMID: 30135414 PMCID: PMC6225131 DOI: 10.3390/molecules23092114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/05/2018] [Accepted: 08/11/2018] [Indexed: 12/12/2022] Open
Abstract
No scientific report proves the action of the phytochemicals from the mangrove tree Rhizophora mangle in the treatment of diabetes. The aim of this work is to evaluate the effects of the acetonic extract of R. mangle barks (AERM) on type 2 diabetes. The main chemical constituents of the extract were analyzed by high-performance liquid chromatography (HPLC) and flow injection analysis electrospray-iontrap mass spectrometry (FIA-ESI-IT-MS/MS). High-fat diet (HFD)-fed mice were used as model of type 2 diabetes associated with obesity. After 4 weeks of AERM 5 or 50 mg/kg/day orally, glucose homeostasis was evaluated by insulin tolerance test (kiTT). Hepatic steatosis, triglycerides and gene expression were also evaluated. AERM consists of catechin, quercetin and chlorogenic acids derivatives. These metabolites have nutritional importance, obese mice treated with AERM (50 mg/kg) presented improvements in insulin resistance resulting in hepatic steatosis reductions associated with a strong inhibition of hepatic mRNA levels of CD36. The beneficial effects of AERM in an obesity model could be associated with its inhibitory α-amylase activity detected in vitro. Rhizophora mangle partially reverses insulin resistance and hepatic steatosis associated with obesity, supporting previous claims in traditional knowledge.
Collapse
|
20
|
Ali Z, Ma H, Rashid MT, Ayim I, Wali A. Reduction of body weight, body fat mass, and serum leptin levels by addition of new beverage in normal diet of obese subjects. J Food Biochem 2018. [DOI: 10.1111/jfbc.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zeshan Ali
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Haile Ma
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| | | | | | - Asif Wali
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
21
|
Nepali S, Cha JY, Ki HH, Lee HY, Kim YH, Kim DK, Song BJ, Lee YM. Chrysanthemum indicum Inhibits Adipogenesis and Activates the AMPK Pathway in High-Fat-Diet-Induced Obese Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:119-136. [DOI: 10.1142/s0192415x18500076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chrysanthemum indicum (CI) is widely distributed in China and many parts of the tropical world, and has been reported to have antibacterial, antiviral, anti-oxidant and immunomodulatory effects, but no information is available on its effects on high fat diet (HFD)-induced obesity. This was undertaken to investigate the mechanism responsible for the effect of ethyl acetate fraction of CI (CIEA) on adipogenesis, in vitro and in vivo models of obesity. In the in vitro study, differentiating 3T3-L1 cells were treated with media to initiate differentiation (MDI) in the presence or absence of CIEA with different concentrations, and in the in vivo study, C57BL/6 mice were fed with HFD and administered CIEA daily for six weeks. Garcinia cambogia (GC) was used as the positive control, and was administered in the same manner as CIEA. Results showed CIEA reduced HFD-induced body weight gain, epididymal white adipose tissue (eWAT), and liver weight. In addition, CIEA significantly decreased serum lipid profiles, including total cholesterol (TC), triglyceride (TG) and low density lipoprotein cholesterol (LDLc) and increased high density lipoprotein cholesterol (HDLc) levels. Furthermore, CIEA also reduced leptin levels and increased adiponectin levels in serum, and significantly decreased peroxisome proliferator-activated receptor [Formula: see text] (PPAR[Formula: see text]) and CCAAT/enhancer-binding protein (C/EPBs) levels, but increased PPAR[Formula: see text] level and the phosphorylation of AMP-activated protein kinase (AMPK) in eWATs and in the liver tissues of HFD fed obese mice. Taken together, these results indicate CIEA might be beneficial for preventing obesity.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Korea
| | - Ji-Yun Cha
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Korea
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| | - Young-Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Korea
| | - Bong-Joon Song
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Korea
| |
Collapse
|
22
|
Im SH, Wang Z, Lim SS, Lee OH, Kang IJ. Bioactivity-guided isolation and identification of anti-adipogenic compounds from Sanguisorba officinalis. PHARMACEUTICAL BIOLOGY 2017; 55:2057-2064. [PMID: 28832233 PMCID: PMC6130757 DOI: 10.1080/13880209.2017.1357736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/30/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Sanguisorba officinalis Linne (Rosaceae) is a medicinal plant used traditionally for the treatment of inflammatory and metabolic diseases in Korea, China, and Japan. In our previous study, a 50% ethanol extract inhibited fat accumulation in 3T3-L1 adipocytes. OBJECTIVE This study investigates bioassay-guided fractionation, isolation, and identification of anti-adipogenic bioactive compounds in S. officinalis. MATERIALS AND METHODS The bioassay-guided fractionation was conducted using effective differentiation of 3T3-L1 cells into adipocytes (with 50 μg/mL test material for 8 days) to isolate the inhibitory compounds from ethyl acetate fraction of S. officinalis 50% ethanol extract. The cytotoxicity of each fraction and isolated compound was tested using MTT assay (with 25-300 μg/mL test material). Structures of the isolated active compounds were elucidated using 1H NMR, 13 C NMR, HSQC, HMBC, FT-IR, and MS. RESULTS An active ethyl acetate fraction obtained with solvent partition of the extract inhibited lipid accumulation (44.84%) on 3T3-L1 cells without cytotoxicity (102.3%) at the concentration of 50 μg/mL. The ethyl acetate fraction was determined to be mainly composed by isorhamnetin-3-O-d-glucuronide (1) and ellagic acid (2). Pure isorhamnetin-3-O-d-glucuronide (IC30 is 18.43 μM) and ellagic acid (IC30 is 19.32 μM) showed lipid accumulation inhibition on 3T3-L1 cells without cytotoxicity (117.5% and 104.3%) at the concentration of 20 μM, respectively. DISCUSSION AND CONCLUSIONS These results suggested that S. officinalis is a potential natural ingredient for the prevention of obesity, which may due to bioactive compounds such as isorhamnetin-3-O-d-glucuronide and ellagic acid.
Collapse
Affiliation(s)
- Sun Hyuk Im
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Zhiqiang Wang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
23
|
Wang X, Shi L, Joyce S, Wang Y, Feng Y. MDG-1, a Potential Regulator of PPARα and PPARγ, Ameliorates Dyslipidemia in Mice. Int J Mol Sci 2017; 18:ijms18091930. [PMID: 28885549 PMCID: PMC5618579 DOI: 10.3390/ijms18091930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
Hyperlipidemia is a serious epidemic disease caused by lipid metabolism disorder, which is harmful to human health. MDG-1, a β-d-fructan polysaccharide extracted from Ophiopogon japonicus, has been shown to improve abnormal blood lipid levels and alleviate diabetes. However, the underlying mechanism on hyperlipidemia is largely unknown. In this study, male C57BL/6 mice were randomly separated into three groups, respectively: low-fat diet (Con), high-fat diet (HFD), and high-fat diet plus 5‰ MDG-1 (HFD + MDG-1). Body weight was measured and the serum lipid levels were analyzed. Using gene microarray, various core pathways, together with levels of gene expression within hepatocytes, were analyzed. RT-PCR was used to confirm the identity of the differentially expressed genes. MDG-1 could prevent obesity in HFD-induced mice and improve abnormal serum lipids. Besides, MDG-1 could regulate hyperlipidemia symptoms, specifically, and decrease fasting blood glucose, improve glucose tolerance, and ameliorate insulin resistance. According to results from gene microarray, most of the identified pathways were involved in the digestion and absorption of fat, biosynthesis, and catabolism of fatty acids as well as the secretion and biological synthesis of bile acids. Furthermore, MDG-1 may act upon peroxisome proliferator-activated receptors (PPAR) α and γ, activating PPARα whilst inhibiting PPARγ, thus having a potent hypolipidemic effect.
Collapse
Affiliation(s)
- Xu Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Linlin Shi
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Sun Joyce
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Yuan Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|